CN102400847B - Wind-driven generator blade wing section - Google Patents

Wind-driven generator blade wing section Download PDF

Info

Publication number
CN102400847B
CN102400847B CN2011103859511A CN201110385951A CN102400847B CN 102400847 B CN102400847 B CN 102400847B CN 2011103859511 A CN2011103859511 A CN 2011103859511A CN 201110385951 A CN201110385951 A CN 201110385951A CN 102400847 B CN102400847 B CN 102400847B
Authority
CN
China
Prior art keywords
wind
aerofoil profile
wing section
driven generator
standard
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
CN2011103859511A
Other languages
Chinese (zh)
Other versions
CN102400847A (en
Inventor
丛茜
刘玉荣
马毅
金敬福
田为军
齐迎春
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Jilin University
Original Assignee
Jilin University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Jilin University filed Critical Jilin University
Priority to CN2011103859511A priority Critical patent/CN102400847B/en
Publication of CN102400847A publication Critical patent/CN102400847A/en
Application granted granted Critical
Publication of CN102400847B publication Critical patent/CN102400847B/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/70Wind energy
    • Y02E10/72Wind turbines with rotation axis in wind direction

Landscapes

  • Wind Motors (AREA)

Abstract

The invention relates to a wind-driven generator blade wing section for a horizontal-axis wind-driven generator blade, which applies reverse engineering to acquire coordinate values of the upper surface and the lower surface of a barn-swallow wing section and is obtained by comparison of the wind-tunnel experiment and the standard wing section. In a barn-swallow wing simulating section, the position of the largest thickness t accounts for 27.3%-36.4% of the chord length, and the position of the largest curvature f accounts for 45.5%-54.5% of the chord length; the radius of the front edge of the largest thickness t is reduced by about 1.2 times than the standard wing section, so that the lift force loss caused by premature separation of the air flow on the wing section can be prevented; and the largest curvature f is about 2 times of that of the standard wing section, so that the flow speed difference of the upper surface and the lower surface of the bionic wing section is increased, further the pressure difference of the upper surface and the lower surface is increased and the lift force is improved. In the barn-swallow wing simulating section, the lift force and the lift-drag ratio are better and the whole pneumatic property is improved.

Description

A kind of wind-driven generator blade wing section
Technical field:
The present invention relates to a kind of aerofoil profile of blade of wind-driven generator, be specifically related to a kind of aerofoil profile of horizontal shaft wind-driven generator vane.
Technical background:
Wind-power electricity generation is one of generation of electricity by new energy technology of the tool development prospect in the world today, and its extensive research and development utilization has become the emphasis of 21 century countries in the world new energy development.China is not only the big producing country of wind power equipment, and big export country is also consumption big country, and household small-size wind power plant market potential is very huge.
At present wind-driven generator mainly has two kinds of forms: horizontal axis and vertical shaft, and using in the world more is horizontal axis wind-driven generator, this wind energy conversion system is applicable to large-scale wind energy turbine set.Pneumatic equipment blades made is the core position that wind-driven generator catches wind energy, and the aerofoil profile that consists of the vane aerodynamic profile is determining the performance of blade, be the key of blade design, it is directly determining the efficient of wind energy transformation, and therefore studying high performance aerofoil profile has its necessity.
As far back as mid-term in 20th century, just wind mill airfoil has been carried out particular study abroad.Denmark National Laboratory has proposed three kinds of Ris Ф-A1, Ris Ф-P, Ris Ф-B1 Special Airfoil of Wind Turbine family; Sweden aeronautical research institute has designed FFA-W1, WZ, W3 Special Airfoil of Wind Turbine family; Holland Delft university has developed the DU family of aerofoil sections.These Special Airfoil of Wind Turbines have the characteristics such as milder stalling characteristics, lower leading edge susceptibility and low noise, but its efficient that transforms wind energy is compared very large development space in addition with the Betz theory, the lift and the ratio of lift coefficient to drag coefficient that are aerofoil profile are still waiting further raising, thereby the increase wind energy utilization reduces energy loss.
In today of social high development, bionics as one independently subject admitted by increasing scholar expert, and biologically in the development and change of 1 years possessed the character that adapts to nature, its unique researching value is more arranged.
At occurring in nature, birds directly contact with air with insect, and the wing of birds is also laterally to be arranged by a series of aerofoil profiles to form, and are similar with the wind-driven generator operating mode.The present invention is applied to its wing aerofoil profile on wind energy conversion system take house swallow as research object, intends solving the low problem of wind energy utilization.House swallow is modal summer resident, is also one of the fastest birds that fly in the world, and its wing is long and narrow, and this wing is adapted to migrating of flight fast and long distance, has very strong flexibility.
Summary of the invention:
The present invention relates to a kind of wind-driven generator blade wing section, purpose is for wind-driven generator special airfoil lift and the general not high situation of ratio of lift coefficient to drag coefficient, its lift and ratio of lift coefficient to drag coefficient under different reynolds' number and the different angle of attack can significantly be promoted, imitative house swallow aerofoil profile is applied to solves the problem that the horizontal axis wind-driven generator wind energy utilization is low, loss is large on wind-driven generator, save energy spending.
Above-mentioned purpose of the present invention is achieved in that accompanying drawings is as follows:
A kind of wind-driven generator blade wing section, formed by chord length, thickness, leading-edge radius and camber, described chord length c is 1 o'clock, the span of maximum ga(u)ge t is 0.0573~0.0617, the span of described leading-edge radius r is 0.00522~0.00679, the span of described camber f is 0.0708~0.0771, and the position at maximum ga(u)ge t place account for chord length c span 27.3%~36.4%, the position at described maximum camber t place accounts for 45.5%~54.5% of described chord length c scope.
The leading-edge radius of imitative house swallow aerofoil profile of the present invention has reduced 1 times of left and right than standard aerofoil profile NACA4412, thereby this wind-exposuring area that can reduce aerofoil profile reduces pressure drag; Maximum ga(u)ge is compared with the standard aerofoil profile and has been reduced by 1.1 times of left and right, can prevent that the air-flow on aerofoil profile from premature disengagement occurring when flowing through upper surface, causes loss of lift; The maximum camber of imitative house swallow aerofoil profile apparently higher than the standard aerofoil profile, is approximately 2 times of left and right of standard aerofoil profile, and this just makes the upper and lower airfoil surface current difference of bionical aerofoil profile strengthen, thus the poor increasing of the upper and lower surface pressure of aerofoil profile, therefore lift increases.
The present invention has the following advantages: shape and surface structure that aerofoil profile of the present invention does not change itself just can obtain good aerodynamic characteristic: the angle of attack scope during experiment is-10 °~40 °, reynolds' number is respectively 60000,80000, the lift coefficient that records imitative house swallow aerofoil profile has improved respectively 36.25%, 26.9% than standard aerofoil profile, and ratio of lift coefficient to drag coefficient has improved respectively 28.9%, 38.5% than standard aerofoil profile; Laboratory data of the present invention is to obtain by actual tunnel test, compares with the data that simulation analysis in the past obtains to have more convincingness.
Description of drawings:
The schematic diagram of the bionical aerofoil profile of Fig. 1.
Fig. 2 is the partial enlarged drawing at Figure 1A place.
Fig. 3 is in the situation that the actual blowing of tunnel test, and imitative house swallow aerofoil profile and standard aerofoil profile NACA4412 are-10 °~40 ° at the angle of attack, and reynolds' number is the correlation curve figure of the lift coefficient of 60000,80000 o'clock.
Fig. 4 is in the situation that the actual blowing of tunnel test, and imitative house swallow aerofoil profile and standard aerofoil profile NACA4412 are-10 °~40 ° at the angle of attack, and reynolds' number is the correlation curve figure of the ratio of lift coefficient to drag coefficient of 60000,80000 o'clock.
In figure: r-leading-edge radius t-maximum ga(u)ge f-camber c-chord length d-bending line B-top airfoil C-lower aerofoil
Embodiment:
With reference to figure 1, the chord length c of imitative house swallow aerofoil profile is unit length 1, and leading-edge radius r is 0.00679, and maximum ga(u)ge t is 0.0573, and camber f is 0.0771, and the maximum ga(u)ge position is: x t/ c=27.3%, namely the position at maximum ga(u)ge t place is 27.3% of chord length c; The position of camber is: x f/ c=54.5%, namely the position at camber f place accounts for 54.5% of chord length, wherein x tBe the abscissa value of maximum ga(u)ge position on aerofoil profile, x fBe the abscissa value of camber position on aerofoil profile.Leading-edge radius has reduced 1 times of left and right than standard aerofoil profile NACA4412, thereby this wind-exposuring area that can reduce aerofoil profile reduces pressure drag; Maximum ga(u)ge is compared with the standard aerofoil profile and has been reduced by 1.1 times of left and right, can prevent that the air-flow on aerofoil profile from premature disengagement occurring when flowing through upper surface, causes loss of lift; The maximum camber of imitative house swallow aerofoil profile apparently higher than the standard aerofoil profile, is approximately 2 times of left and right of standard aerofoil profile, and this just makes the upper and lower airfoil surface current difference of imitative house swallow aerofoil profile strengthen, thereby aerofoil profile upper and lower surface pressure difference strengthens, therefore lift increases.
Imitative house swallow aerofoil profile 1, the corresponding coordinate figure of its upper and lower aerofoil satisfies following table:
Table 1
Figure BDA0000113624320000031
Imitative house swallow aerofoil profile 2, the corresponding coordinate figure of its upper and lower aerofoil satisfies following table:
Table 2
Figure BDA0000113624320000032
Fig. 3 imitates the lift coefficient of house swallow aerofoil profile and standard aerofoil profile with the change curve of the angle of attack, tests obtaining through actual blowing at wind tunnel laboratory.Can find out that the lift coefficient of imitative house swallow aerofoil profile is all greater than the standard aerofoil profile.And the trend that is growth along with the increase lift coefficient of the angle of attack, when the angle of attack was increased to 40 ° of left and right, lift coefficient began to have a declining tendency.As can be seen from the figure when reynolds' number is 60000, when the angle of attack is 38 °, the lift coefficient of imitative house swallow aerofoil profile reaches maximum, is 0.3488; And standard aerofoil profile NACA4412 is 60000 o'clock at reynolds' number, and maximum lift coefficient is 0.256, and imitative house swallow aerofoil profile can increase by 36.25% than the lift coefficient of standard aerofoil profile NANCA4412.The lift coefficient of imitative house swallow aerofoil profile improves respectively 36.25%, 26.9% than standard aerofoil profile when reynolds' number is respectively 60000,80000.
Fig. 4 is the ratio of lift coefficient to drag coefficient plotted curve under different Reynolds number and the different angle of attack of imitative house swallow aerofoil profile from the standard aerofoil profile.When reynolds' number is 80000, when the angle of attack was 4 °, the ratio of lift coefficient to drag coefficient of imitative house swallow aerofoil profile was 6.5 to the maximum, had increased by 30% than the maximum lift-drag ratio 5 of standard aerofoil profile.Imitative house swallow aerofoil profile has improved respectively 28.9%, 38.5% than the ratio of lift coefficient to drag coefficient of standard aerofoil profile when reynolds' number is respectively 60000,80000.
In summary it can be seen that working as the angle of attack is-10 °~40 °, reynolds' number is respectively 60000,80000 o'clock imitative house swallow aerofoil profiles and has better lift and ratio of lift coefficient to drag coefficient than standard aerofoil profile NACA4412, be applied on horizontal axis wind-driven generator and can better improve wind energy utilization, reduce energy loss.

Claims (3)

1. wind-driven generator blade wing section, by chord length, thickness, leading-edge radius and camber form, it is characterized in that, described chord length (c) is 1 o'clock, the span of maximum ga(u)ge (t) is 0.0573~0.0617, the span of described leading-edge radius (r) is 0.00522~0.00679, the span of described camber (f) is 0.0708~0.0771, and the position at maximum ga(u)ge (t) place account for chord length (c) span 27.3%~36.4%, the position at maximum camber (f) place accounts for 45.5%~54.5% of described chord length (c) scope.
2. a kind of wind-driven generator blade wing section according to claim 1, is characterized in that, the corresponding coordinate figure of the upper and lower aerofoil of described aerofoil profile satisfies:
Figure FDA00002823406000011
3. a kind of wind-driven generator blade wing section according to claim 1, is characterized in that, the corresponding coordinate figure of the upper and lower aerofoil of described aerofoil profile satisfies:
Figure FDA00002823406000012
Figure FDA00002823406000021
CN2011103859511A 2011-11-29 2011-11-29 Wind-driven generator blade wing section Expired - Fee Related CN102400847B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN2011103859511A CN102400847B (en) 2011-11-29 2011-11-29 Wind-driven generator blade wing section

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN2011103859511A CN102400847B (en) 2011-11-29 2011-11-29 Wind-driven generator blade wing section

Publications (2)

Publication Number Publication Date
CN102400847A CN102400847A (en) 2012-04-04
CN102400847B true CN102400847B (en) 2013-06-19

Family

ID=45883392

Family Applications (1)

Application Number Title Priority Date Filing Date
CN2011103859511A Expired - Fee Related CN102400847B (en) 2011-11-29 2011-11-29 Wind-driven generator blade wing section

Country Status (1)

Country Link
CN (1) CN102400847B (en)

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103133273B (en) * 2013-03-26 2015-12-02 国电联合动力技术有限公司 A kind of thin airfoil type blade of large fan
CN103244359B (en) * 2013-05-30 2016-04-13 国电联合动力技术有限公司 A kind of intermediate gauge airfoil fan of large fan
CN103883483B (en) * 2014-04-17 2016-04-06 吉林大学 A kind of 100W blade of wind-driven generator
CN104214054B (en) * 2014-08-28 2016-08-17 吉林大学 A kind of small-sized wind power generator blade
CN105844034B (en) * 2016-03-30 2019-07-12 中国矿业大学银川学院 The sparrow hawk aerofoil profile bionic method of horizontal shaft wind-driven generator vane
CN108397344B (en) * 2018-01-25 2019-10-22 华北电力大学 The determination method of wind power generation blade pitch angle
CN108414182B (en) * 2018-04-23 2023-11-10 中国空气动力研究与发展中心低速空气动力研究所 Wing type yaw oscillation wind tunnel test device
CN109969381A (en) * 2019-04-12 2019-07-05 中国空气动力研究与发展中心计算空气动力研究所 A kind of low reynolds number airfoil with high ratio of lift over drag with sharp leading edge heavy camber

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN200978778Y (en) * 2006-11-01 2007-11-21 陈向阳 Windwheel blade for small-sized wind-driven generator
US20090257884A1 (en) * 2007-12-24 2009-10-15 Clark Philip G Wind turbine blade and assembly
DE102008052858B9 (en) * 2008-10-23 2014-06-12 Senvion Se Profile of a rotor blade and rotor blade of a wind turbine
CN101813070B (en) * 2010-04-13 2012-07-25 南京航空航天大学 Vane airfoil profile of low power wind driven generator
CN202023699U (en) * 2011-05-05 2011-11-02 刘景斌 Simulation wind driven generator
CN202370744U (en) * 2011-11-29 2012-08-08 吉林大学 Wind turbine blade airfoil

Also Published As

Publication number Publication date
CN102400847A (en) 2012-04-04

Similar Documents

Publication Publication Date Title
CN102400847B (en) Wind-driven generator blade wing section
CN104405596B (en) Wind turbine generator system low-wind-speed airfoil section family
CN103277245B (en) Large-thickness blunt-trailing-edge wind-power airfoil profiles and a design method thereof
CN203374428U (en) Family of wind-power airfoil profiles with large thickness and blunt trailing edges
CN101615216B (en) Method for carrying out streamline-form thickening on airfoil shape tailing edge
CN101059119B (en) Wind rotor blade of mw-grade wind driven generator
CN102094767A (en) Airfoil group for megawatt-class wind turbine blade
CN102444540B (en) Wind turbine blade aerofoil of horizontal axis wind turbine
CN104018998B (en) 21%-thickness main airfoil for megawatt wind turbine blade
CN202370744U (en) Wind turbine blade airfoil
CN203383990U (en) Large-thickness airfoil blade of large fan
CN103629044A (en) Blade root structure of horizontal-axis wind turbine blade
CN103883483B (en) A kind of 100W blade of wind-driven generator
CN103133272A (en) Thin airfoil type blade of large-scale fan
CN201050442Y (en) Megawatt grade wind mill vane
CN203770019U (en) 100-W wind turbine blade
CN102278272B (en) Prominent type Blades For Horizontal Axis Wind before a kind of
CN204126820U (en) A kind of small-sized wind power generator blade
CN104018999B (en) A kind of 25% thickness main wing type for blade of megawatt level wind machine
CN203321756U (en) Medium-thickness airfoil blade for large turbines
CN202348553U (en) Wind wheel vane wing profile of horizontal axis wind turbine
CN103321856B (en) A kind of heavy thickness airfoil fan of large fan
CN202991344U (en) Vertical axis air suction wind turbine
CN202209250U (en) Protrusion type horizontal axis wind turbine blade
CN212360197U (en) Horizontal axis wind turbine blade with stall angle delaying function

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C14 Grant of patent or utility model
GR01 Patent grant
C17 Cessation of patent right
CF01 Termination of patent right due to non-payment of annual fee

Granted publication date: 20130619

Termination date: 20131129