CN102386403A - Preparation method for magnesium/barium-activated lithium iron phosphate cathode material - Google Patents

Preparation method for magnesium/barium-activated lithium iron phosphate cathode material Download PDF

Info

Publication number
CN102386403A
CN102386403A CN2011103377010A CN201110337701A CN102386403A CN 102386403 A CN102386403 A CN 102386403A CN 2011103377010 A CN2011103377010 A CN 2011103377010A CN 201110337701 A CN201110337701 A CN 201110337701A CN 102386403 A CN102386403 A CN 102386403A
Authority
CN
China
Prior art keywords
barium
magnesium
lithium
source
iron phosphate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN2011103377010A
Other languages
Chinese (zh)
Other versions
CN102386403B (en
Inventor
张健
张新球
吴润秀
王晶
张雅静
李�杰
李安平
李先兰
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tongxiang Levi new materials Co., Ltd.
Original Assignee
李先兰
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 李先兰 filed Critical 李先兰
Priority to CN201110337701.0A priority Critical patent/CN102386403B/en
Publication of CN102386403A publication Critical patent/CN102386403A/en
Application granted granted Critical
Publication of CN102386403B publication Critical patent/CN102386403B/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Battery Electrode And Active Subsutance (AREA)

Abstract

The invention discloses a preparation method for a magnesium/barium-activated lithium iron phosphate cathode material. The preparation method is characterized by comprising the following steps of: mixing raw materials which are a lithium source, an iron source, a phosphate group source, a magnesium source and a barium source in the molar ratio of 1:(0.002-0.005):(0.0003-0.003):1:1, ball-milling the mixture for 20h at the high rotating speed of 200r/mimn in an absolute ethanol medium, drying the mixture at 105 to 120 DEG C to obtain a precursor, arranging the dried precursor in a high-temperature furnace, and sintering the precursor for 24h at the high temperature of 500 to 750 DEG C to obtain the magnesium/barium-activated lithium iron phosphate cathode material. Due to the doping of a small amount of substitutional magnesium/barium, so control over the appearance and grain size of the product is facilitated, a stable lithium iron phosphate compound is obtained, the crystal lattice of the compound is activated, a lithium ion diffusion coefficient is increased and the first discharging capacity of a battery adopting the obtained material reaches 155.52mAh/g. The potential of a charging and discharging platform relative to a lithium electrode is about 3.5V, the initial discharging capacity of the battery exceeds 164mAh/g, and the capacity of the battery is attenuated by about 3.0 percent after 100 charging and discharging cycles. Compared with those of the control embodiment of undoped LiFePO4, the material prepared by the method has the advantages that: specific capacity and cyclical stability are relatively more improved. The cost of barium is a hundred times lower than that of lithium, so production cost can be decreased by over ten times.

Description

Magnesium, barium activation lithium iron phosphate positive material preparation method
Technical field
Magnesium of the present invention, barium activation lithium iron phosphate positive material preparation method belong to a kind of anode material of lithium battery preparation method, particularly a kind of ferric phosphate lithium cell method for preparing anode material.
Background technology
At present; The research present situation of LiFePO4 doping vario-property: LiFePO4 LiFePO4 is because of it is nontoxic, environmentally friendly, safe, abundant, high, the stable cycle performance, cheap of specific capacity in raw material source; Steady discharge platform with theoretical capacity 3.5V of 170mAh/g; LiFePO 4 material has high energy density, cheap price, excellent security, is specially adapted to electrokinetic cell.But its resistivity is bigger.Because LiFePO4; Under the normal temperature, the dynamics of LiFePO4 is bad, the high rate performance extreme difference; Domestic and international research persons have used such as methods such as coating, doping, nanometerizations and have improved high rate performance, and basic idea improves conductivity exactly and shortens ion, electric transmission path.Doping is one type of important material modification method.2002, reported first lithium position doping vario-properties such as Massachusetts science and engineering Chiang professor Yet-Ming can improve the LiFePO4 electronic conductivity greatly.They carry out the doping of high volence metal ion (Mg2+, Al3+, Ti4+, Zr4+, Nb5+ and W6+) solid solution in the lithium position, electronic conductivity has improved 8 one magnitude.Sample through above-mentioned doping has better electrochemical performance, and particularly high-rate performance discharges under the electric current of 21.5C (3225mA/g), still can obtain the capacity of 60mAh/g.Doping carbon: carbon has good electric conductivity and lower mass density, adds a spot of carbon of people, can improve the electric conductivity of material on the one hand, can reduce the particle diameter yardstick of material on the other hand.Xxx has studied different phase and has mixed the influence of people's carbon to material electrochemical performance.Shi Zhicong etc. " adopt solid phase reaction to combine the high speed ball-milling method, synthetic positive electrode LiFePO4, experiment shows: LiFePO4 has the discharge voltage plateau of 3.4V, and discharge capacity only decays 9.5% after reaching 147mAh/g charge and discharge cycles 100 times first.LiFePO4/C composite material behind the carbon dope, the granule-morphology rule, spherical for class, particle is little, and particle size distribution is all colluded.Carbon is scattered between the crystal grain, has strengthened the electrical conductance between the particle.LiFePO4 specific discharge capacity and cycle performance behind the carbon dope all significantly improve.Mix in the lithium position: the LiFePO4 crushed grain is assorted to be a kind of important method of improving chemical property.Mix and can improve the conductivity of LiFePO4 in the lithium position.Tan Xianyan etc. " " adopt the calcination method synthesizing lithium ionic cell positive pole material lithium iron phosphate, mix a spot of Mg2+ and have significantly improved conductivity of electrolyte materials, have improved the chemical property of LiFePO4.After the doping, LiFePO4 discharge capacity first reaches 135.52mAh/g; Unadulterated LiFePO4 discharge capacity first has only 116.25mAh/g.Conductivity after the doping has obtained certain raising.This is because doping little metal ion replaces the Li+ position, constitutes the p N-type semiconductor N, has increased the conductivity of material.The identical ^ of Liu adopts that improved solid phase method has prepared that particle is fine, the uniform LiFePO4 of particle size distribution and Li0,98Mn, and the o.o2LiFePO4 compound, mixing helps controlling the pattern and the particle diameter of product on a small quantity, obtains stable LiFePO4 compound.Because Mn2+ octahedral coordination radius, can think that magnesium ion occupies the replacement lithium ion less than Fe2+.The result shows: the relative lithium electrode current potential of the charge and discharge platform of lithium ion is about 3.5V in the material, and initial discharge capacity surpasses 160mAh/g, and capacity only decays 5.5% after 50 charge and discharge cycles, shows that this method has improved specific energy and cyclical stability.The iron position is assorted disastrously: can improve conductivity of electrolyte materials though mix in the lithium position, because foreign atom can hinder the diffusion of lithium ion in the one dimension passage, thereby be unfavorable for improving the high-rate charge-discharge capability of material.And the rate charge-discharge performance of iron position doping can improvement LiFePO4 improves cycle performance.^ such as Liu Fangling adopt parcel carbon to improve its surface electronic conductivity, and doped metal ion is to improve its body electronic conductivity.Chosen ionic radius near and 4 different metal ion species Ca3+ of valence state; Ti5+, Ta5+, mix in the Fe position of MO6+; Sample unit cell volume after the doping all has minimizing; Electronic conductivity has improved the 4-6 one magnitude than the electronic conductivity of LiFePO4, and its impedance in electrolyte solution is significantly reduced, and chemical property also obviously improves.^ such as Hu Huanyu adopt the synthetic particle tiny and uniform nanoscale positive electrode LiFePO4 of high-temperature solid phase reaction method, have good capacity cycle performance, but its high rate capability are poor.Mix a spot of manganese and can reduce the polarization of material, improve the high rate capability of material.This mainly is because the doping of manganese has increased the unit cell volume of LiFePO4; More help deviating from of lithium; The doping of manganese has caused sintering process to produce crystal structure defects in addition, has improved the electron conduction of material, thereby has made the high-rate charge-discharge capability of material make moderate progress.The phosphate potential crushed grain is assorted: P site doped is feasible in theory, but the doping of carrying out phosphate potential is separately seldom arranged.^ such as Zhang Yurong have studied olivine structural Li2+2xTi2-xCu2x (NbO) 2, and having obtained conductivity through Ti and Cu replacement P is that 1.26 * 10-6S/cm-adds, and initial discharge capacity is the positive electrode of 805.8mAh/g.Said material has higher conductivity, but owing to Fe is all replaced by Ti and Cu, ' guiding discharge voltage is lower, and cycle performance is poor.Though phosphate potential is feasible in theory, study less relatively.
Through retrieval, put down in writing 1043 of relevant lithium battery applications for a patent for invention, 2181 of lithium ion battery applications for a patent for invention at present, wherein having a great deal of is relevant method of mixing.
Confirm it is the lithium position in theory, or the iron position, or phosphate potential obtains mixing and role, and relevant authoritative experts still have different separately brilliant idea, also constantly studying, exploring.
Present more consistent viewpoint is, LiFePO4 has that fail safe is good, pollution-free, stable cycle performance, specific capacity is high and advantage such as cheap, but also has poorly conductive and the lower shortcoming of tap density.Poorly conductive is to influence the biggest factor that LiFePO4 is used, and can conductivity be improved through mixing, and high-rate charge-discharge capability also improves, and has suppressed the effect of capacity attenuation to a certain extent.The doping approach can improve, improve the lithium ion anode material performance, has been a kind of feasible mode of generally acknowledging.
Summary of the invention
The objective of the invention is to: based on the structural limitations of the lithium iron phosphate positive material (LiFePO4) of prior art; There are its poorly conductive and the low deficiency of lithium ion diffusion coefficient, propose magnesium, barium activation lithium iron phosphate positive material preparation method that a kind of magnesium, barium activation improve its performance at present.
The present invention can improve, improve the lithium ion anode material performance in view of the doping approach, has been a kind of feasible mode of generally acknowledging.According to the chemical property of barium/lithium, electric property, crystal structure characteristic is the characteristics of akin element:
Barium is element the most active in the alkaline-earth metal, because it is very active, and oxidized easily, should be kept in kerosene and the atoleine.
5.212 electron-volts of ionization energy, the first ionization energy 502.9kJ/mol;
Crystal structure: structure cell is a body centred cubic cell, and each structure cell contains 2 metallic atoms;
Cell parameter: a=502.8pm; B=502.8pm; C=502.8pm; α=90 °; β=90 °; γ=90 °.
Lithium, metallic element can react with a large amount of inorganic reagents and organic reagent.With equal ability such as oxygen, nitrogen, sulphur chemical combination, the deepening owing to be prone to oxidated, and density is littler than kerosene, so should deposit in the atoleine.
5.392 electron-volts of ionization energy, the first ionization energy 520.2kJ/mol;
Crystal structure: structure cell is a body centred cubic cell, and each structure cell contains 2 metallic atoms;
Cell parameter: a=351pm; B=351pm; C=351pm; α=90 °; β=90 °; γ=90 °.
Think that barium should be to be easy to the doping effect of lithium position most.The present invention be mix through barium make an experiment, in the situation of mixing with barium, can add 1-2 other element again, constitute 2 yuan or 3 yuan of doping, with obtained performance anode material of lithium battery preferably.
Magnesium of the present invention, barium activation lithium iron phosphate positive material, it is characterized in that: its chemical composition or chemical general formula can be expressed as: LiMgx Bay Fe PO4, x==0.002-0.005, y=0.0003-0.003; Wherein the mol of Li, Mg, Ba, Fe, P ratio is: 1mol Li: 0.002-0.005mol Mg: 0.0003-0.003mol Ba: 1mol Fe: 1mol P.
Magnesium of the present invention, barium activation lithium iron phosphate positive material preparation method is characterized in that: the raw material in its lithium source, source of iron, phosphoric acid root, magnesium source, barium source, according to 1mol Li: 0.002-0.005molMg: 0.0003-0.003mol Ba: 1mol Fe: after the 1mol P mixed; In ethanol medium; Rotating speed 200-800r/mimn high speed ball milling 15-20h with 105-120 ℃ of oven dry, obtains presoma; The presoma that oven dry is obtained places in the high temperature furnace; In blanket of nitrogen,, promptly get magnesium of the present invention, barium activation lithium iron phosphate positive material through 500-750 ℃ of high-temperature calcination 16-24h.Its chemical composition is: LiMgx Bay Fe PO4, x==0.002-0.005, y=0.0003-0.003; Wherein the mol of Li, Mg, Ba, Fe, P ratio is: 1mol Li: 0.002-0.005mol Mg: 0.0003-0.003mol Ba: 1mol Fe: 1mol P.Its lithium source is one of lithium carbonate, lithium hydroxide or lithium dihydrogen phosphate; Source of iron is a ferrous oxalate; The phosphoric acid root is one of ammonium dihydrogen phosphate or diammonium hydrogen phosphate; The magnesium source is one of magnesium carbonate, magnesia, magnesium hydroxide, and the barium source is one of brium carbonate, barium hydroxide, barium chloride, barium nitrate, barium monoxide, barium sulphide.
The present invention's beneficial effect compared with prior art: magnesium of the present invention, barium activation lithium iron phosphate positive material preparation method; The gained material is because a small amount of magnesium, barium of replacing that mixes; Help controlling the pattern and the particle diameter of product, obtain stable LiFePO4 compound, barium ions occupies the replacement lithium ion; Its lattice has obtained activation, has improved the lithium ion diffusion coefficient; Mix in the Fe position of Mg, the product unit cell volume after the doping all has minimizing, and electronic conductivity improves than the electronic conductivity of LiFePO4, and its impedance in electrolyte solution is significantly reduced, and chemical property also obviously improves; Its first discharge capacity reach 155.52mAh/g; The relative lithium electrode current potential of its charge and discharge platform is about 3.5V, and initial discharge capacity surpasses 164mAh/g, and capacity decays about 3.0% approximately after 100 charge and discharge cycles; Specific capacity and cyclical stability and unadulterated LiFePO4 discharge capacity first have only 116.25mAh/g to compare, and are greatly improved.Because the price of magnesium, barium is lower more than hundred times than lithium price, production cost can fall more than ten times.
Embodiment
Below in conjunction with embodiment the present invention is described further, but execution mode of the present invention is not limited thereto.
Below adopt the calcination method synthetic method,, be illustrated magnesium of the present invention, barium activation lithium iron phosphate positive material.
Magnesium of the present invention, barium activation lithium iron phosphate positive material preparation method, its lithium source can be used: lithium salts such as lithium carbonate, lithium hydroxide or lithium dihydrogen phosphate, source of iron can be used: ferrous oxalate etc.; The phosphoric acid root can be used: ammonium dihydrogen phosphate or diammonium hydrogen phosphate etc.; The magnesium source is magnesia (MgO), magnesium carbonate (MgCO3); Magnesium hydroxide (Mg (OH) 2), the barium source can be used: barium salts such as brium carbonate, barium hydroxide, barium chloride, barium nitrate, barium monoxide, barium sulphide.
Select for use: lithium carbonate (Li2CO3) (99.73%), magnesium carbonate (99.5%), brium carbonate (BaCO3) (99.8%), ferrous oxalate (FeC2O4.2H2O) (99.06%), diammonium hydrogen phosphate (NH4H2PO4) (98%) is a raw material; According to 1mol Li: 0.002-0.005mol Mg: 0.0003-0.003mol Ba: 1mol Fe: after the 1molP mixed, in ethanol medium, rotating speed 200-800r/mimn high speed ball milling 15-20h; With 105-120 ℃ of oven dry; Obtain presoma, the presoma that oven dry is obtained places in the high temperature furnace, in blanket of nitrogen; Through 500-750 ℃ of high-temperature calcination 16-24h, promptly get magnesium of the present invention, barium activation lithium iron phosphate positive material.
Embodiment 1
Magnesium of the present invention, barium activation lithium iron phosphate positive material preparation method, with Li2CO3 (99.73%), magnesium carbonate (99.5%); BaCO3 (99.8%); FeC2O4.2H2O (99.06%), NH4H2PO4 (98%) raw material is according to 1mol Li: 0.002mol Mg: 0.0003mol Ba: 1mol Fe: after the 1mol P mixed; In absolute ethyl alcohol (AR) medium, high speed ball milling 20h (rotating speed 200r/mimn.After the 105-120 ℃ of oven dry, obtain presoma, the presoma that oven dry is obtained places in the high temperature furnace, in common purity nitrogen (>99.5%) atmosphere, and through 500-750 ℃, high-temperature calcination 24h.Promptly get magnesium of the present invention, barium activation lithium iron phosphate positive material.
Embodiment 2
Magnesium of the present invention, barium activation lithium iron phosphate positive material preparation method, with Li2CO3 (99.73%), magnesium carbonate (99.5%); BaCO3 (99.8%); FeC2O4.2H2O (99.06%), NH4H2PO4 (98%) raw material is according to 1mol Li: 0.004mol Mg: 0.001mol Ba: 1mol Fe: after the 1mol P mixed; In absolute ethyl alcohol (AR) medium, high speed ball milling 20h (rotating speed 200r/mimn).After the 105-120 ℃ of oven dry, obtain presoma, the presoma that oven dry is obtained places in the high temperature furnace, in common purity nitrogen (>99.5%) atmosphere, and through 500-750 ℃, high-temperature calcination 24h.Promptly get magnesium of the present invention, barium activation lithium iron phosphate positive material.
Embodiment 3
Magnesium of the present invention, barium activation lithium iron phosphate positive material preparation method, with Li2CO3 (99.73%), magnesium carbonate (99.5%); BaCO3 (99.8%); FeC2O4.2H2O (99.06%), NH4H2PO4 (98%) raw material is according to 1mol Li: 0.005mol Mg: 0.003mol Ba: 1mol Fe: after the 1mol P mixed; In absolute ethyl alcohol (AR) medium, high speed ball milling 20h (rotating speed 200r/mimn).After the 105-120 ℃ of oven dry, obtain presoma, the presoma that oven dry is obtained places in the high temperature furnace, in common purity nitrogen (>99.5%) atmosphere, and through 500-750 ℃, high-temperature calcination 24h.Promptly get magnesium of the present invention, barium activation lithium iron phosphate positive material.
Embodiment 4 (not mixing contrast)
With Li2CO3 (99.73%), FeC2O4.2H2O (99.06%), NH4H2PO4 (98%) raw material, according to 1molLi: 1mol Fe: after the 1mol P mixed, in absolute ethyl alcohol (AR) medium, high speed ball milling 20h (rotating speed 200r/mimn).After the 105-120 ℃ of oven dry, obtain presoma, the presoma that oven dry is obtained places in the high temperature furnace, in common purity nitrogen (>99.5%) atmosphere, and through 500-750 ℃, high-temperature calcination 24h.Promptly get lithium ion anode material.
Adopt the testing equipment of prior art and the method for testing of prior art,, carry out test result with the control Example of not mixing 4 and be magnesium, the barium activation lithium iron phosphate positive material of above embodiment 1-3:
The magnesium of embodiment of the invention 1-3, barium activation lithium iron phosphate positive material, discharge capacity reaches more than the 155.52mAh/g first; Unadulterated LiFePO4 discharge capacity first has only in the 116.25mAh/g.
The barium activation lithium iron phosphate positive material of embodiment of the invention 1-3, the relative lithium electrode current potential of its charge and discharge platform is about 3.5V, and initial discharge capacity surpasses 164mAh/g, and capacity decays about 3.0% approximately after 100 charge and discharge cycles.
Barium activation lithium iron phosphate positive material preparation method of the present invention, the back of mixing is assorted, the raising of gained material specific capacity and cyclical stability; Perhaps this be because a small amount of magnesium, barium of replacing that mixes; Help controlling the pattern and the particle diameter of product, obtain stable LiFePO4 compound, barium ions occupies the replacement lithium ion; Its lattice has obtained activation, has improved the lithium ion diffusion coefficient; Dopant ion though mixing, barium lithium position can improve conductivity of electrolyte materials, owing to can hinder the diffusion of lithium ion in the one dimension passage, thereby be unfavorable for improving the high-rate charge-discharge capability of material.And the rate charge-discharge performance of iron position doping can improvement LiFePO4 improves cycle performance.Chosen ionic radius near and mix in the Fe position of the different magnesium of valence state; Product unit cell volume after the doping all has minimizing; Electronic conductivity improves than the electronic conductivity of LiFePO4, and its impedance in electrolyte solution is significantly reduced, and chemical property also obviously improves; Its first discharge capacity reach 155.52mAh/g; The relative lithium electrode current potential of its charge and discharge platform is about 3.5V, and initial discharge capacity surpasses 164mAh/g, and capacity decays about 3.0% approximately after 100 charge and discharge cycles; Specific capacity and cyclical stability and unadulterated LiFePO4 discharge capacity first have only 116.25mAh/g to compare, and are greatly improved.Be to replace magnesium, barium on a small quantity owing to mix, help controlling the pattern and the particle diameter of product, obtain stable LiFePO4 compound, its lattice has obtained activation, has improved the result of lithium ion diffusion coefficient.

Claims (2)

1. a magnesium, barium activation lithium iron phosphate positive material preparation method is characterized in that: the raw material in its lithium source, source of iron, phosphoric acid root, magnesium source, barium source, according to 1mol Li: 0.002-0.005molMg: 0.0003-0.003mol Ba: 1mol Fe: after the 1mol P mixed; In ethanol medium; Rotating speed 200-800r/mimn high speed ball milling 15-20h with 105-120 ℃ of oven dry, obtains presoma; The presoma that oven dry is obtained places in the high temperature furnace; In blanket of nitrogen,, promptly get magnesium, barium activation lithium iron phosphate positive material through 500-750 ℃ of high-temperature calcination 16-24h.
2. magnesium according to claim 1, barium activation lithium iron phosphate positive material preparation method; It is characterized in that: its lithium source is one of lithium carbonate, lithium hydroxide, lithium dihydrogen phosphate; Source of iron is a ferrous oxalate; The phosphoric acid root is one of ammonium dihydrogen phosphate, diammonium hydrogen phosphate, and the magnesium source is one of magnesium carbonate, magnesia, magnesium hydroxide, and the barium source is one of brium carbonate, barium hydroxide, barium chloride, barium nitrate, barium monoxide, barium sulphide.
CN201110337701.0A 2011-10-26 2011-10-26 Preparation method for magnesium/barium-activated lithium iron phosphate cathode material Active CN102386403B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201110337701.0A CN102386403B (en) 2011-10-26 2011-10-26 Preparation method for magnesium/barium-activated lithium iron phosphate cathode material

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201110337701.0A CN102386403B (en) 2011-10-26 2011-10-26 Preparation method for magnesium/barium-activated lithium iron phosphate cathode material

Publications (2)

Publication Number Publication Date
CN102386403A true CN102386403A (en) 2012-03-21
CN102386403B CN102386403B (en) 2014-04-16

Family

ID=45825566

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201110337701.0A Active CN102386403B (en) 2011-10-26 2011-10-26 Preparation method for magnesium/barium-activated lithium iron phosphate cathode material

Country Status (1)

Country Link
CN (1) CN102386403B (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113502537A (en) * 2021-07-12 2021-10-15 重庆文理学院 Method for synthesizing ternary barium-containing dicarbonate crystal

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006048991A (en) * 2004-08-02 2006-02-16 Sumitomo Osaka Cement Co Ltd Positive electrode active material for lithium battery, its manufacturing method, and lithium battery
CN101393982A (en) * 2008-10-28 2009-03-25 南京海泰纳米材料有限公司 Method for producing carbon coated nano stage lithium iron phosphate by precipitation
CN101582498A (en) * 2009-06-18 2009-11-18 东北师范大学 Method for preparing nanometer ferrous phosphate lithium /carbon composite material

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006048991A (en) * 2004-08-02 2006-02-16 Sumitomo Osaka Cement Co Ltd Positive electrode active material for lithium battery, its manufacturing method, and lithium battery
CN101393982A (en) * 2008-10-28 2009-03-25 南京海泰纳米材料有限公司 Method for producing carbon coated nano stage lithium iron phosphate by precipitation
CN101582498A (en) * 2009-06-18 2009-11-18 东北师范大学 Method for preparing nanometer ferrous phosphate lithium /carbon composite material

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113502537A (en) * 2021-07-12 2021-10-15 重庆文理学院 Method for synthesizing ternary barium-containing dicarbonate crystal
CN113502537B (en) * 2021-07-12 2022-04-12 重庆文理学院 Method for synthesizing ternary barium-containing dicarbonate crystal

Also Published As

Publication number Publication date
CN102386403B (en) 2014-04-16

Similar Documents

Publication Publication Date Title
CN102347486A (en) Method for preparing barium-activated lithium iron phosphate cathode material
CN102376954A (en) Lithium iron phosphate anode material with activating aluminum and barium
CN102376952A (en) Preparing method for aluminium and barium activated lithium iron phosphate positive electrode material
CN102364734A (en) Method for preparing antimony and barium activated lithium iron phosphate cathode material
CN102386403B (en) Preparation method for magnesium/barium-activated lithium iron phosphate cathode material
CN102509796A (en) Preparation method of boron and barium activated lithium iron phosphate anode material
CN102376953B (en) Preparing method for calcium and barium activated lithium iron phosphate positive electrode material
CN102361078B (en) Method for preparing nickel and barium activated lithium iron phosphate cathode material
CN102354755B (en) Preparation method of strontium and barium activated lithium iron phosphate positive pole material
CN102386404A (en) Magnesium and barium activated lithium iron phosphate cathode material
CN102347491B (en) Method for preparing cadmium-barium-activated lithium iron phosphate cathode material
CN102386399A (en) Cobalt and barium activated lithium iron phosphate anode material
CN102509798A (en) Preparation method of copper-barium-activated lithium iron phosphate anode material
CN102386406A (en) Preparation method of selenium and barium activated lithium iron phosphate anode materials
CN102437330A (en) Cadmium/barium-activated lithium iron phosphate cathode material
CN102354753A (en) Calcium and barium activated lithium iron phosphate positive pole material
CN102386405A (en) Strontium and barium activated lithium iron phosphate anode material
CN102361081A (en) Selenium and barium activated lithium iron phosphate anode material
CN102361083A (en) Method for preparing vanadium and barium activated lithium iron phosphate anode material
CN102386398A (en) Beryllium-barium activated lithium iron phosphate cathode material
CN102509797A (en) Vanadium and barium activated lithium iron phosphate anode material
CN102361082A (en) Copper and barium activated lithium iron phosphate cathode material
CN102509793A (en) Method for preparing zinc and barium activated lithium iron phosphate cathode material
CN102364735A (en) Preparation method of beryllium and barium activated lithium iron phosphate positive electrode material
CN102364733A (en) Method for preparing antimony and barium activated lithium iron phosphate cathode material

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C53 Correction of patent of invention or patent application
CB02 Change of applicant information

Address after: 542800 the Guangxi Zhuang Autonomous Region Hezhou city beauty instrument Ceramics Co. Ltd

Applicant after: Li Xianlan

Address before: 542800 the Guangxi Zhuang Autonomous Region Hezhou City eight step District No. 40 West Lane

Applicant before: Li Xianlan

C14 Grant of patent or utility model
GR01 Patent grant
TR01 Transfer of patent right

Effective date of registration: 20191031

Address after: No.678-15, Xinmin North Road, Wutong street, Tongxiang City, Jiaxing City, Zhejiang Province

Patentee after: Tongxiang Levi new materials Co., Ltd.

Address before: 542800 Guangxi Hezhou beauty porcelain Co., Ltd.

Patentee before: Li Xianlan

TR01 Transfer of patent right