CN102397070A - A fully automatic method for segmenting and quantifying the left ventricle in cardiac magnetic resonance images - Google Patents
A fully automatic method for segmenting and quantifying the left ventricle in cardiac magnetic resonance images Download PDFInfo
- Publication number
- CN102397070A CN102397070A CN2011100278475A CN201110027847A CN102397070A CN 102397070 A CN102397070 A CN 102397070A CN 2011100278475 A CN2011100278475 A CN 2011100278475A CN 201110027847 A CN201110027847 A CN 201110027847A CN 102397070 A CN102397070 A CN 102397070A
- Authority
- CN
- China
- Prior art keywords
- left ventricle
- area
- center
- automatically
- magnetic resonance
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 210000005240 left ventricle Anatomy 0.000 title claims abstract description 122
- 238000000034 method Methods 0.000 title claims abstract description 52
- 230000000747 cardiac effect Effects 0.000 title claims abstract description 23
- 239000008280 blood Substances 0.000 claims abstract description 24
- 210000004369 blood Anatomy 0.000 claims abstract description 24
- 238000005516 engineering process Methods 0.000 claims abstract description 13
- 230000008569 process Effects 0.000 claims abstract description 3
- 230000002861 ventricular Effects 0.000 claims description 21
- 230000007704 transition Effects 0.000 claims description 6
- 238000009792 diffusion process Methods 0.000 claims description 2
- 238000009395 breeding Methods 0.000 claims 2
- 230000001488 breeding effect Effects 0.000 claims 2
- 238000006243 chemical reaction Methods 0.000 claims 1
- 230000011218 segmentation Effects 0.000 abstract description 16
- 238000012545 processing Methods 0.000 abstract description 3
- 230000006870 function Effects 0.000 description 9
- 230000008859 change Effects 0.000 description 7
- 208000019622 heart disease Diseases 0.000 description 7
- 238000011002 quantification Methods 0.000 description 6
- 238000002595 magnetic resonance imaging Methods 0.000 description 4
- 230000002123 temporal effect Effects 0.000 description 4
- 238000013184 cardiac magnetic resonance imaging Methods 0.000 description 3
- 238000003759 clinical diagnosis Methods 0.000 description 3
- 238000003384 imaging method Methods 0.000 description 3
- 230000002107 myocardial effect Effects 0.000 description 3
- 238000003745 diagnosis Methods 0.000 description 2
- 230000000694 effects Effects 0.000 description 2
- 238000011156 evaluation Methods 0.000 description 2
- 230000005484 gravity Effects 0.000 description 2
- 230000004217 heart function Effects 0.000 description 2
- 210000004165 myocardium Anatomy 0.000 description 2
- 238000011160 research Methods 0.000 description 2
- 208000032544 Cicatrix Diseases 0.000 description 1
- 208000002330 Congenital Heart Defects Diseases 0.000 description 1
- 210000000709 aorta Anatomy 0.000 description 1
- 210000001765 aortic valve Anatomy 0.000 description 1
- 230000008901 benefit Effects 0.000 description 1
- 238000004364 calculation method Methods 0.000 description 1
- 230000003247 decreasing effect Effects 0.000 description 1
- 238000002059 diagnostic imaging Methods 0.000 description 1
- 238000000605 extraction Methods 0.000 description 1
- 238000009472 formulation Methods 0.000 description 1
- 230000002068 genetic effect Effects 0.000 description 1
- PCHJSUWPFVWCPO-UHFFFAOYSA-N gold Chemical compound [Au] PCHJSUWPFVWCPO-UHFFFAOYSA-N 0.000 description 1
- 230000036541 health Effects 0.000 description 1
- 230000010247 heart contraction Effects 0.000 description 1
- 239000011159 matrix material Substances 0.000 description 1
- 239000000203 mixture Substances 0.000 description 1
- 230000000877 morphologic effect Effects 0.000 description 1
- 210000003205 muscle Anatomy 0.000 description 1
- 230000035772 mutation Effects 0.000 description 1
- 210000003540 papillary muscle Anatomy 0.000 description 1
- 231100000241 scar Toxicity 0.000 description 1
- 230000037387 scars Effects 0.000 description 1
- 210000004872 soft tissue Anatomy 0.000 description 1
- 230000008337 systemic blood flow Effects 0.000 description 1
Images
Landscapes
- Magnetic Resonance Imaging Apparatus (AREA)
Abstract
Description
技术领域 technical field
本发明属磁共振成像的技术领域,具体的是指一种自动准确定位4D心脏磁共振图像左心室、自动识别左心室底部和顶部位置,从而实现全自动分割量化整个心脏磁共振图像左心室的方法。The present invention belongs to the technical field of magnetic resonance imaging, and specifically refers to a method for automatically and accurately positioning the left ventricle in a 4D cardiac magnetic resonance image, and automatically identifying the bottom and top positions of the left ventricle, thereby realizing fully automatic segmentation and quantification of the left ventricle in the entire cardiac magnetic resonance image method.
背景技术 Background technique
近年来,心脏疾病已成为危害人类身体健康的头号杀手。为了提高生活质量降低心脏病死亡率,现已发展大量技术用于临床前瞻性地诊断和治疗心脏疾病。借助医学影像技术准确评价心脏疾病已成为当今临床诊断心脏疾病、制定治疗方案的常规有效手段。磁共振成像具有无损伤、软组织对比度高、视野广阔、可任意断层成像等特点,已广泛应用于临床医学诊断。据研究表明,心脏磁共振成像精度高,可重复性好,在临床上的应用越来越广,已成为估计心脏功能、评价心肌变异、检测心肌疤痕和先天心脏疾病的黄金标准。运用心脏磁共振图像不仅可以观察到心脏的形态结构,还可以估计心脏的功能状态,能够帮助医生对心脏结构和功能做出正确的判断。In recent years, heart disease has become the number one killer that endangers human health. In order to improve the quality of life and reduce the mortality rate of heart disease, a large number of technologies have been developed for clinical prospective diagnosis and treatment of heart disease. Accurate evaluation of heart disease with the help of medical imaging technology has become a routine and effective method for clinical diagnosis of heart disease and formulation of treatment plans. Magnetic resonance imaging has the characteristics of no damage, high soft tissue contrast, wide field of view, and arbitrary tomographic imaging. It has been widely used in clinical medical diagnosis. According to research, cardiac magnetic resonance imaging has high precision and good repeatability, and has been widely used in clinical practice. It has become the gold standard for estimating cardiac function, evaluating myocardial variation, and detecting myocardial scars and congenital heart diseases. The use of cardiac magnetic resonance images can not only observe the morphological structure of the heart, but also estimate the functional state of the heart, which can help doctors make correct judgments on the structure and function of the heart.
由于左心室是全身血液循环的泵体,左心室功能指标,例如左心室舒缩容积(包括舒张末期容积和收缩末期容积,是评价心室形态功能的基本指标)、左心室每博输出量(从左心室泵出经主动脉瓣进入主动脉的血液体积,是反映心脏收缩强度和速度的重要指标)和左心室射血分数(左心室每搏输出量与舒张末期容量比值,是评价心脏泵功能的重要指标之一),是临床诊断心脏疾病及疗效的重要参考,量化左心室功能指标也就成为临床诊断和治疗心脏病采用的常规手段。Since the left ventricle is the pump body of the systemic blood circulation, left ventricular function indicators, such as left ventricular systolic volume (including end-diastolic volume and end-systolic volume, are the basic indicators for evaluating ventricular shape and function), left ventricular stroke volume (from The volume of blood pumped by the left ventricle into the aorta through the aortic valve is an important indicator reflecting the strength and speed of cardiac contraction) and the left ventricular ejection fraction (the ratio of left ventricular stroke volume to end-diastolic volume, which is an evaluation of heart pump function It is an important reference for clinical diagnosis of heart disease and its curative effect. Quantifying left ventricular function index has become a routine method for clinical diagnosis and treatment of heart disease.
分割左心室是量化左心室功能指标的前提。在标准的临床实践中,心室分割都是由有经验的医师手工描绘的。然而,临床图像数据量很大,手动分割一般只对舒张末期和收缩末期的图像,并且在描绘像小梁肌、乳头肌等复杂的心肌结构时存在主观差异。由此可见,手工分割心室十分耗时,工作效率低,劳动强度大,可重复性差。因此,自动高效精确分割量化左心室一直是当前研究的重点和热点。Segmentation of the left ventricle is a prerequisite for quantifying left ventricular function indicators. In standard clinical practice, ventricular segmentation is manually delineated by experienced physicians. However, the amount of clinical image data is large, and manual segmentation is generally only for end-diastolic and end-systolic images, and there are subjective differences when depicting complex myocardial structures such as trabecular muscles and papillary muscles. It can be seen that manually dividing the ventricle is very time-consuming, has low work efficiency, high labor intensity, and poor repeatability. Therefore, automatic efficient and accurate segmentation and quantification of the left ventricle has always been the focus and hotspot of current research.
迄今为止,左心室分割算法已经发展得比较成熟。这些算法包括传统的边缘提取、区域增长,以及一些基于特定理论的方法,如水平集算法、遗传算法等等。然而,这些算法几乎都只在分割被心肌完全包围的左心室时有效,大致还存在如下一些问题:不能自动精确有效定位左心室,不能自动识别左心室的底部和顶部,不能自动提取左心室底部血液体积。也就是说,在分割量化左心室功能参数之前,仍然需要手动定位左心室,手动确定左心室的底部和顶部的位置,手动封闭底部左心室等,同时还需手动校正一些分割效果不好的图像。此外,虽然临床中已经使用一些商业软件代替传统的纯手动分割,但是由于受到算法的局限,仍然需要大量的手动介入才能完成左心室的功能指标量化。因此,临床上仍急需一种可靠有效的全自动方法来进一步提高心脏功能参数的精确性和可重复性,提高工作效率,减轻工作强度。So far, the left ventricle segmentation algorithm has been developed relatively mature. These algorithms include traditional edge extraction, region growing, and some methods based on specific theories, such as level set algorithm, genetic algorithm and so on. However, these algorithms are almost only effective when segmenting the left ventricle completely surrounded by the myocardium, and there are generally some problems as follows: the left ventricle cannot be automatically positioned accurately and effectively, the bottom and top of the left ventricle cannot be automatically identified, and the bottom of the left ventricle cannot be automatically extracted blood volume. That is to say, before segmenting and quantifying the functional parameters of the left ventricle, it is still necessary to manually locate the left ventricle, manually determine the positions of the bottom and top of the left ventricle, manually close the bottom left ventricle, etc., and manually correct some images with poor segmentation effects . In addition, although some commercial software has been used in clinical practice to replace the traditional purely manual segmentation, due to the limitations of the algorithm, a large amount of manual intervention is still required to complete the quantification of left ventricular function indicators. Therefore, there is still an urgent clinical need for a reliable and effective fully automatic method to further improve the accuracy and repeatability of cardiac function parameters, improve work efficiency, and reduce work intensity.
发明内容 Contents of the invention
本发明的目的是针对上述现有技术的不足之处,提供一种自动定位4D心脏磁共振图像左心室、自动识别左心室底部和顶部位置,从而实现全自动分割量化心脏磁共振图像左心室的方法。The purpose of the present invention is to address the shortcomings of the above-mentioned prior art, to provide a method for automatically positioning the left ventricle in a 4D cardiac magnetic resonance image, and automatically identifying the bottom and top positions of the left ventricle, thereby realizing fully automatic segmentation and quantification of the left ventricle in cardiac magnetic resonance images method.
本发明的实现由以下技术方案完成:Realization of the present invention is accomplished by the following technical solutions:
一种全自动分割量化心脏磁共振图像左心室的方法,其特征在于,该方法的具体实施步骤是:A method for fully automatic segmentation and quantification of the left ventricle of cardiac magnetic resonance images, characterized in that the specific implementation steps of the method are:
(1)对4D心脏磁共振图像进行自动去噪和边缘增强处理;(1) Perform automatic denoising and edge enhancement processing on 4D cardiac magnetic resonance images;
(2)初步确定左心室中心,以该中心为初始种子点实施区域增长技术提出左心室全体素血液区域计算该区域的质心,并将其确定为当前层面左心室中心;实施种子繁殖技术估计剩余层面左心室中心;(2) Preliminarily determine the center of the left ventricle, and use the center as the initial seed point to implement the regional growth technique to propose the center of mass of the left ventricular voxel blood area, and determine it as the center of the left ventricle at the current level; implement the seed propagation technique to estimate the remaining level left ventricular center;
(3)以步骤(2)中确定的左心室中心为起始种子点,对左心室中部层面采用基于迭代下降阈值的区域增长技术自动提出左心室血液区域并计算相应面积;(3) With the center of the left ventricle determined in step (2) as the initial seed point, the region growing technique based on the iterative descending threshold is used to automatically propose the left ventricle blood region and calculate the corresponding area for the middle layer of the left ventricle;
(4)以步骤(2)中确定的左心室中心为起始种子点,对左心室中部层面采用基于迭代下降阈值的区域增长技术自动提取每一层图像在所有时相上的血液区域并计算相应面积,根据提取区域面积变化的时空连续性自动定位心脏左心室顶部,并校正估算左心室顶部的面积;(4) With the center of the left ventricle determined in step (2) as the starting seed point, the region growing technology based on iterative falling threshold is used to automatically extract the blood region of each layer image at all time phases for the middle layer of the left ventricle and calculate Corresponding area, automatically locate the top of the left ventricle of the heart according to the temporal and spatial continuity of the area change of the extracted area, and correct and estimate the area of the top of the left ventricle;
(5)根据左心室面积和形状时空连续性定位左心室底部,利用受形状约束的区域增长技术自动分割心脏左心室底部并对分割出的区域进行自动校正;(5) Locate the bottom of the left ventricle according to the space-time continuity of the area and shape of the left ventricle, and automatically segment the bottom of the left ventricle of the heart using the shape-constrained region growing technology and automatically correct the segmented area;
(6)根据左心室的面积计算左心室功能指标:包括左心室舒缩容积、每博输出量、射血分数,并描绘充盈曲线。(6) Calculate the left ventricular function index according to the area of the left ventricle: including left ventricular systolic volume, stroke volume, ejection fraction, and draw the filling curve.
优选的,所述步骤(1)中对4D心脏磁共振图像的处理采用anisotropic diffusion方法。Preferably, the processing of the 4D cardiac magnetic resonance images in the step (1) adopts anisotropic diffusion method.
优选的,所述步骤(2)中在提出左心室全体素血液区域之前,对左心室中部层面舒张末期和收缩末期减影图像进行Hough变换。Preferably, in the step (2), before the whole voxel blood area of the left ventricle is proposed, Hough transform is performed on the end-diastolic and end-systolic subtraction images of the middle level of the left ventricle.
优选的,所述步骤(2)中的种子繁殖技术是以临近以层面的已经确定得左心室中心为当前层面的初始种子点,实施区域增长技术提取全血体素左心室区域,并将该区域重心确定为当前层面的左心室中心。Preferably, the seed propagation technique in the step (2) is based on the initial seed point of the left ventricle center that is close to the level that has been determined as the current level, implements the region growing technique to extract the whole blood voxel left ventricle region, and converts the The regional center of gravity is determined as the center of the left ventricle in the current slice.
优选的,所述步骤(4)中采用先从左心室中部层面沿着左心室顶部方向进行左心室中心繁殖,以该中心为起始种子点实行基于迭代下降阈值法的区域增长技术来自动提取每一层图像在所有时相上的血液区域。Preferably, in the step (4), the center of the left ventricle is multiplied from the level of the middle of the left ventricle along the direction of the top of the left ventricle, and the center is used as the starting seed point to automatically extract the area growth technology based on the iterative falling threshold method. Blood regions in each image layer at all time phases.
所述阈值续下降阈值可由如下公式得到:The continuous falling threshold of the threshold can be obtained by the following formula:
th=ub/rth=u b /r
上述公式中,μb为血液区域的均值,r是一个变量,初始值是1.0,以步长0.05递增。In the above formula, μ b is the mean value of the blood area, r is a variable, the initial value is 1.0, and it increases with a step size of 0.05.
优选的,所述步骤(4)中当某一层有部分相位生长区域面积发生跃变,根据时间连续性采用如下公式估计面积:Preferably, in the step (4), when there is a jump in the area of a part of the phase growth region in a certain layer, the following formula is used to estimate the area according to the time continuity:
其中,s代表第s层,p代表发生跃变的时相,q代表离p最近的未发生面积跃变的时相,ms代表左心室中间层面的层数。优选的,所述步骤(4)中某一层所有相位生长区域面积都发生跃变,将心室顶部视为圆锥或椭圆锥,根据空间连续性采用如下公式估计面积:Among them, s represents the sth layer, p represents the time phase where the jump occurs, q represents the time phase closest to p without the area jump, and ms represents the number of layers in the middle layer of the left ventricle. Preferably, in the step (4), the area of all phase growth regions of a certain layer undergoes a jump, and the top of the ventricle is regarded as a cone or an ellipse cone, and the area is estimated by the following formula according to the spatial continuity:
其中,s代表第s层,p代表发生跃变的时相。Among them, s represents the sth layer, and p represents the time phase when the jump occurs.
优选的,所述步骤(5)中采用先从左心室中部层面沿着左心室底部方向进行左心室中心繁殖,以该中心为起始种子点实行基于迭代下降阈值法的区域增长技术来自动提取每一层图像在所有时相上的血液区域。Preferably, in the step (5), the center of the left ventricle is multiplied from the middle layer of the left ventricle along the direction of the bottom of the left ventricle, and the center is used as the starting seed point to automatically extract the area growth technology based on the iterative descending threshold method. Blood regions in each image layer at all time phases.
本发明的优点是,本发明方法能够准确快速实现心脏磁共振图像整个左心室部分的自动定位分割。与当今现存方法比较,本发明采用全自动的自动分割量化方法,可以自动完成对左心室的分割及左心室的功能参数的计算,不需要任何的手动介入,功能参数都包括,左心室舒缩容积,射血分数,每博输出量,充盈曲线,由于以前的方法都是需要人为去手工分割心脏底部和顶部,具有很强的主观性,不同的人得到的结果会有很大的差异性。The advantage of the present invention is that the method of the present invention can accurately and quickly realize the automatic positioning and segmentation of the entire left ventricle of the magnetic resonance image of the heart. Compared with the current existing methods, the present invention adopts a fully automatic automatic segmentation and quantification method, which can automatically complete the segmentation of the left ventricle and the calculation of the functional parameters of the left ventricle without any manual intervention. The functional parameters include left ventricle systolic and systolic Volume, ejection fraction, stroke volume, and filling curve, because the previous methods need to manually segment the bottom and top of the heart, which is highly subjective, and the results obtained by different people will vary greatly .
附图说明 Description of drawings
图1是一张曲线图,表明提取区域的体积变化;Figure 1 is a graph showing the volume change of the extracted region;
图2是实施例中一左心室中部原始图像及其分割图像(左为原始图像,右为分割图像);Fig. 2 is an original image of the middle part of the left ventricle and its segmented image in the embodiment (the left is the original image, the right is the segmented image);
图3是实施例中左心室的面积和形状在时空上的变化(左为空间连续性,右为时间连续性);Fig. 3 is the change of the area and the shape of the left ventricle in time and space in the embodiment (the left is spatial continuity, the right is temporal continuity);
图4是一张三维曲线图,表明左心室面积时空连续性;Figure 4 is a three-dimensional graph showing the temporal and spatial continuity of the left ventricular area;
图5是实施例中一左心室顶部原始图像及其分割图像(左为原始图像,右为分割图像);Fig. 5 is an original image of the top of the left ventricle and its segmented image (the left is the original image, the right is the segmented image) in the embodiment;
图6是实施例中一左心室底部原始图像及其分割图像(左为原始图像,右为分割图像);Fig. 6 is an original image of the bottom of the left ventricle and its segmented image in the embodiment (the left is the original image, the right is the segmented image);
图7是实施例中左心室充盈曲线(横轴是左心室时相,纵轴是左心室容积)。Fig. 7 is the filling curve of the left ventricle in the embodiment (the horizontal axis is the phase of the left ventricle, and the vertical axis is the volume of the left ventricle).
具体实施方式 Detailed ways
以下结合附图通过实施例对本发明特征及其它相关特征作进一步详细说明:The features of the present invention and other related features will be further described in detail below in conjunction with the accompanying drawings through the embodiments:
本发明方法精确高效地全自动量化4D心脏磁共振图像(CMRI)左心室功能指标,不需要任何手动介入。以下实例分步介绍本发明方法自动定位左心室,自动确定左心室顶部和底部位置,自动分割量化左心室的具体操作过程。The method of the present invention accurately and efficiently quantifies the left ventricle function index of the 4D cardiac magnetic resonance image (CMRI) automatically without any manual intervention. The following example introduces step by step the specific operation process of the method of the present invention to automatically locate the left ventricle, automatically determine the top and bottom positions of the left ventricle, and automatically segment and quantify the left ventricle.
本实施例采集的磁共振成像数据为心脏磁共振成像数据。数据来源于GE Signa 1.5T磁共振成像系统,所选用的成像序列为SSFP序列。具体成像参数:TR 3.3-4.5ms,TE 1.1-2.0ms,翻转角55-60,矩阵大小192×192 256×256,图像大小256×256,接收带宽125kHz,视野(FOV)290-400×240-360,层厚和层间距分别是6-8mm和2-4mm(一共10mm),每个数据的左心室有6-10层,20-28心脏时相。The magnetic resonance imaging data collected in this embodiment is cardiac magnetic resonance imaging data. The data come from GE Signa 1.5T magnetic resonance imaging system, and the imaging sequence selected is SSFP sequence. Specific imaging parameters: TR 3.3-4.5ms, TE 1.1-2.0ms, flip angle 55-60, matrix size 192×192 256×256, image size 256×256, receiving bandwidth 125kHz, field of view (FOV) 290-400×240 -360, slice thickness and slice spacing are 6-8mm and 2-4mm respectively (total 10mm), the left ventricle of each data has 6-10 slices, 20-28 cardiac phases.
(1)迭代下降阈值法提取血液(1) Iterative falling threshold method to extract blood
首先从种子点开始执行区域增长技术提取出全血体素,计算全血样本区域的均值和标准差(μb和σb)。然后以μb为初始阈值实行一系列基于连续下降阈值(th)的区域增长技术提取出一系列生长区域直到该区域突然从心肌突破出去。连续下降阈值可由μb和一个变量得到,具体采用如下公式:Firstly, the whole blood voxels are extracted by region growing technique from the seed point, and the mean and standard deviation (μ b and σ b ) of the whole blood sample region are calculated. Then take μ b as the initial threshold to implement a series of region growing techniques based on the continuous decrease of the threshold (th) to extract a series of growth regions until the region suddenly breaks out from the myocardium. The continuous falling threshold can be obtained by μ b and a variable, specifically using the following formula:
th=ub/rth=u b /r
①①
上述公式中,r是一个变量,初始值是1.0,以步长0.05递增。附图1(a)从区域面积的角度描绘了提取区域的面积随着连续降低的阈值连续变化直至突变。横轴表示变量r,纵轴表示面积(以体素个数表示)。根据体积突变前的阈值和σb可以找到一个最适值用于分割左心室。图2显示了实施例中一左心室中部原始图像及基于连续下降阈值法获取的分割图像。In the above formula, r is a variable with an initial value of 1.0 and increments with a step size of 0.05. Fig. 1(a) depicts that the area of the extracted region changes continuously with the continuously decreasing threshold value until abruptly from the perspective of the region area. The horizontal axis represents the variable r, and the vertical axis represents the area (expressed in the number of voxels). According to the threshold value and σ b before the volume mutation, an optimal value can be found for segmenting the left ventricle. Fig. 2 shows an original image of the middle part of the left ventricle and the segmented image obtained based on the continuous descending threshold method in the embodiment.
(2)心脏磁共振图像左心室中心繁殖(2) Cardiac MRI images of left ventricular center propagation
在心脏中部部分,以邻近层左心室中心为起始点对当前层面实行区域增长技术,将生长区域的质心确定为当前层面左心室的中心;在心脏的顶部和底部以各自邻近层面左心室的中心为当前层面左心室的中心。In the middle part of the heart, the region growing technique is performed on the current layer with the center of the left ventricle in the adjacent layer as the starting point, and the centroid of the growth area is determined as the center of the left ventricle in the current layer; at the top and bottom of the heart, the center of the left ventricle in the adjacent layers is determined is the center of the left ventricle at the current level.
(3)左心室顶部分割及其面积估计(3) Segmentation of the top of the left ventricle and its area estimation
左心室面积在时间和空间是连续变化的。图3说明了左心室的面积和形状在时空上的连续性。图4用实施例中左心室面积数值表明了时空连续性。如图4所示,y轴代表时相数,x轴代表采集到的数据层数,z轴代表生长区域面积。该实施例一共有12层20个时相,图中12条样条曲线代表12层,每一条代表每一层提取出的生长区域面积随时相的变化。根据提取区域的面积变化时空连续性自动的分割心脏顶部,并根据顶部发生跃变的情况来估计这些位置的面积。有两种情况:The area of the left ventricle varies continuously in time and space. Figure 3 illustrates the spatiotemporal continuum of the area and shape of the left ventricle. Figure 4 shows the spatio-temporal continuity with the values of the left ventricle area in the examples. As shown in Figure 4, the y-axis represents the number of phases, the x-axis represents the number of data layers collected, and the z-axis represents the area of the growth region. In this embodiment, there are 12 layers and 20 time phases in total. The 12 spline curves in the figure represent the 12 layers, and each represents the change of the area of the growth region extracted from each layer over time. The top of the heart is automatically segmented according to the spatial-temporal continuity of the area change of the extracted region, and the area of these positions is estimated according to the jump of the top. There are two cases:
(a)某一层有部分相位生长区域面积发生跃变,根据时间连续性采用如下公式估计面积:(a) There is a jump in the area of some phase growth regions in a certain layer, and the area is estimated by the following formula according to the time continuity:
②②
其中,s代表第s层,p代表发生跃变的时相,q代表离p最近的未发生面积跃变的时相,ms代表左心室中间层面的层数。Among them, s represents the sth layer, p represents the time phase where the jump occurs, q represents the time phase closest to p without the area jump, and ms represents the number of layers in the middle layer of the left ventricle.
(b)某一层所有相位生长区域面积都发生跃变,将心室顶部视为圆锥或椭圆缀,根据空间连续性采用如下公式估计面积:(b) The area of all phase growth regions in a certain layer changes abruptly. The top of the ventricle is regarded as a cone or ellipse, and the area is estimated by the following formula according to the spatial continuity:
③③
这里,s代表第s层,p代表发生跃变的时相。Here, s represents the sth layer, and p represents the phase of the transition.
图5显示了实施例中一左心室顶部原始图像及根据时空连续性得到的分割图像。Fig. 5 shows an original image of the apex of the left ventricle and the segmented image obtained according to the temporal-spatial continuity in the embodiment.
(4)左心室底部定位及估计(4) Location and estimation of the bottom of the left ventricle
根据提取区域的面积变化和重心变化时空间连续性确定左心室的底部位置。并利用受形状约束的区域增长技术自动分割心脏左心室底部并对分割出的区域进行校正。图6显示了实施例中一左心室底部原始图像及根据时空连续性得到的分割图像。The bottom position of the left ventricle was determined according to the temporal and spatial continuity of the area change of the extracted region and the change of the center of gravity. And use the shape-constrained region growing technology to automatically segment the bottom of the left ventricle of the heart and correct the segmented region. Fig. 6 shows an original image of the bottom of the left ventricle and the segmented image obtained according to the temporal-spatial continuity in the embodiment.
(5)左心室充盈曲线(5) Left ventricular filling curve
完成全自动分割左心室后,可以根据分割出区域的面积量化左心室功能参数,包括左心室舒缩容积、每博输出量、射血分数,并描绘充盈曲线。图7描绘了实施例左心室充盈曲线,横轴是时相,纵轴是左心室体积。After the automatic segmentation of the left ventricle is completed, the functional parameters of the left ventricle can be quantified according to the area of the segmented area, including left ventricular systolic and systolic volume, stroke volume, ejection fraction, and the filling curve can be drawn. Fig. 7 depicts the left ventricular filling curve of the embodiment, the horizontal axis is the time phase, and the vertical axis is the left ventricular volume.
以上所述的仅是本发明的优选实施方式,应当指出,对于本领域的普通技术人员来说,在不脱离本发明创造构思的前提下,还可以做出若干相似的变形和改进,这些也应视为本发明的保护范围之内。The above are only preferred embodiments of the present invention, and it should be pointed out that those skilled in the art can make several similar deformations and improvements without departing from the inventive concept of the present invention. Should be considered within the protection scope of the present invention.
Claims (8)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN 201110027847 CN102397070B (en) | 2011-01-26 | 2011-01-26 | Method for fully-automatically segmenting and quantifying left ventricle of cardiac magnetic resonance image |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN 201110027847 CN102397070B (en) | 2011-01-26 | 2011-01-26 | Method for fully-automatically segmenting and quantifying left ventricle of cardiac magnetic resonance image |
Publications (2)
Publication Number | Publication Date |
---|---|
CN102397070A true CN102397070A (en) | 2012-04-04 |
CN102397070B CN102397070B (en) | 2013-06-19 |
Family
ID=45879982
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN 201110027847 Expired - Fee Related CN102397070B (en) | 2011-01-26 | 2011-01-26 | Method for fully-automatically segmenting and quantifying left ventricle of cardiac magnetic resonance image |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN102397070B (en) |
Cited By (15)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN103400398A (en) * | 2013-07-31 | 2013-11-20 | 东北大学 | Automatic heart locating method based on chest locating film |
CN103810688A (en) * | 2012-11-06 | 2014-05-21 | 上海联影医疗科技有限公司 | Automatic left ventricle block dividing method |
CN103854287A (en) * | 2014-03-11 | 2014-06-11 | 深圳市旭东数字医学影像技术有限公司 | Meniscus segmentation method and device based on magnetic resonance image |
CN103908279A (en) * | 2013-01-07 | 2014-07-09 | 上海联影医疗科技有限公司 | Method for identifying heart status time phase |
CN104200465A (en) * | 2014-08-20 | 2014-12-10 | 沈阳东软医疗系统有限公司 | Segmentation method and device for heart three-dimensional image |
CN104220008A (en) * | 2012-03-09 | 2014-12-17 | 学校法人金泽医科大学 | Manufacturing method for heart correction net |
CN105741310A (en) * | 2016-03-21 | 2016-07-06 | 东北大学 | Heart's left ventricle image segmentation system and method |
CN106709930A (en) * | 2016-12-29 | 2017-05-24 | 上海联影医疗科技有限公司 | Method and device for cutting volume of interest of three-dimensional medical image |
US9949643B2 (en) | 2014-10-18 | 2018-04-24 | International Business Machines Corporation | Automatic visualization of regional functional parameters of left ventricle from cardiac imaging |
CN109741395A (en) * | 2018-12-14 | 2019-05-10 | 北京市商汤科技开发有限公司 | Biventricular quantization method, device, electronic equipment and storage medium |
CN110322414A (en) * | 2019-07-05 | 2019-10-11 | 北京探境科技有限公司 | A kind of image data based on AI processor quantifies antidote and system online |
CN110731777A (en) * | 2019-09-16 | 2020-01-31 | 平安科技(深圳)有限公司 | Left ventricle measuring method and device based on image recognition and computer equipment |
CN110766693A (en) * | 2018-09-06 | 2020-02-07 | 北京连心医疗科技有限公司 | Method for jointly predicting radiotherapy structure position based on multi-model neural network |
CN112308845A (en) * | 2020-11-03 | 2021-02-02 | 赛诺威盛科技(北京)有限公司 | Left ventricle segmentation method and device and electronic equipment |
CN112881467A (en) * | 2021-03-15 | 2021-06-01 | 中国空气动力研究与发展中心超高速空气动力研究所 | Large-size composite material damage imaging and quantitative identification method |
Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2006102125A (en) * | 2004-10-05 | 2006-04-20 | Toshiba Corp | Method for identifying region of interest with time in medical image processing apparatus and medical image processing apparatus |
CN101596111A (en) * | 2008-05-23 | 2009-12-09 | 西门子公司 | Automated localization of the left ventricle in cardiac cine magnetic resonance imaging |
US20100215238A1 (en) * | 2009-02-23 | 2010-08-26 | Yingli Lu | Method for Automatic Segmentation of Images |
CN101849240A (en) * | 2007-05-21 | 2010-09-29 | 康奈尔大学 | Method for segmenting objects in images |
-
2011
- 2011-01-26 CN CN 201110027847 patent/CN102397070B/en not_active Expired - Fee Related
Patent Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2006102125A (en) * | 2004-10-05 | 2006-04-20 | Toshiba Corp | Method for identifying region of interest with time in medical image processing apparatus and medical image processing apparatus |
CN101849240A (en) * | 2007-05-21 | 2010-09-29 | 康奈尔大学 | Method for segmenting objects in images |
CN101596111A (en) * | 2008-05-23 | 2009-12-09 | 西门子公司 | Automated localization of the left ventricle in cardiac cine magnetic resonance imaging |
US20100215238A1 (en) * | 2009-02-23 | 2010-08-26 | Yingli Lu | Method for Automatic Segmentation of Images |
Cited By (28)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN104220008A (en) * | 2012-03-09 | 2014-12-17 | 学校法人金泽医科大学 | Manufacturing method for heart correction net |
CN103810688A (en) * | 2012-11-06 | 2014-05-21 | 上海联影医疗科技有限公司 | Automatic left ventricle block dividing method |
CN103810688B (en) * | 2012-11-06 | 2017-08-11 | 上海联影医疗科技有限公司 | A kind of automatic Partitioning method of left ventricle |
CN103908279A (en) * | 2013-01-07 | 2014-07-09 | 上海联影医疗科技有限公司 | Method for identifying heart status time phase |
CN103908279B (en) * | 2013-01-07 | 2017-07-28 | 上海联影医疗科技有限公司 | A kind of recognition methods of heart state time phase |
CN103400398B (en) * | 2013-07-31 | 2015-11-04 | 东北大学 | An automatic heart positioning method based on chest positioning films |
CN103400398A (en) * | 2013-07-31 | 2013-11-20 | 东北大学 | Automatic heart locating method based on chest locating film |
CN103854287B (en) * | 2014-03-11 | 2017-06-06 | 深圳市旭东数字医学影像技术有限公司 | The method and its device of the meniscus segmentation based on MRI |
CN103854287A (en) * | 2014-03-11 | 2014-06-11 | 深圳市旭东数字医学影像技术有限公司 | Meniscus segmentation method and device based on magnetic resonance image |
CN104200465A (en) * | 2014-08-20 | 2014-12-10 | 沈阳东软医疗系统有限公司 | Segmentation method and device for heart three-dimensional image |
CN104200465B (en) * | 2014-08-20 | 2017-08-25 | 沈阳东软医疗系统有限公司 | The dividing method and device of cardiac three-dimensional image |
US9795351B2 (en) | 2014-08-20 | 2017-10-24 | Shenyang Neusoft Medical Systems Co., Ltd. | Three-dimensional cardiac image segmentation method and apparatus |
US9949643B2 (en) | 2014-10-18 | 2018-04-24 | International Business Machines Corporation | Automatic visualization of regional functional parameters of left ventricle from cardiac imaging |
US9962087B2 (en) | 2014-10-18 | 2018-05-08 | International Business Machines Corporation | Automatic visualization of regional functional parameters of left ventricle from cardiac imaging |
CN105741310A (en) * | 2016-03-21 | 2016-07-06 | 东北大学 | Heart's left ventricle image segmentation system and method |
CN105741310B (en) * | 2016-03-21 | 2018-05-04 | 东北大学 | A kind of cardiac left-ventricle image segmenting system and method |
CN106709930A (en) * | 2016-12-29 | 2017-05-24 | 上海联影医疗科技有限公司 | Method and device for cutting volume of interest of three-dimensional medical image |
CN106709930B (en) * | 2016-12-29 | 2020-03-31 | 上海联影医疗科技有限公司 | Method and device for segmenting interested volume of three-dimensional medical image |
US10417767B2 (en) | 2016-12-29 | 2019-09-17 | Shenzhen United Imaging Healthcare Co., Ltd. | Systems and methods for image segmentation |
CN110766693A (en) * | 2018-09-06 | 2020-02-07 | 北京连心医疗科技有限公司 | Method for jointly predicting radiotherapy structure position based on multi-model neural network |
CN109741395A (en) * | 2018-12-14 | 2019-05-10 | 北京市商汤科技开发有限公司 | Biventricular quantization method, device, electronic equipment and storage medium |
CN109741395B (en) * | 2018-12-14 | 2021-07-23 | 北京市商汤科技开发有限公司 | Dual-chamber quantification method and device, electronic equipment and storage medium |
CN110322414A (en) * | 2019-07-05 | 2019-10-11 | 北京探境科技有限公司 | A kind of image data based on AI processor quantifies antidote and system online |
CN110322414B (en) * | 2019-07-05 | 2021-08-10 | 北京探境科技有限公司 | Image data online quantitative correction method and system based on AI processor |
CN110731777A (en) * | 2019-09-16 | 2020-01-31 | 平安科技(深圳)有限公司 | Left ventricle measuring method and device based on image recognition and computer equipment |
CN112308845A (en) * | 2020-11-03 | 2021-02-02 | 赛诺威盛科技(北京)有限公司 | Left ventricle segmentation method and device and electronic equipment |
CN112308845B (en) * | 2020-11-03 | 2021-07-02 | 赛诺威盛科技(北京)股份有限公司 | Left ventricle segmentation method and device and electronic equipment |
CN112881467A (en) * | 2021-03-15 | 2021-06-01 | 中国空气动力研究与发展中心超高速空气动力研究所 | Large-size composite material damage imaging and quantitative identification method |
Also Published As
Publication number | Publication date |
---|---|
CN102397070B (en) | 2013-06-19 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN102397070B (en) | Method for fully-automatically segmenting and quantifying left ventricle of cardiac magnetic resonance image | |
CN107644420B (en) | Vascular image segmentation method and MRI system based on centerline extraction | |
CN104616307B (en) | A kind of lung CT image adhesion vascular type nodule detection methods | |
CN105741251B (en) | A kind of blood vessel segmentation method of Hepatic CT A sequence images | |
CN104992430B (en) | Full automatic three-dimensional liver segmentation method based on convolutional neural networks | |
CN102800089B (en) | Main carotid artery blood vessel extraction and thickness measuring method based on neck ultrasound images | |
US9875581B2 (en) | Automated 3D reconstruction of the cardiac chambers from MRI or ultrasound | |
CN106780518B (en) | A kind of MR image three-dimensional interactive segmentation method of the movable contour model cut based on random walk and figure | |
WO2013131420A1 (en) | Device and method for determining boundary of target region of medical image | |
CN107578413B (en) | Method, apparatus, equipment and the readable storage medium storing program for executing of retinal images layering | |
CN108335304A (en) | A kind of aortic aneurysm dividing method of abdominal CT scan sequence image | |
CN107016683A (en) | The level set hippocampus image partition method initialized based on region growing | |
CN111028254B (en) | Left myocardium segmentation method based on cardiac cine magnetic resonance image | |
WO2022105623A1 (en) | Intracranial vascular focus recognition method based on transfer learning | |
CN102982547A (en) | Automatically initialized local active contour model heart and cerebral vessel segmentation method | |
CN104545999B (en) | Method and device for measuring bladder volume through ultrasound images | |
CN110163877A (en) | A kind of method and system of MRI ventricular structure segmentation | |
Giannini et al. | A fully automatic algorithm for segmentation of the breasts in DCE-MR images | |
CN108109151A (en) | A kind of echocardiogram ventricular segmentation method and apparatus based on deep learning and deformation model | |
CN107610095A (en) | Heart CT coronary artery full-automatic partition methods based on image co-registration | |
CN110610502A (en) | A method for automatic positioning and segmentation of aortic arch region based on CT images | |
Maklad et al. | Blood vessel-based liver segmentation through the portal phase of a CT dataset | |
Sangewar et al. | Liver segmentation of CT scan images using K means algorithm | |
Lee et al. | Tumor segmentation from small animal PET using region growing based on gradient magnitude | |
Hemmati et al. | Segmentation of carotid arteries in computed tomography angiography images using fast marching and graph cut methods |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
C06 | Publication | ||
PB01 | Publication | ||
C10 | Entry into substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
ASS | Succession or assignment of patent right |
Owner name: JIAXING YIFU SOFTWARE CO., LTD. Free format text: FORMER OWNER: WUXI ZHOUSHI MEDICAL SOFTWARE DEVELOPMENT CO., LTD. Effective date: 20130417 |
|
C41 | Transfer of patent application or patent right or utility model | ||
COR | Change of bibliographic data |
Free format text: CORRECT: ADDRESS; FROM: 214213 WUXI, JIANGSU PROVINCE TO: 314000 JIAXING, ZHEJIANG PROVINCE |
|
TA01 | Transfer of patent application right |
Effective date of registration: 20130417 Address after: Jiaxing City, Zhejiang province 314000 South Road No. 1369 Building No. 8 Room 309 Branch Center Applicant after: Wuxi Zhoushi Medical Software Development Co.,Ltd. Applicant after: East China Normal University Address before: 925 room 8, R & D building, Wen Zhuang Road, Yixing Economic Development Zone, Jiangsu 214213, China Applicant before: Wuxi Zhoushi Medical Software Development Co.,Ltd. Applicant before: East China Normal University |
|
C14 | Grant of patent or utility model | ||
GR01 | Patent grant | ||
C17 | Cessation of patent right | ||
CF01 | Termination of patent right due to non-payment of annual fee |
Granted publication date: 20130619 Termination date: 20140126 |