CN102373920B - 一种求准油层含油水饱和度的方法 - Google Patents

一种求准油层含油水饱和度的方法 Download PDF

Info

Publication number
CN102373920B
CN102373920B CN201010259315.XA CN201010259315A CN102373920B CN 102373920 B CN102373920 B CN 102373920B CN 201010259315 A CN201010259315 A CN 201010259315A CN 102373920 B CN102373920 B CN 102373920B
Authority
CN
China
Prior art keywords
oil
water
rock
saturation
porosity
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201010259315.XA
Other languages
English (en)
Other versions
CN102373920A (zh
Inventor
张丽霞
陈春勇
李培俊
陈建
梁成钢
朱喜萍
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
China Petroleum and Natural Gas Co Ltd
Original Assignee
China Petroleum and Natural Gas Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by China Petroleum and Natural Gas Co Ltd filed Critical China Petroleum and Natural Gas Co Ltd
Priority to CN201010259315.XA priority Critical patent/CN102373920B/zh
Publication of CN102373920A publication Critical patent/CN102373920A/zh
Application granted granted Critical
Publication of CN102373920B publication Critical patent/CN102373920B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Geophysics And Detection Of Objects (AREA)
  • Investigation Of Foundation Soil And Reinforcement Of Foundation Soil By Compacting Or Drainage (AREA)

Abstract

本发明涉及一种求准油层含油水饱和度的方法;设岩石体积为1;引用测井解释分析报告中的岩石含水饱和度Sw;引用岩石物性检测分析报告中的孔隙度φ;引用岩石薄片检测分析报告的面孔率m的百分含量;公式φw=φ-m,求出微孔孔隙度φw;用公式φx=m,求出有效孔隙的孔隙度φx;用公式SwX=Sw×φ-φw/φx;求出有效孔隙含水饱和度SwX;假设储集空间只有油、水两种流体,用公式SoX=1-SwX,求出有效孔隙含油饱和度SoX;准确求出富含颗粒状泥屑砂岩有效孔隙中油、水饱和度,单独地做出测井解释图版,用于准确判断油水层,提高油层识别的能力。

Description

一种求准油层含油水饱和度的方法
技术领域:
本发明涉及一种用于富含颗粒状泥屑砂岩低电阻油层有效孔隙含油水饱和度的准确求法。
背景技术:
目前国内地层含油气饱和度和含水饱和度是采用Archie公式(阿尔奇)定量计算出来的。应用Archie公式的理想条件是具有颗粒孔隙的纯地层和不含泥质或是泥质含量少的地层。但对于富含颗粒状泥屑的砂岩地层,Archie公式定量计算的含油饱和度偏低、含水饱和度偏高。一般测井解释将含水饱和度高、电阻率低的地层,基本上都解释成干层。而实际上,富含颗粒状泥屑砂岩低电阻地层,试油不但出油而且是纯油,为低电阻油层。和测井解释为干层的结论截然相反(表1)。低电阻率往往降低了测井信息对油气水层的分辨率。将低电阻纯油层解释为干层。造成测井解释的不准确性,导致油水层的判别失误,漏失油层。
富含颗粒状泥屑砂岩低电阻油气层出油的原因是其孔隙是由两部分组成,粒间显孔(以下称有效孔隙)和微孔(无效孔隙)两部分组成。有效孔隙为孔隙直径大于0.5mm或孔隙直径介于0.5~0.0002mm之间的超毛细管孔隙和毛细管孔隙。流体在重力作用下可自由流动,或在一定压差作用下,液体在毛细管内可以流动。微孔(无效孔隙以下均称为微孔)为孔隙直径为0.0002mm、裂缝宽度小于0.0001mm的孔隙。粘土、页岩中的孔隙一般属于此类型,此类孔隙分子间的引力很大,油层条件下的压力梯度一般无法使液体在孔隙中移动。颗粒状泥屑中的粘土矿物成分是以水云母(伊利石)和蒙脱石为主,由于这些粘土矿物晶间格间隔比较大,分子间引力相对较弱,因而有比较强的吸水性。
地层水很大一部分或是全部被大量颗粒状泥屑中的微孔束缚。使得有效孔隙的含水饱和度低于整个岩石含水饱和度,岩石有效孔隙的含油饱和度高于岩石含油饱和度。油气主要分布于大孔隙或孔隙较宽敞的有效孔隙部位。也是前面说的粒间显孔(有效孔隙)中。地层出油、出水决定于岩石中粒间显孔(有效孔隙)里的油、水饱和度。造成富含颗粒状泥屑砂岩为低电阻油层,出油而且是纯油层。对于没有泥质或泥质少的地层,也就说没有微孔或微孔少的地层,常规测井按Archie公式计算所得的含油气饱和度和含水饱和度是代表整个岩石含油气饱和度和含水饱和度。求出的油水饱和度就是岩石本身的油水饱和度。根据Archie公式定量计算出来的含油气饱和度和含水饱和度是准确的。
而按Archie公式计算的富含颗粒状泥屑砂岩的低电阻油层含油水饱和度不代表整个岩石中真正能出油的有效孔隙的含油水饱和度。造成测井解释的不准确性。导致油水层的判别失误,漏失油层,延误勘探进程,甚至新油田的发现。
表1西泉地区测井解释成果与试油结论对照
发明内容
本发明的目的是提供一种求准富含颗粒状泥屑砂岩低电阻油层有效孔隙含油水饱和度的方法。真实地求出低电阻地层中的油水饱和度数据,目的是提醒测井解释,针对此类储层,不能按常规低泥质砂岩测井解释图版来解释富含颗粒状泥屑砂岩地层。必须根据此方法准确求出富含颗粒状泥屑砂岩有效孔隙中油、水饱和度,单独地做出测井解释图版。用于准确判断油水层,提高油层识别的能力。避免漏失油层。
本发明所述的一种求准油层含油水饱和度的方法步骤:
(1)设岩石体积为1;
(2)引用测井解释分析报告中的岩石含水饱和度Sw;
(3)引用岩石物性检测分析报告中的孔隙度φ;
(4)引用岩石薄片检测分析报告的面孔率m的百分含量;
(5)公式φw=φ-m,求出微孔孔隙度φw;
(6)用公式φx=m,求出有效孔隙的孔隙度φx;
(7)用公式SwX=Sw×φ-φw/φx;求出有效孔隙含水饱和度SwX;
(8)假设储集空间只有油、水两种流体,用公式SoX+SwX=1,求出有效孔隙含油饱和度SoX。
上面方法中的百分含量全部是体积百分含量。
发明效果
本发明中准确求出富含颗粒状泥屑砂岩低电阻油层有效孔隙中油、水饱和度,目的是提醒测井解释,针对富含颗粒状泥屑砂岩储层,不能按常规低泥质砂岩测井解释图版来解释富含颗粒状泥屑砂岩地层。必须根据此方法准确求出富含颗粒状泥屑砂岩有效孔隙中油、水饱和度,单独地做出测井解释图版。用于准确判断油水层,提高油层识别的能力,避免漏失油层。有必要用此发明方法复查原来解释是水层或是干层的低电阻地层。此方法地质意义非常重大,国内各大油田有类似情况,可以推广应用,指导勘探发现新油田。
具体实施方式
(1)设岩石体积=1;
(2)引用测井解释分析报告中的岩石含水饱和度Sw=65%;
(3)引用岩石物性检测分析报告中的孔隙度φ=20%;
(4)引用岩石薄片检测分析报告中的面孔率m=10%;
(5)用公式φw=φ-m,求出微孔孔隙度φw;
φw=φ-m=20%-10%=0.2-0.1=0.1
(6)用公式φx=m,求出有效孔孔隙度φx;
φx=m=10%=0.1
(7)用公式SwX=Sw×φ-φw/φx;求出有效孔含水饱和度SwX;
SwX=Sw×φ-φw/φx=65%×20%-0.1/0.1=0.65×0.20-0.1/0.1=0.13-0.1/0.1=0.03/0.1=0.3=30%
(8)假设储集空间只有油、水两种流体,用公式SoX=1-SwX;求出有效孔含油饱和度SoX;SoX=1-0.3=0.7=70%
为了研究用Archie(阿尔奇)公式和此发明方法定量计算富含颗粒状泥屑砂岩的含油水饱和度有多大差异,搞清富含颗粒状泥屑的砂岩储层真正的含油饱和度是多少。用上述方法对富含同生泥屑的西泉地区梧桐构组的含油饱和度进行了校正。数据见表2。
表2西泉地区梧桐构组用Archie公式和发明方法求出的油水饱和度参数对比
对照表2数据,岩石有效孔含水饱和度和岩石含水饱和度相比,西泉015井岩石有效孔含水饱和度低了岩石含水饱和度13%,西泉017井岩石有效孔含水饱和度低了岩石含水饱和度11.7%,西泉016井岩石有效孔含水饱和度低了岩石含水饱和度1.92%;岩石有效孔含油饱和度和岩石含油饱和度相比,西泉015井岩石有效孔含油饱和度高了岩石含油饱和度13%,西泉017井岩石有效孔含油饱和度高了岩石含油饱和度11.7%,西泉016井岩石有效孔含油饱和度高了岩石含油饱和度1.92%。
当储层中富含颗粒状泥屑时,用常规方法,Archie公式计算所得的西泉地区梧桐沟组含水饱和度不能反映岩石有效孔中真正能出油部分的含水饱和度,测井所测出的含水饱和度普遍偏高,而实际试油为油层。不能准确判断出油水层。所以,准确求出富含颗粒状泥屑砂岩低电阻油层的含油、含水饱和度就显得非常重要,否则当电测显示地层为电阻率时,计算的含油饱和度就不准确,造成测井解释错误。一般测井解释当含油饱和度在40%左右时,就会判断为干层或水层。所以当储层中富含同生泥屑时,此发明方法有助于准确求出地层的含油、含饱和度,用于正确做出测井解释图版,以达到对低电阻地层油水层的正确判别。

Claims (1)

1.一种求准油层含油水饱和度的方法,其特征在于:
(1)设岩石体积为1;
(2)引用测井解释分析报告中的岩石含水饱和度Sw;
(3)引用岩石物性检测分析报告中的孔隙度φ;
(4)引用岩石薄片检测分析报告的面孔率m的百分含量;
(5)公式φw=φ–m,求出微孔孔隙度φw;
(6)用公式φx=m,求出有效孔隙的孔隙度φx;
(7)用公式SwX=Sw×φ-φw/φx;求出有效孔隙含水饱和度SwX;
(8)假设储集空间只有油、水两种流体,用公式SoX=1-SwX,求出有效孔隙含油饱和度SoX;
上面方法中的百分含量全部是体积百分含量;
所述岩石含水饱和度为利用测井解释分析报告中方法测量得到,所述孔隙度为利用岩石物性检测分析报告中的方法测量得到,所述面孔率为利用岩石薄片检测分析报告中的方法测量得到。
CN201010259315.XA 2010-08-20 2010-08-20 一种求准油层含油水饱和度的方法 Active CN102373920B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201010259315.XA CN102373920B (zh) 2010-08-20 2010-08-20 一种求准油层含油水饱和度的方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201010259315.XA CN102373920B (zh) 2010-08-20 2010-08-20 一种求准油层含油水饱和度的方法

Publications (2)

Publication Number Publication Date
CN102373920A CN102373920A (zh) 2012-03-14
CN102373920B true CN102373920B (zh) 2014-11-26

Family

ID=45793086

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201010259315.XA Active CN102373920B (zh) 2010-08-20 2010-08-20 一种求准油层含油水饱和度的方法

Country Status (1)

Country Link
CN (1) CN102373920B (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110847901A (zh) * 2019-12-11 2020-02-28 成都理工大学 一种变矿化度地层水下的致密砂岩储层流体识别方法

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106401575B (zh) * 2015-07-29 2019-05-31 中国石油化工股份有限公司 特高含水期取心井水淹层原始含油饱和度计算方法
CN109162696B (zh) * 2018-10-08 2022-06-03 陕西延长石油(集团)有限责任公司研究院 一种利用补偿声波计算地层含油饱和度的方法

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4609044A (en) * 1985-05-20 1986-09-02 Shell Oil Company Alkali-enhanced steam foam oil recovery process
CN1409105A (zh) * 2001-08-07 2003-04-09 王家禄 含油饱和度测量方法及测量探头
CN101135732A (zh) * 2006-08-31 2008-03-05 中国石油大学(北京) 地层流体饱和度评价方法
CN101487390A (zh) * 2009-02-23 2009-07-22 大庆油田有限责任公司 一种确定油层原始含油饱和度的阿尔奇模式方法
CN101634620A (zh) * 2008-07-24 2010-01-27 中国石油天然气股份有限公司 稠油松散岩心饱和度参数校正方法
CN101649738A (zh) * 2008-08-13 2010-02-17 中国石油天然气集团公司 一种确定地层含水饱和度的方法

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4609044A (en) * 1985-05-20 1986-09-02 Shell Oil Company Alkali-enhanced steam foam oil recovery process
CN1409105A (zh) * 2001-08-07 2003-04-09 王家禄 含油饱和度测量方法及测量探头
CN101135732A (zh) * 2006-08-31 2008-03-05 中国石油大学(北京) 地层流体饱和度评价方法
CN101634620A (zh) * 2008-07-24 2010-01-27 中国石油天然气股份有限公司 稠油松散岩心饱和度参数校正方法
CN101649738A (zh) * 2008-08-13 2010-02-17 中国石油天然气集团公司 一种确定地层含水饱和度的方法
CN101487390A (zh) * 2009-02-23 2009-07-22 大庆油田有限责任公司 一种确定油层原始含油饱和度的阿尔奇模式方法

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110847901A (zh) * 2019-12-11 2020-02-28 成都理工大学 一种变矿化度地层水下的致密砂岩储层流体识别方法

Also Published As

Publication number Publication date
CN102373920A (zh) 2012-03-14

Similar Documents

Publication Publication Date Title
Shao et al. Fractal analysis of pore network in tight gas sandstones using NMR method: A case study from the Ordos Basin, China
Xiao et al. Classifying multiscale pores and investigating their relationship with porosity and permeability in tight sandstone gas reservoirs
Tan et al. A simulation method for permeability of porous media based on multiple fractal model
Li et al. Investigation of the methane adsorption characteristics of marine shale: a case study of Lower Cambrian Qiongzhusi Shale in eastern Yunnan Province, South China
Wang et al. Investigation of methane desorption and its effect on the gas production process from shale: experimental and mathematical study
Bai et al. Investigation of multi-gas transport behavior in shales via a pressure pulse method
Zhang et al. Breakthrough pressure and permeability in partially water-saturated shales using methane–carbon dioxide gas mixtures: An experimental study of Carboniferous shales from the eastern Qaidam Basin, China
Gao et al. Investigating the spontaneous imbibition characteristics of continental Jurassic Ziliujing Formation shale from the northeastern Sichuan Basin and correlations to pore structure and composition
Su et al. A fractal-monte carlo approach to model oil and water two-phase seepage in low-permeability reservoirs with rough surfaces
Lai et al. Investigation of pore characteristics and irreducible water saturation of tight reservoir using experimental and theoretical methods
Meng et al. Rock fabric of tight sandstone and its influence on irreducible water saturation in Eastern Ordos Basin
Tripathy et al. A comparative study on the pore size distribution of different Indian shale gas reservoirs for gas production and potential CO2 sequestration
Nazari et al. Experimental Investigation of Unsaturated Silt‐Sand Soil Permeability
Yang et al. Comparative investigations on wettability of typical marine, continental, and transitional shales in the middle Yangtze Platform (China)
Yu et al. Pore size of shale based on acyclic pore model
Yang et al. Modeling water imbibition and penetration in shales: New insights into the retention of fracturing fluids
CN102373920B (zh) 一种求准油层含油水饱和度的方法
Mengistu et al. Characterisation of the soil pore system in relation to its hydraulic functions in two South African aeolian soil groups
Rijfkogel et al. Clarifying pore diameter, pore width, and their relationship through pressure measurements: A critical study
Zhao et al. Applicability comparison of nuclear magnetic resonance and mercury injection capillary pressure in characterisation pore structure of tight oil reservoirs
Fang et al. Laboratory studies of non-marine shale porosity characterization
Zan et al. Experimental investigation of spontaneous water imbibition into methane-saturated shales under different methane pressures
Medina et al. Effects of Supercritical CO2 Injection on the Shale Pore Structures and Mass Transport Rates
Mo et al. Influence of water on gas transport in shale nanopores: Pore-scale simulation study
Song et al. Quantitative evaluation of pore connectivity of shales with a type H3 sorption hysteresis loop

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C53 Correction of patent for invention or patent application
CB03 Change of inventor or designer information

Inventor after: Zhang Lixia

Inventor after: Chen Chunyong

Inventor after: Li Peijun

Inventor after: Chen Jian

Inventor after: Liang Chenggang

Inventor after: Zhu Xiping

Inventor before: Zhang Lixia

Inventor before: Li Peijun

Inventor before: Chen Jian

Inventor before: Yang Ke

COR Change of bibliographic data

Free format text: CORRECT: INVENTOR; FROM: ZHANG LIXIA LI PEIJUN CHEN JIAN YANG KE TO: ZHANG LIXIA CHEN CHUNYONG LI PEIJUN CHEN JIAN LIANG CHENGGANG ZHU XIPING

C14 Grant of patent or utility model
GR01 Patent grant