CN102387070A - Data protection method for T-MPLS (transport multi-protocol switching) shared protection ring before failure recovery - Google Patents
Data protection method for T-MPLS (transport multi-protocol switching) shared protection ring before failure recovery Download PDFInfo
- Publication number
- CN102387070A CN102387070A CN2011103058157A CN201110305815A CN102387070A CN 102387070 A CN102387070 A CN 102387070A CN 2011103058157 A CN2011103058157 A CN 2011103058157A CN 201110305815 A CN201110305815 A CN 201110305815A CN 102387070 A CN102387070 A CN 102387070A
- Authority
- CN
- China
- Prior art keywords
- node
- data
- protection
- mpls
- tdm
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 238000000034 method Methods 0.000 title claims abstract description 19
- 238000011084 recovery Methods 0.000 title claims abstract description 8
- 230000008569 process Effects 0.000 claims description 2
- 230000005540 biological transmission Effects 0.000 description 17
- 238000005516 engineering process Methods 0.000 description 11
- 238000004891 communication Methods 0.000 description 4
- 238000011161 development Methods 0.000 description 4
- 238000010586 diagram Methods 0.000 description 4
- 238000001514 detection method Methods 0.000 description 3
- 238000012423 maintenance Methods 0.000 description 3
- 230000007246 mechanism Effects 0.000 description 3
- 230000000977 initiatory effect Effects 0.000 description 2
- 238000012545 processing Methods 0.000 description 1
- 238000011160 research Methods 0.000 description 1
- 230000001360 synchronised effect Effects 0.000 description 1
- 230000009466 transformation Effects 0.000 description 1
Images
Landscapes
- Small-Scale Networks (AREA)
Abstract
本发明公开了一种T-MPLS共享保护环故障恢复前的数据保护方法,所述T-MPLS共享保护环包括发送数据的起始节点和接收数据的目的节点,故障路径两端的节点分别为前节点和后节点,故障发生前,前节点向后节点传输数据;所述数据保护方法包括:起始节点将发送的数据分为TDM数据和非TDM数据两类,故障发生后,起始节点对发送的最后一帧数据进行标记,接着将TDM数据缓存,将非TDM数据沿相反方向传输至目的节点;此时将起始节点已发出的数据进行环回保护,结束后切换到源路由保护。本发明联合利用了环回保护方式和源路由保护方式的优点,将起始节点已发出的数据采用环回保护方式,对源节点的数据采取区别对待的方法,提高了故障的恢复速度,减小了丢包率。
The invention discloses a data protection method before recovery of a T-MPLS shared protection ring. The T-MPLS shared protection ring includes an initial node for sending data and a destination node for receiving data. The nodes at both ends of the faulty path are the former node and the back node, before the failure occurs, the front node transmits data to the back node; the data protection method includes: the data sent by the start node is divided into two types of TDM data and non-TDM data, and after the failure occurs, the start node The last frame of data sent is marked, then the TDM data is cached, and the non-TDM data is transmitted to the destination node in the opposite direction; at this time, the data sent by the starting node is loopback protected, and then switched to source routing protection after the end. The invention combines the advantages of the loopback protection mode and the source routing protection mode, adopts the loopback protection mode for the data sent by the starting node, and adopts a method of different treatment for the data of the source node, which improves the recovery speed of the fault and reduces the risk of failure. Small packet loss rate.
Description
技术领域 technical field
本发明涉及网络通信技术领域,特别涉及一种T-MPLS共享保护环故障恢复前的数据保护方法。The invention relates to the technical field of network communication, in particular to a data protection method before recovery of a fault in a T-MPLS shared protection ring.
背景技术 Background technique
随着电信业务的IP化,传送网络承载的业务正从以时分复用(TDM,)为主向以IP以主转变,以同步数字体系(SDH)面向TMD业务传送网络技术已难以适应业务的传送需求,现有的以太网技术也不能很好的满足传送需求,多协议标签交换技术(MPLS)也力不能及。为了适应面连接的电信级的业务传送,电信级的操作、管理和维护(OAM)与保护,这就需要面向连接的分组传送网技术,这也将是未来分组传送网技术的发展趋势。With the IP-based telecommunication services, the services carried by the transport network are changing from time-division multiplexing (TDM,) to IP-based, and the Synchronous Digital Hierarchy (SDH)-oriented TMD service transport network technology has been difficult to adapt to the needs of services. Transmission requirements, the existing Ethernet technology cannot meet the transmission requirements well, and the multi-protocol label switching technology (MPLS) is also beyond its capabilities. In order to adapt to carrier-class service transmission, carrier-class operation, management and maintenance (OAM) and protection, connection-oriented packet transport network technology is required, which will also be the development trend of packet transport network technology in the future.
传送网络的新业务的大量涌现以及网络规模的飞速膨胀,通信行业的融合趋势表现在益加突出,其中,在原有网络的基础上,发展拥有更高的速率,更加可靠的生存性,更高的性能,更灵活的控制和管理能力的分组传送网络是发展的主要方向,作为下一代PTN的关键技术之一的传送多协议交换(T-MLPS)融合了电路传送网络和分组传送网络的特点。具有很好的发展前途,因此,如何提高它的可靠性和管理维护也成为了研究的热点,尤其是当网络存在故障时如何恢复的问题,以及如何减小在恢复的过程中的数据的丢包等。With the emergence of a large number of new services on the transmission network and the rapid expansion of the network scale, the convergence trend of the communication industry is becoming more and more prominent. Among them, on the basis of the original network, the development has higher speed, more reliable survivability, and higher Packet transport network with better performance, more flexible control and management capabilities is the main direction of development, as one of the key technologies of next-generation PTN, transport multi-protocol switching (T-MLPS) combines the characteristics of circuit transport network and packet transport network . It has a good development prospect, so how to improve its reliability and management and maintenance has become a research hotspot, especially how to recover when the network fails, and how to reduce the data loss during the recovery process. package etc.
T-MPLS作为PTN的关键技术,T-MPLS是在MPLS的术上发展的一种面向连接的分组传送技术,T-MPLS是对MPLS技术进行简化和改造,增加了传送层的网络模型,保护倒换和OAM功能,它具有PTN技术普遍的核心技术特征,即最低每T-MPLS比特的传送成本、基于分组业务的多业务支持,可确定的服务质量,强大的OAM管理机制和网管能力等。相对于MPLS技术而言,T-MPLS省去了不必要的面向IP的处理,这给运营商带来成本的有效降低;具有完全的业务扩展能力,支持不同信号的传送。同时也符合网络转型的趋势,面向连接,有着可与传统网络相比高的生存能力;能够采用通用的控制平面,可以保证与现在的传送网络的互联和互通。T-MPLS is a key technology of PTN. T-MPLS is a connection-oriented packet transmission technology developed on the basis of MPLS. T-MPLS simplifies and transforms MPLS technology. Switching and OAM functions, it has the common core technical features of PTN technology, namely the lowest transmission cost per T-MPLS bit, multi-service support based on packet services, determinable quality of service, powerful OAM management mechanism and network management capabilities, etc. Compared with MPLS technology, T-MPLS eliminates unnecessary IP-oriented processing, which effectively reduces costs for operators; it has complete service expansion capabilities and supports the transmission of different signals. At the same time, it is also in line with the trend of network transformation. It is connection-oriented and has a higher survivability than traditional networks; it can use a common control plane to ensure interconnection and interworking with the current transport network.
T-MPLS的环网保护方式主要有线性保护以及倒换和共享保护环两种方式。共享保护环(T-MPLS Shared Protection Ring,TM-SPRing)是通过逻辑结构方式构建的T-MPLS LSP传送的环网,相邻节点为双向连接,可以是物理的连接关系,也可以是逻辑上的连接关系。环网节点间的用于传送业务的传送通道实体是基于T-MPLS的一组LSP实现,TM-SPRing的保护是针对相邻节点区段,为了防止相邻节点的区段失效,在发生故障的情况下,为实现对数据快速保护,在TM-SPRing中,制定了如下两个保护机制,源路由(Steering)方式和环回(Wrapping)方式。The ring network protection modes of T-MPLS mainly include two modes: linear protection, switchover and shared protection ring. Shared protection ring (T-MPLS Shared Protection Ring, TM-SPRing) is a ring network constructed by logical structure of T-MPLS LSP transmission. Adjacent nodes are bidirectionally connected, which can be a physical connection or a logical connection. connection relationship. The transmission channel entity used to transmit services between ring network nodes is implemented based on a group of LSPs based on T-MPLS. The protection of TM-SPRing is aimed at adjacent node segments. In order to prevent adjacent node segments from failing, In the case of TM-SPRing, in order to realize fast data protection, the following two protection mechanisms are formulated, source routing (Steering) mode and loopback (Wrapping) mode.
Wrapping保护方式是当网络上的节点检测到网络失效,故障侧相邻节点通过APS协议向相邻节点发出倒换请求。当某个节点检测到失效或接收到倒换请求,转发至失效节点的业务将到另一个方向。The Wrapping protection mode is that when a node on the network detects a network failure, the adjacent node on the fault side sends a switching request to the adjacent node through the APS protocol. When a node detects a failure or receives a switching request, the services forwarded to the failed node will go in another direction.
如图1所示当网络正常工作时节点A流向节点D的路径,假设网络节点C和节点D之间的路径出现故障,Wrapping保护方式为数据绕过故障节点,如图2所示,这时业务信号就从节点C返回,经过节点B、节点A、节点G,、节点F、节点E、最终到达节点D。通过环回路径的方法,使业务数据重新找到了条适合的路径。通过这种Wrapping保护方式来处理网络故障的方法缺点是由于环回故障节点,会使路径增加,路由的路径不是最优化的路径。As shown in Figure 1, when the network is working normally, the path from node A to node D, assuming that the path between node C and node D in the network fails, the Wrapping protection mode is that the data bypasses the faulty node, as shown in Figure 2, at this time The service signal returns from node C, passes through node B, node A, node G, node F, node E, and finally reaches node D. Through the loopback path method, the business data finds a suitable path again. The disadvantage of using this Wrapping protection method to deal with network faults is that due to the loopback of faulty nodes, paths will be increased, and the routed path is not an optimal path.
Steering保护是指当网络检测到网络故障时,通过APS协议环上所有节点发送倒换请求。点到点的连接的每个源节点执行倒换,所有受到网络失效影响的T-MPLS连接从工作方向倒换到保护方向,当网络失效或APS协议消失后,所有受到影响的业务恢复到原来的路径。如图3所示,当网络检测到节点C和节点D之间出现故障时,由节点A的数据不再经过节点B和节点C向节点D发送,而是直接倒换到另一条路径上。这种倒换方法的不足之处在于,丢包率较多。Steering protection means that when the network detects a network failure, all nodes on the ring send switching requests through the APS protocol. Each source node of a point-to-point connection performs switching, and all T-MPLS connections affected by network failure are switched from the working direction to the protection direction. When the network fails or the APS protocol disappears, all affected services return to the original path . As shown in Figure 3, when the network detects a failure between node C and node D, the data from node A is no longer sent to node D via node B and node C, but is directly switched to another path. The disadvantage of this switching method is that the packet loss rate is high.
发明内容 Contents of the invention
本发明提供了一种T-MPLS共享保护环故障恢复前的数据保护方法,解决传统Wrapping保护方式路径较长,Steering保护方式丢包率较高的问题。The invention provides a data protection method before recovery of a fault in a T-MPLS shared protection ring, which solves the problems of long paths in the traditional Wrapping protection mode and high packet loss rate in the Steering protection mode.
一种T-MPLS共享保护环故障恢复前的数据保护方法,所述T-MPLS共享保护环包括发送数据的起始节点和接收数据的目的节点,故障路径两端的节点分别为前节点和后节点,故障发生前,前节点向后节点传输数据;所述数据保护方法包括:A data protection method before recovery of a T-MPLS shared protection ring failure, the T-MPLS shared protection ring includes a starting node for sending data and a destination node for receiving data, and the nodes at both ends of the faulty path are the front node and the back node respectively , before the fault occurs, the front node transmits data to the back node; the data protection method includes:
起始节点将发送的数据分为TDM数据和非TDM数据两类,故障发生后,起始节点对发送的最后一帧数据进行标记,接着将TDM数据缓存,将非TDM数据沿相反方向传输至目的节点(这的机制可以不影响非TDM数据的传输,提高了非TDM业务数据传送效率);前节点将接收到的数据采用环回的方式传输至目的节点,在此过程中,当起始节点接收到它自身标记的数据帧时,将缓存的TDM数据以及新接收的数据沿相反方向传输至目的节点;The originating node divides the sent data into TDM data and non-TDM data. After a fault occurs, the originating node marks the last frame of data sent, then caches the TDM data and transmits the non-TDM data in the opposite direction to Destination node (this mechanism does not affect the transmission of non-TDM data, which improves the efficiency of non-TDM business data transmission); the former node transmits the received data to the destination node in a loopback mode. During this process, when the initial When a node receives its own marked data frame, it transmits the cached TDM data and newly received data to the destination node in the opposite direction;
所述相反方向为与故障发生前起始节点与目的节点之间数据传输方向相反的方向。The reverse direction is the direction opposite to the direction of data transmission between the originating node and the destination node before the fault occurs.
在起始节点收到它自身标记的数据后,它传输的数据包括缓存的TDM数据、新接收的TDM数据以及非TDM数据。After the originating node receives the data marked by itself, the data it transmits includes buffered TDM data, newly received TDM data and non-TDM data.
优选的,所述前节点对接收到的故障发生前起始节点发出的第一帧数据进行标记,这样。Preferably, the previous node marks the received first frame of data sent by the starting node before the fault occurs, thus.
本发明联合利用了环回保护方式和源路由保护方式的优点,将起始节点已发出的数据采用环回保护方式,减小了丢包,另外对起始节点缓存的和新发送的数据采用源路由方式保护,优化了传输路径。The present invention combines the advantages of the loopback protection mode and the source routing protection mode, adopts the loopback protection mode for the data sent by the starting node, reduces packet loss, and adopts the Source routing mode protection optimizes the transmission path.
附图说明 Description of drawings
图1正常工作时节点A到节点D的数据流向示意图;Figure 1 is a schematic diagram of data flow from node A to node D during normal operation;
图2节点C节点D出现故障Wrapping保护方式示意图;Fig. 2 Schematic diagram of Wrapping protection mode when node C and node D fail;
图3节点C节点D出现故障时Steering保护方式示意图;Fig. 3 Schematic diagram of Steering protection mode when node C and node D fail;
图4保护请求帧结构示意图。Fig. 4 is a schematic diagram of a structure of a protection request frame.
图5本发明由Wrapping保护到Steering保护切换流程图.Fig. 5 is a flow chart of switching from Wrapping protection to Steering protection in the present invention.
具体实施方式 Detailed ways
如图1所示T-MPLS共享保护环,它由七个节点A~G组成,相邻两个节点之间可以实现双向通信。通信系统的管理维护模块对环网的连接状态进行周期性的检测,可以用连接性检测、环回检测等形式。As shown in Figure 1, the T-MPLS shared protection ring is composed of seven nodes A~G, and two-way communication can be realized between two adjacent nodes. The management and maintenance module of the communication system periodically detects the connection status of the ring network, which can be in the form of connectivity detection and loopback detection.
若没有检测到故障,则说明网络处于正常的工作状态,进入下一检测周期,若检测到故障,说明环路出现断路等情况,这时故障路径的两端节点开始发保护请求,把自动保护倒换信息通知相关节点,并且与另一故障节点通信,完成环回方式的倒换。If no fault is detected, it means that the network is in a normal working state and enters the next detection cycle. If a fault is detected, it means that the loop is disconnected. Notify the relevant nodes of the switchover information, and communicate with another faulty node to complete the switchover in the loopback mode.
如图2所示,此时数据传输的路径为节点A-节点B-节点C-节点D,当检测节点C和节点D之间出现故障,则节点C和节点D开始发送保护请求帧,将自动倒换信息通知相关节点,同时节点C对收到的由A节点在故障前已发出的数据的第一帧进行标记,标记的方法为在接受到数据帧的预留字节标记。As shown in Figure 2, the path of data transmission at this time is Node A-Node B-Node C-Node D. When a fault occurs between Node C and Node D, Node C and Node D start to send protection request frames, and the The automatic switching information notifies the relevant nodes, and at the same time, node C marks the first frame of the data sent by node A before the failure. The marking method is to mark the reserved bytes of the received data frame.
如图4所示,数据帧一般包括功能类型、标签头、预留字节以及数据信息等部分,节点C在故障发生后收到的第一帧数据的预留字节的最后两个字节设为“01”,同时将故障发生后的数据采用环回方式传输至节点D,其传输路径为节点C-节点B-节点A-节点G-节点F-节点E-节点D,可以看出这些数据会路径节点A。As shown in Figure 4, the data frame generally includes the function type, label header, reserved bytes, and data information. The last two bytes of the reserved bytes of the first frame of data received by node C after the failure occurs Set it to "01", and at the same time transmit the data after the failure to node D in a loopback mode. The transmission path is node C-node B-node A-node G-node F-node E-node D. It can be seen that These data will route to node A.
保护请求帧的传输一般是节点向下一节点传输,而且其内容域包含起始节点的ID和目的节点的ID,下一节点在收到保护请求帧后,会与自身ID进行比较,如果不是起始节点或目的节点,则会将保护请求帧传输下去,直到起源节点收到这个请求帧后,停止向下一节点传送。The transmission of the protection request frame is generally transmitted from the node to the next node, and its content field contains the ID of the starting node and the ID of the destination node. After the next node receives the protection request frame, it will compare it with its own ID. If not The originating node or the destination node will transmit the protection request frame until the originating node receives the request frame and stops transmitting to the next node.
当起始节点收到保护请求帧后,此时起始节点将发送的数据分为两类,其中TDM数据缓存,暂停发送,而非TDM数据继续沿相反方向传输至节点D,同时对发送的最后一帧数据进行标记,标记方法为在预留字节的最后两位设为“11”。When the initiating node receives the protection request frame, the initiating node divides the sent data into two categories, among which the TDM data is buffered and the transmission is suspended, while the non-TDM data continues to be transmitted to node D in the opposite direction, and the transmitted The last frame of data is marked, and the marking method is to set the last two bits of the reserved byte to "11".
如图3所示,当节点A收到节点C标记的第一帧数据时,开始准备切换保护方式,因为此时表明它标记的最后一帧数据也将到达,至节点A收到它标记的最后一帧数据,节点A将缓存的TDM数据以及新接收的数据沿相反方向传输至节点D,切换到源路由保护方式。As shown in Figure 3, when node A receives the first frame of data marked by node C, it starts to prepare to switch the protection mode, because at this time it indicates that the last frame of data marked by it will also arrive, until node A receives the data marked by it In the last frame of data, node A transmits the cached TDM data and newly received data to node D in the opposite direction, and switches to the source routing protection mode.
Claims (2)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201110305815.7A CN102387070B (en) | 2011-10-11 | 2011-10-11 | Data Protection Method Before T-MPLS Shared Protection Ring Fault Recovery |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201110305815.7A CN102387070B (en) | 2011-10-11 | 2011-10-11 | Data Protection Method Before T-MPLS Shared Protection Ring Fault Recovery |
Publications (2)
Publication Number | Publication Date |
---|---|
CN102387070A true CN102387070A (en) | 2012-03-21 |
CN102387070B CN102387070B (en) | 2014-05-21 |
Family
ID=45826066
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN201110305815.7A Expired - Fee Related CN102387070B (en) | 2011-10-11 | 2011-10-11 | Data Protection Method Before T-MPLS Shared Protection Ring Fault Recovery |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN102387070B (en) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN105141493A (en) * | 2015-07-27 | 2015-12-09 | 浙江宇视科技有限公司 | Service frame processing method and system during ring network fault |
WO2021139714A1 (en) * | 2020-01-07 | 2021-07-15 | 华为技术有限公司 | Data transmission method, device, and system |
Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN101309230A (en) * | 2008-06-27 | 2008-11-19 | 迈普(四川)通信技术有限公司 | Control method for packet sequence switch on transmission path of multiple protocol label switch |
CN101471849A (en) * | 2007-12-29 | 2009-07-01 | 华为技术有限公司 | Protection method for packet transmission network |
-
2011
- 2011-10-11 CN CN201110305815.7A patent/CN102387070B/en not_active Expired - Fee Related
Patent Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN101471849A (en) * | 2007-12-29 | 2009-07-01 | 华为技术有限公司 | Protection method for packet transmission network |
CN101309230A (en) * | 2008-06-27 | 2008-11-19 | 迈普(四川)通信技术有限公司 | Control method for packet sequence switch on transmission path of multiple protocol label switch |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN105141493A (en) * | 2015-07-27 | 2015-12-09 | 浙江宇视科技有限公司 | Service frame processing method and system during ring network fault |
CN105141493B (en) * | 2015-07-27 | 2019-04-12 | 浙江宇视科技有限公司 | Business frame processing method and system when ring network fault |
WO2021139714A1 (en) * | 2020-01-07 | 2021-07-15 | 华为技术有限公司 | Data transmission method, device, and system |
Also Published As
Publication number | Publication date |
---|---|
CN102387070B (en) | 2014-05-21 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US7606886B1 (en) | Method and system for providing operations, administration, and maintenance capabilities in packet over optics networks | |
JP4687176B2 (en) | Packet relay device | |
JP5484590B2 (en) | Method, device and system for processing service traffic based on pseudowire | |
JP4899959B2 (en) | VPN equipment | |
US8040795B2 (en) | Backup path convergence in the APS environment | |
EP2501084B1 (en) | Transmission multi-protocol label switching network system and link protection method | |
US8441923B2 (en) | Communication path providing method and communication apparatus | |
US7821971B2 (en) | Protection providing method and customer edge apparatus | |
JP5209116B2 (en) | Establishing pseudowires in packet-switched networks | |
CN102136994B (en) | Label switched path creation method, system and node equipment | |
US20070286069A1 (en) | Method For Implementing Working/Standby Transmission Path | |
CN101471849A (en) | Protection method for packet transmission network | |
JPWO2002087175A1 (en) | Restoration protection method and apparatus | |
CN102025541A (en) | Method and system for realizing multicast protection | |
CN101682459A (en) | Response to OTUK-BDI for ITN interfaces to restore bidirectional communications | |
WO2011015011A1 (en) | Method and system for ring network fault detection and locating | |
JP4297636B2 (en) | Transmission system | |
JP4705492B2 (en) | Ring node device and ring node redundancy method | |
US7213178B1 (en) | Method and system for transporting faults across a network | |
WO2006034629A1 (en) | A method of protective rearrangement in mpls system | |
CN101483491A (en) | Shared guard ring, multicast source route protection method and node thereof | |
CN102185773B (en) | Multi-protocol label switching transport profile ring protection switching method and node | |
JP2013138273A (en) | Transmission device | |
US20120033671A1 (en) | Communication device, communication method, and recording medium for recording communication program | |
CN102387070A (en) | Data protection method for T-MPLS (transport multi-protocol switching) shared protection ring before failure recovery |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
C06 | Publication | ||
PB01 | Publication | ||
C10 | Entry into substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
C14 | Grant of patent or utility model | ||
GR01 | Patent grant | ||
CF01 | Termination of patent right due to non-payment of annual fee |
Granted publication date: 20140521 Termination date: 20141011 |
|
EXPY | Termination of patent right or utility model |