CN102399799A - 青藏高原野生大麦HsCIPK26基因 - Google Patents

青藏高原野生大麦HsCIPK26基因 Download PDF

Info

Publication number
CN102399799A
CN102399799A CN2011103215181A CN201110321518A CN102399799A CN 102399799 A CN102399799 A CN 102399799A CN 2011103215181 A CN2011103215181 A CN 2011103215181A CN 201110321518 A CN201110321518 A CN 201110321518A CN 102399799 A CN102399799 A CN 102399799A
Authority
CN
China
Prior art keywords
gene
sequence
hscipk26
qinghai
wild barley
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN2011103215181A
Other languages
English (en)
Inventor
潘建伟
王文祥
郑仲仲
沈金秋
查笑君
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Zhejiang Normal University CJNU
Original Assignee
Zhejiang Normal University CJNU
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Zhejiang Normal University CJNU filed Critical Zhejiang Normal University CJNU
Priority to CN2011103215181A priority Critical patent/CN102399799A/zh
Publication of CN102399799A publication Critical patent/CN102399799A/zh
Pending legal-status Critical Current

Links

Images

Landscapes

  • Measuring Or Testing Involving Enzymes Or Micro-Organisms (AREA)
  • Breeding Of Plants And Reproduction By Means Of Culturing (AREA)

Abstract

本发明公开了青藏高原野生大麦HsCIPK26基因,其由SEQ ID NO:1的核苷酸序列定义。利用水稻OsCIPK同源基因序列设计电子探针,从已有的各种大麦核苷酸序列库如EST库中搜索同源片段,然后用聚类分析和电子拼接等方法,获取目标基因编码序列(coding sequence,CDS)。运用生物信息学方法对目标基因进行结构分析和功能预测。提取野生大麦总RNA,制备cDNA和设计PCR引物,通过PCR技术克隆目标基因。对所获得的目标基因进行TA克隆、测序和序列分析。

Description

青藏高原野生大麦HsCIPK26基因
技术领域
本发明涉及涉及基因工程技术领域,尤其是一种青藏高原野生大麦HsCIPK26基因。
背景技术
目前,在已完成基因组测序工作的植物中,相关学者已从拟南芥中鉴定出26个AtCIPKs,31个水稻OsCIPKs,43个玉米ZmCIPKs,27个胡杨PtCIPKs,其他如棉花、番茄、葡萄、高粱等物种中也有相继报道。根据已有的研究结果,植物CIPK主要参与各种逆境胁迫的信号传导。由于目前大麦基因组测序仍未完成,无法确定其含有多少个HsCIPK基因,但理论上野生大麦基因组中至少应包含31个HsCIPKs基因家族成员。从基因结构上来看,AtCIPK基因分为多内含子基因和少内含子基因,通过转录表达和功能分析表明,CIPK基因是否含有内含子与其对应的逆境胁迫没有明显关系。已有研究表明CBL与CIPK之间并不是简单的一对一关系,一个CBL可以与多个CIPK相结合,多个CBL也可以和一个CIPK互作,一种胁迫可能引起多种CBL-CIPK互作。已有的研究证明,AtCIPK14基因可能参与糖信号调节途径,OsCIPK2、OsCIPK10、OsCIPK11和OsCIPK14基因在高盐、低温等逆境下表达量都有不同程度的变化,可能参与了多条逆境信号转导途径。
表达序列标签(expressed sequence tags,EST)是对某个基因cDNA克隆测序所得的部分序列片段,长度大约为200-600bp由于基因表达调控作用不同,同一个基因的mRNA剪接位点和方式不同,所以同一个基因的全长cDNA可能包含多个EST。EST既代表了基因cDNA的某一区段,也表征了成熟mRNA可能的剪接方式。电子克隆技术是生物学数据库中EST数据库、核酸序列数据库、基因组数据库,采用同源性序列比对和归类分析、重叠区域组装和拼接等方法延长EST序列,直至没有与之同源的序列可供拼接为止,所得到的序列可以认为是相对应基因的全长cDNA,根据所得的cDNA序列设计囊括开放阅读框两端的引物,进行RT-PCR克隆出相应基因的方法。
转座子标签法,DNA亚克隆,电子克隆(Cloning In Silico),Tail-PCR,iPCR(InversePCR),TD-PCR(Touchdown-PCR),RACE(cRACE、3’-RACE、5’-RACE)等技术都是分子克隆中常用的技术。此外随着转座子的深入研究及测序技术的飞跃发展,直接分离鉴定新基因的难度变得越来越小。
发明内容
本发明利用水稻OsCIPK同源基因序列设计电子探针,从已有的各种大麦核苷酸序列库如EST库中搜索同源片段,然后用聚类分析和电子拼接等方法,获取目标基因编码序列(coding sequence,CDS)。运用生物信息学方法对目标基因进行结构分析和功能预测。提取野生大麦总RNA,制备cDNA和设计PCR引物,通过PCR技术克隆目标基因。对所获得的目标基因进行TA克隆、测序和序列分析。
青藏高原野生大麦HsCIPK26基因,源于青藏高原一年生野生大麦且它是植物所特有、与CBL特异作用的一类丝氨酸-苏氨酸蛋白激酶,其由SEQ ID NO:1的核苷酸序列定义。
所述的青藏高原野生大麦HsCIPK26基因,它在N端有一特异的催化结构域,C端区域含有一个独特的21-24个氨基酸组成的调节域即NAF结构域,这两个调节域的序列在所有CIPK中高度保守,,所述的青藏高原野生大麦HsCIPK26基因,其编码SEQ ID NO:2定义的氨基酸序列
本发明从青藏高原一年生野生大麦(Hordeum spontoneum C.Koch)中鉴定并分离出HsCIPK26基因。
附图说明
图1为HsCIPK26电泳结果;
图2为pMD18T::HsCIPK26阳性克隆鉴定结果;
图3为青藏高原一年生野生大麦HsCIPK26基因的蛋白结构;
图4为青藏高原一年生野生大麦HsCIPK26基因的全序列;
图5本发明技术路线图;
图6为本盐诱导HsCIPK26基因的Real-time PCR图。
具体实施方式
以下结合具体实施例,对本发明进行详细说明。
实施例1HsCIPK26基因全序列的获得
1.1引物设计(带下划线的为酶切位点序列):
HsCIPK26-KpnI-F:CGGGGTACCATGGAAGACAGGAGTGTTTTGACCAAAC
HsCIPK26-XbaI-R:TGCTCTAGATTATTGTGGCAGTGGGGAGAAAGCATTTG
表1反应体系
Figure BSA00000595889400031
表2PCR反应参数
  循环数   温度(℃)   时间(s)   温度(℃)   时间(s)   温度(℃)   时间(s)
  1   94   180   -   -   -   -
  30   94   30   65   15   72   60
  1   72   600
1.2实验结果
1.2.1PCR结果
取PCR产物5ul电泳,得到一条1.4kb左右的清晰地条带,其大小与已知水稻和拟南芥的CIPK26基因的片段大小相近(图1),初步可以认为已获得了所需目的DNA片段。
1.2.2PCR产物的克隆与鉴定
将得到的PCR产物末端加A后克隆到pDM18-T载体进行测序,其中带下划线的为阳性TA克隆(图2)。测序结果表明,取得DNA片段长度为1431bp,而且将此片段与拟南芥、水稻的CIPK26基因(AtCIPK26、OsCIPK26)分别进行了DNA水平、蛋白水平上的分析比对。其中在DNA水平上,水稻与野生大麦的CIPK26基因的同源性高达73.0%,在蛋白水平上,水稻与野生大麦的同源性高达68.6%。分析三者的氨基酸序列,可以得到CIPK基因所特有的结构包括N-端的激酶催化结构域及C-端的NAF motif,且这两个结构域高度保守。说明所分离的新片段为青藏高原一年生野生大麦CIPK26基因(HsCIPK26)的CDS序列(图3)。在所得到的CDS序列上,通过5’-RACE及3’-RACE得到CIPK26基因的5’端及3’端非编码区序列,从而得到HsCIPK26的全序列SEQ ID NO:1,总长度为2095bp(图4),其编码的氨基酸序列为SEQ ID NO:2。
由于目前大麦基因组仍未公布,因此,本发明所克隆到的目标基因与水稻同源基因进行序列分析时,不匹配的核苷酸位点很可能是SNP(single nucleotide polymorphism)位点,但也还能排除是PCR或测序过程中产生的误差。为避免这一点本发明对目标基因进行独立重复克隆和测序。
根据已有的研究结果,植物CIPKs主要参与各种逆境胁迫响应或养分吸收等的信号传导。如水稻中30个CIPKs对逆境胁迫的响应,其中20个至少响应干旱、高盐、低温和ABA等胁迫中的一种,响应干旱和高盐的OsCIPKs对ABA胁迫也有响应。又如钾高效利用候选基因水稻OsCIPK3、OsCIPK9、OsCBL2、OsCBL3、OsCBL4、OsCBL5、OsCBL6、OsCBL7、OsCBL8和OsCBL10基因和拟南芥AKT1、CIPK23、CBL1和CBL9基因。青藏高原野生大麦长期适应极端生境,其CIPKs很可能在逆境胁迫响应或养分吸收等方面具有更强的生物学功能。本发明从青藏高原野生大麦中克隆到的HsCIPK26是响应ABA依赖型的非生物逆境胁迫(如低温、干旱、高酸碱、高盐)信号传导途径中的关键基因,其蛋白产物是一类定位于质膜上的质子泵(H+-ATPase),或其他离子的膜通道蛋白的前体蛋白或激活蛋白。因此,本发明所克隆到的基因很可能在耐逆境农作物新品种培育中具有重要应用价值。
实施例2
如图5所示,是本发明技术路线图,下面参照技术路线图进行描述。
1.根据相关文献,从各种数据库中检索获取禾本科其他物种(如水稻、小麦、高粱、玉米)中已知CIPK26基因序列,并根据外显子和内含子的编码规则和排布方式搜索和定位开放阅读框ORF(open read frame),进而获取完整编码序列CDS(codingsequence)。
2.用OsCIPK26的完整或部分保守序列为探针,检索比对(nBlast或tBlastn)大麦的各种核苷酸序列库,推测其中同源性较高的一条序列可能为野生大麦中HsCIPK26的部分序列,则将该序列列为种子序列进行下一步电子拼接和延伸。
3.以种子序列为探针,重复检索上述数据库将检索得到的同源序列保存到PC机上,运行DNAStar软件包,将上述序列输入,由于基因测序是借助质粒载体完成的,序列中难免混有载体序列,因此需要运行程序查找载体序列,对序列进行末段修剪去掉冗余部分
4.程序根据外显子和内含子的编码规则和排布方式搜索和定位开放阅读框;接着,程序对各段序列的重复序列和差异序列进行逐一检索和比对,并对重叠区域进行拼接和组装,构建重叠序列群(Contig)
5.以构建的重叠序列群为信息标签,进一步检索比对,搜索其高度同源序列如果发现了与之高度同源的未知序列,则重复上述步骤;若没有新的发现,说明拼接组装得到的EST可能囊括了所有可能的目的基因序列。
6.以此EST序列为cDNA序列,对其设计囊括整个开放阅读框的一对特异性引物。
7.提取野生大麦总RNA,合成cDNA,并进行PCR克隆。
8.对PCR产物进行TA克隆、测序、序列分析。本发明所采用的技术路线如图2所示。
实施例3盐诱导HsCIPK26基因表达
1引物设计
HsCIPK26-1093-F:GCGGCGCCGAGGGAAGGAAAGA
HsCIPK26-1284-R:CTGCTGAACATCGCCGTGCCATCC
Hvactin-real-F2:CCAAAAGCCAACAGAGAGAA
HvACTIN-real-R2:GCTGACACCATCACCAGAG
2实验方案
种子的萌发及其培养:种子经自来水中浸泡2h后,用10%次氯酸钠表面消毒30min,再用ddH2O清洗8次。消毒后的种子平铺在湿滤纸上(滤纸下有一薄层湿的脱脂棉),在黑暗、25℃下萌发。约24h后,种子露白,选取长势良好的种子进行水培法培养。由于种子内贮存的营养物质在一周之内完全可满足种子萌发生长的需要,因此,露白种子在无营养物质的水溶液中能正常生长。在含0.1mmol/L CaCl2培养液(pH5.8)中培养约1d,然后,转移置含0.1mmol/L CaCl2(pH4.5)中培养2d,再进行逆境处理实验。
铝处理:用20umol/L铝分别处理已萌发4天的野生大麦x740、1、3、6、12、18h。20umol/LAl3++0.1mmol/L CaCl2,pH4.5。以上处理均在25℃,光照下进行。
取处理好的苗子的根,用于提取总RNA。提取野生大麦总RNA后测得其浓度,用相同ng数的RNA(如500ng)来合成cDNA,这样使得我们合成所得到的cDNA浓度基本一致。
根据野生大麦HsCIPK26基因序列设计引物进行Real-time PCR分析,用于表达分析的引物是HsCIPK26-1093-F+HsCIPK26-1284-R;PCR扩增程序如表4。内参Actin基因,引物为HvActin-real-F2+HvActin-real-R2。其反应体系如表3。
表3反应体系
Figure BSA00000595889400071
表4PCR反应参数
  循环数   温度(℃)   时间(s)   温度(℃)   时间(s)
  1   95   20   -   -
  40   95   3   60   45
如图5所示:0、1、3、6、12、18h为处理的不同时间段。由图中显示,野生大麦HsCIPK26基因在20umol/L铝处理的3、6、12小时下的表达量依次递增。说明HsCIPK26基因能受盐的诱导。
所用软件及网络资源简介:
DNAStar是一款电子克隆中常用的软件包,它以功能全面和强大而著称,它主要包括以下几个应用程序:EditSeq、GeneMan、GeneQuest、MapDraw、MegAlign、PrimerSelect、Protean、和SeqMan II。
■GeneQuest可以发现注释DNA序列中的基因,并提供相关的参数,包括ORF、拼接位点、转录因子结合位点、重复序列、限制性内切酶酶切位点等。通过应用“methods”命令,序列的各项相关信息和参数可以以图形的形式展示出来。
■EditSeq是输入并且修剪DNA或蛋白质序列的工具。EditSeq能读取大部分的序列格式,也可以通过使用键盘输入,或者从其他地方复制、粘贴得到。序列被打开后,EditSeq能使用标准或者指定的遗传密码进行翻译或反翻译、寻找开放读框以及进行阅读校对。
■MapDraw可以制作简单的线性图到有注释的环形图,在展示限制性酶切位点的同时,还可以同时展示序列的feature、开放阅读框及其翻译结果。MapDraw工具主要应用与规划酶切位点和克隆实验,产生详细和充分的结果概括。
■MegAlign提供了比对方法,进行DNA和蛋白质序列的配对和多序列比较。多序列比对可以在MegAlign的工作界面中进行查看和编辑。可以根据队列的结果制作进化树,有关序列距离的数据和残基替代可以作成表格。
■PrimerSelect能够辅助设计引物和探针。输入DNA、RNA或反向翻译的蛋白质模板序列后,PrimerSelect可以在计算序列的各种参数,用户可以通过控制各种参数限定计算结果。在模板处理后,PrimerSelect按照用户定义的参数确定引物的位置,并给引物评分,然后筛选出模板序列上的最佳引物序列。
■美国国家生物信息中心(National Center of Biotechnology Information,NCBI),http://www.ncbi.nlm.nih.gov/
■美国冷泉港实验室(Cold Spring Habor Laboratory,CSHL),http://clio.cshl.org/
■欧洲分子生物学信息网(European Molecular Biology Net,EMBnet),ht tp://www.embnet.org/
■欧洲分子生物学实验室(European Molecular Biology Laboratory,EMBL),http://www.embl-heidelberg.de/
■日本国立遗传研究所(National Institute of Genetics,NIG),http://www.ddbj.nig.ac.jp/
北京大学生物信息学中心(Peking University Center of Bioinformatics,PKUCBI),http://www.cbi.pku.edu.cn/
应当理解的是,对本领域普通技术人员来说,可以根据上述说明加以改进或变换,而所有这些改进和变换都应属于本发明所附权利要求的保护范围。
Figure ISA00000595889600011
Figure ISA00000595889600021
Figure ISA00000595889600031
Figure ISA00000595889600041
Figure ISA00000595889600051
Figure ISA00000595889600061
Figure ISA00000595889600071
Figure ISA00000595889600081
Figure ISA00000595889600091
Figure ISA00000595889600101

Claims (2)

1.青藏高原野生大麦HsCIPK26基因,其特征在于源于青藏高原—年生野生大麦且它是植物所特有、与CBL特异作用的一类丝氨酸-苏氨酸蛋白激酶,其由SEQ ID NO:1的核苷酸序列定义。
2.根据权利要求1所述的青藏高原野生大麦HsCIPK26基因,其特征在于它在N端有一特异的催化结构域,C端区域含有一个独特的21-24个氨基酸组成的调节域即NAF结构域,这两个调节域的序列在所有CIPK中高度保守,,所述的青藏高原野生大麦HsCIPK26基因,其编码SEQ ID NO:2定义的氨基酸序列。
CN2011103215181A 2010-12-23 2011-10-21 青藏高原野生大麦HsCIPK26基因 Pending CN102399799A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN2011103215181A CN102399799A (zh) 2010-12-23 2011-10-21 青藏高原野生大麦HsCIPK26基因

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
CN2010106015661A CN102168090A (zh) 2010-12-23 2010-12-23 青藏高原野生大麦HsCIPK26基因
CN201010601566.1 2010-12-23
CN2011103215181A CN102399799A (zh) 2010-12-23 2011-10-21 青藏高原野生大麦HsCIPK26基因

Publications (1)

Publication Number Publication Date
CN102399799A true CN102399799A (zh) 2012-04-04

Family

ID=44489408

Family Applications (2)

Application Number Title Priority Date Filing Date
CN2010106015661A Pending CN102168090A (zh) 2010-12-23 2010-12-23 青藏高原野生大麦HsCIPK26基因
CN2011103215181A Pending CN102399799A (zh) 2010-12-23 2011-10-21 青藏高原野生大麦HsCIPK26基因

Family Applications Before (1)

Application Number Title Priority Date Filing Date
CN2010106015661A Pending CN102168090A (zh) 2010-12-23 2010-12-23 青藏高原野生大麦HsCIPK26基因

Country Status (1)

Country Link
CN (2) CN102168090A (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102994528A (zh) * 2012-12-04 2013-03-27 南京农业大学 一个簇毛麦类钙调素互作蛋白激酶基因及其表达载体和应用

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2015042733A1 (zh) * 2013-09-25 2015-04-02 创世纪转基因技术有限公司 一种木榄蛋白激酶cipk1及其编码基因与应用
CN111518826B (zh) * 2019-02-01 2021-12-28 中国科学院植物研究所 一种改善水稻耐逆性的方法

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102994528A (zh) * 2012-12-04 2013-03-27 南京农业大学 一个簇毛麦类钙调素互作蛋白激酶基因及其表达载体和应用
CN102994528B (zh) * 2012-12-04 2015-06-03 南京农业大学 一个簇毛麦类钙调素互作蛋白激酶基因及其表达载体和应用

Also Published As

Publication number Publication date
CN102168090A (zh) 2011-08-31

Similar Documents

Publication Publication Date Title
Wu et al. Overexpression of zmm28 increases maize grain yield in the field
Song et al. Characterization of the XTH gene family: new insight to the roles in soybean flooding tolerance
Liu et al. High-quality genome assembly and pan-genome studies facilitate genetic discovery in mung bean and its improvement
Song et al. Origination, expansion, evolutionary trajectory, and expression bias of AP2/ERF superfamily in Brassica napus
Raman et al. Characterization of the complete chloroplast genome of Arabis stellari and comparisons with related species
Chao et al. Variation in Rubisco activase (RCAβ) gene promoters and expression in soybean [Glycine max (L.) Merr.]
van den Bergh et al. Gene and genome duplications and the origin of C4 photosynthesis: birth of a trait in the Cleomaceae
Yu et al. De novo taproot transcriptome sequencing and analysis of major genes involved in sucrose metabolism in radish (Raphanus sativus L.)
Zalewski et al. Evolution of the class IV HD-zip gene family in streptophytes
Huang et al. De novo transcriptome analysis and molecular marker development of two Hemarthria species
WO2011002945A1 (en) Soybean transcription factors and other genes and methods of their use
Han et al. Genome-wide identification of PLATZ transcription factors in Ginkgo biloba L. and their expression characteristics during seed development
Nie et al. Development of SSR markers based on transcriptome sequencing and association analysis with drought tolerance in perennial grass Miscanthus from China
Kamei et al. Orphan crops browser: a bridge between model and orphan crops
Żmieńko et al. A tiling microarray for global analysis of chloroplast genome expression in cucumber and other plants
Khan et al. Subtractive hybridization-mediated analysis of genes and in silico prediction of associated microRNAs under waterlogged conditions in sugarcane (Saccharum spp.)
Lyu et al. Unraveling the complexity of faba bean (Vicia faba L.) transcriptome to reveal cold-stress-responsive genes using long-read isoform sequencing technology
Tiwari et al. Identification of genes associated with stress tolerance in moth bean [Vigna aconitifolia (Jacq.) Marechal], a stress hardy crop
Dong et al. Complete mitochondrial genome sequence of Anthoceros angustus: conservative evolution of the mitogenomes in hornworts
Zhou et al. Identification and characterization of the MIKC-Type MADS-Box gene family in Brassica napus and its role in floral transition
Teshome et al. Analysis of regulatory elements in GA2ox, GA3ox and GA20ox gene families in Arabidopsis thaliana: An important trait
Sreedasyam et al. JGI Plant Gene Atlas: an updateable transcriptome resource to improve structural annotations and functional gene descriptions across the plant kingdom
Ding et al. Genome-wide identification and expression analysis of late embryogenesis abundant protein-encoding genes in rye (Secale cereale L.)
CN102399799A (zh) 青藏高原野生大麦HsCIPK26基因
Yoshida et al. Genome-wide analysis of parent-of-origin allelic expression in endosperms of Brassicaceae species, Brassica rapa

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
RJ01 Rejection of invention patent application after publication

Application publication date: 20120404

RJ01 Rejection of invention patent application after publication