CN102355269A - One-dimensional segment code signal rapid decoding method based on GDHT-III domain - Google Patents

One-dimensional segment code signal rapid decoding method based on GDHT-III domain Download PDF

Info

Publication number
CN102355269A
CN102355269A CN2011102118413A CN201110211841A CN102355269A CN 102355269 A CN102355269 A CN 102355269A CN 2011102118413 A CN2011102118413 A CN 2011102118413A CN 201110211841 A CN201110211841 A CN 201110211841A CN 102355269 A CN102355269 A CN 102355269A
Authority
CN
China
Prior art keywords
mrow
msub
gdht
iii
msubsup
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN2011102118413A
Other languages
Chinese (zh)
Other versions
CN102355269B (en
Inventor
舒华忠
伍家松
王膂
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Southeast University
Original Assignee
Southeast University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Southeast University filed Critical Southeast University
Priority to CN 201110211841 priority Critical patent/CN102355269B/en
Publication of CN102355269A publication Critical patent/CN102355269A/en
Application granted granted Critical
Publication of CN102355269B publication Critical patent/CN102355269B/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Compression, Expansion, Code Conversion, And Decoders (AREA)

Abstract

The invention discloses a one-dimensional segment code signal rapid decoding method based on a GDHT (generalized discrete Hartley transform)-III domain, belonging to the signal processing technology field. GDHT-III domain coefficients {Ak}, {Bk} and {Ck} (k is an integer from 0 to N/3-1) of signal sequences {an}, {bn} and {cn} with a length of N/3 (n is an integer from 0 to N/3-1) are converted into a GDHT-III domain coefficient {Xi} (i is an integer from 0 to N-1) of an original code signal sequence {xm} (m is an integer from 0 to N-1) of a length of N, wherein, calculation of {Xi} is divided into a multiple of 3 output index {X3k}, a multiple of 3 with a reminder 1 output index {X3k+1} and a multiple of 3 with a reminder 2 output index {X3k+2} to carry out calculation respectively, thus GDHT-III transformation times are reduced, and calculation complexity of a decoding process is reduced. Compared with the prior art, the method in the invention has the characteristics of lower complexity, better decoding real-time property, and less signal distortion.

Description

GDHT-III domain-based one-dimensional segmented coding signal fast decoding method
Technical Field
The invention relates to a signal decoding method, in particular to a one-dimensional segmented coding signal fast decoding method based on a GDHT-III domain, and belongs to the technical field of signal processing.
Background
Codec is an extremely important part of digital signal processing technology, coding refers to converting an input signal into a code that is optimized for transmission or storage, and decoding is the reverse process of coding. The codec process is typically performed by a codec device. The general signal encoding process usually includes several processes of time domain forward transform, quantization, entropy coding, and the decoding process includes inverse entropy coding, inverse quantization, and frequency domain inverse transform.
The Discrete Hartley Transform (DHT) is an important mathematical tool in digital signal processing, which can describe the relationship between the time domain and the frequency domain of a Discrete signal, and has a very important position in digital signal processing. As an extension of DHT, the Generalized Discrete Hartley Transform (GDHT) can be applied to a wider field. There are four forms of GDHT, GDHT-I (i.e., DHT), GDHT-II, GDHT-III and GDHT-IV. The inherent real mapping property of the GDHT kernel itself makes it well suited for processing real signal sequences.
Input sequence { xmGDHT-III of N-1 is defined as
<math> <mrow> <msub> <mi>X</mi> <mi>i</mi> </msub> <mo>=</mo> <msubsup> <mi>GDHT</mi> <mi>N</mi> <mi>III</mi> </msubsup> <mo>{</mo> <msub> <mi>x</mi> <mi>m</mi> </msub> <mo>}</mo> <mo>=</mo> <mfrac> <mn>1</mn> <mi>N</mi> </mfrac> <munderover> <mi>&Sigma;</mi> <mrow> <mi>m</mi> <mo>=</mo> <mn>0</mn> </mrow> <mrow> <mi>N</mi> <mo>-</mo> <mn>1</mn> </mrow> </munderover> <msub> <mi>x</mi> <mi>m</mi> </msub> <mi>cas</mi> <mfrac> <mrow> <mi>&pi;m</mi> <mrow> <mo>(</mo> <mn>2</mn> <mi>i</mi> <mo>+</mo> <mn>1</mn> <mo>)</mo> </mrow> </mrow> <mi>N</mi> </mfrac> <mo>,</mo> <mi>i</mi> <mo>=</mo> <mn>0,1</mn> <mo>,</mo> <mo>.</mo> <mo>.</mo> <mo>.</mo> <mo>,</mo> <mi>N</mi> <mo>-</mo> <mn>1</mn> <mo>,</mo> </mrow> </math>
The inverse transformation (IGDHT-III) is defined as
<math> <mrow> <msub> <mi>x</mi> <mi>m</mi> </msub> <mo>=</mo> <msubsup> <mi>IGDHT</mi> <mi>N</mi> <mi>III</mi> </msubsup> <mo>{</mo> <msub> <mi>X</mi> <mi>i</mi> </msub> <mo>}</mo> <mo>=</mo> <munderover> <mi>&Sigma;</mi> <mrow> <mi>m</mi> <mo>=</mo> <mn>0</mn> </mrow> <mrow> <mi>N</mi> <mo>-</mo> <mn>1</mn> </mrow> </munderover> <msub> <mi>X</mi> <mi>i</mi> </msub> <mi>cas</mi> <mfrac> <mrow> <mi>&pi;k</mi> <mrow> <mo>(</mo> <mn>2</mn> <mi>m</mi> <mo>+</mo> <mn>1</mn> <mo>)</mo> </mrow> </mrow> <mi>N</mi> </mfrac> <mo>,</mo> <mi>m</mi> <mo>=</mo> <mn>0,1</mn> <mo>,</mo> <mo>.</mo> <mo>.</mo> <mo>.</mo> <mo>,</mo> <mi>N</mi> <mo>-</mo> <mn>1</mn> <mo>,</mo> </mrow> </math>
Where N is the sequence length and cas α + sin α in the following discussion we ignore the normalization factor 1/N in equation (1) because it is only a constant division calculation. Such as: for N2lL is more than or equal to 2, which only needs to do simple shift operation.
GDHT-III (and IGDHT-III) has unique advantages in handling real signal compression coding as an alternative to DFT (and IDFT): firstly, the kernel function is a real function, and when the input is a real signal, only real number operation is needed, so that the calculation complexity is lower than that of DFT; second, the positive and negative transforms have the same form, so the positive and negative transforms can be realized by the same module.
In the existing coding and decoding method based on GDHT-III transformation, a signal { x needs to be transmittedmThe length is usually relatively long, so that the signal needs to be sent by coding in segments, wherein a common case is that { x } is usedmIs equally divided into three sections { a }n},{bnAnd { c }andnI.e. an=xn,bn=xn+N/3,cn=xn+2N/3N is 0, 1,.., N/3-1. Firstly, first of all { an},{bnAnd { c }andnThe corresponding transform domain coefficients { A } are obtained by GDHT-III transform respectivelyk},{BkAnd { C }kThen, the coefficients are quantized, entropy-coded and the like to obtain coefficients { A'k},{B′kAnd { C'kIs transmitted to the receiving end. Upon decoding, the received coefficients { A'k},{B′kAnd { C'kRespectively carrying out inverse entropy coding, inverse quantization and other processing to obtain a recovered coefficient { A }k},{BkAnd { C }kThe key question involved is how to go through { A }k},{BkAnd { C }kCalculate { X }i(wherein { X)iIs { x }nCoefficient of GDHT-III of length N)? Since the real-time performance requirements of signal coding and decoding are quite high, the lower the complexity requirement, the better the quality assurance. Now thatThere is a method that firstly the input GDFT-II domain coefficient { A with the length of N/3k},{BkAnd { C }kRespectively obtaining the original time domain signals { a ] through IGDHT-III inverse transformation and time domain transformationn},{bnAnd { c }andnThen combine these three sequences in series into { x }mAnd then calculating a sequence { x with the length of NmCoefficient of GDHT-III { X }i}. Therefore, the traditional method needs to calculate three IGDHT-III with the length of N/3 and one GDHT-III with the length of N, and needs higher calculation complexity, thereby influencing the decoding real-time performance to a certain extent.
Disclosure of Invention
The technical problem to be solved by the invention is to overcome the technical problems of high computational complexity and poor decoding real-time performance of the existing one-dimensional segmented coding signal decoding method based on the GDHT-III domain, and provide a one-dimensional segmented coding signal fast decoding method based on the GDHT-III domain, wherein the method has low computational complexity and good decoding real-time performance.
The invention adopts the following technical scheme:
a one-dimensional segmented coding signal fast decoding method based on GDHT-III domain, the segmented coding signal is obtained by equally dividing original signal sequence with length N into three signal sequences with length N/3, then respectively carrying out GDHT-III transformation on the three signal sequences to obtain corresponding GDHT-III domain coefficients, and finally respectively carrying out quantization and entropy coding processing on the three groups of GDHT-III domain coefficients, the fast decoding method comprises the following steps:
step 1, performing inverse entropy coding and inverse quantization processing on the segmented coding signals to obtain three groups of recovered GDHT-III domain coefficients;
step 2, setting the three groups of GDHT-III domain coefficients obtained in the step 1 as { A }k}、{BkAnd { C }kK is 0, 1,.., N/3-1, and the sequence { X is calculated according to the following formula, respectively3k}、{X3k+1}、{X3k+2Where k is 0, 1.., N/3-1: x3k+1=Ak-Bk+Ck,k=0,1,...,N/3-1
X 3 k = 1 2 ( Y k + Z k ) , k = 0,1,2 L L , N / 3 - 1 ,
X 3 k + 2 = 1 2 ( Y k - Z k ) , k = 0,1,2 L L , N / 3 - 1
Wherein,
<math> <mrow> <msub> <mi>Y</mi> <mi>k</mi> </msub> <mo>=</mo> <msubsup> <mi>GDHT</mi> <mrow> <mi>N</mi> <mo>/</mo> <mn>3</mn> </mrow> <mi>III</mi> </msubsup> <mo>{</mo> <msubsup> <mi>IGDHT</mi> <mrow> <mi>N</mi> <mo>/</mo> <mn>3</mn> </mrow> <mi>III</mi> </msubsup> <mrow> <mo>(</mo> <msub> <mrow> <mn>2</mn> <mi>A</mi> </mrow> <mi>k</mi> </msub> <mo>+</mo> <msub> <mi>B</mi> <mi>k</mi> </msub> <mo>-</mo> <msub> <mi>C</mi> <mi>k</mi> </msub> <mo>)</mo> </mrow> <mi>cos</mi> <msub> <mi>&theta;</mi> <mi>n</mi> </msub> <mo>+</mo> <msqrt> <mn>3</mn> </msqrt> <msubsup> <mi>IGDHT</mi> <mrow> <mi>N</mi> <mo>/</mo> <mn>3</mn> </mrow> <mi>III</mi> </msubsup> <mrow> <mo>(</mo> <msub> <mi>B</mi> <mi>k</mi> </msub> <mo>+</mo> <msub> <mi>C</mi> <mi>k</mi> </msub> <mo>)</mo> </mrow> <mi>sin</mi> <msub> <mi>&theta;</mi> <mi>n</mi> </msub> <mo>}</mo> <mo>,</mo> </mrow> </math>
<math> <mrow> <msub> <mi>Z</mi> <mrow> <mi>N</mi> <mo>/</mo> <mn>3</mn> <mo>-</mo> <mn>1</mn> <mo>-</mo> <mi>k</mi> </mrow> </msub> <mo>=</mo> <msubsup> <mi>GDHT</mi> <mrow> <mi>N</mi> <mo>/</mo> <mn>3</mn> </mrow> <mi>III</mi> </msubsup> <mo>{</mo> <mo>-</mo> <msubsup> <mi>IGDHT</mi> <mrow> <mi>N</mi> <mo>/</mo> <mn>3</mn> </mrow> <mi>III</mi> </msubsup> <mrow> <mo>(</mo> <msub> <mrow> <mn>2</mn> <mi>A</mi> </mrow> <mi>k</mi> </msub> <mo>+</mo> <msub> <mi>B</mi> <mi>k</mi> </msub> <mo>-</mo> <msub> <mi>C</mi> <mi>k</mi> </msub> <mo>)</mo> </mrow> <mi>sin</mi> <msub> <mi>&theta;</mi> <mi>n</mi> </msub> <mo>+</mo> <msqrt> <mn>3</mn> </msqrt> <msubsup> <mi>IGDHT</mi> <mrow> <mi>N</mi> <mo>/</mo> <mn>3</mn> </mrow> <mi>III</mi> </msubsup> <mrow> <mo>(</mo> <msub> <mi>B</mi> <mi>k</mi> </msub> <mo>+</mo> <msub> <mi>C</mi> <mi>k</mi> </msub> <mo>)</mo> </mrow> <mi>cos</mi> <msub> <mi>&theta;</mi> <mi>n</mi> </msub> <mo>}</mo> <mo>,</mo> </mrow> </math>
in the formula,
Figure BDA0000078825570000035
and
Figure BDA0000078825570000036
respectively representing the forward and reverse GDHT-III transformations of length N/3 on the signal sequence in brackets, theta n2N/N is a twiddle factor;
step 3, converting the sequence { X }3k}、{X3k+1}、{X3k+2The elements in the sequence are sequentially connected in series to be combined to obtain a sequence (X)i}; wherein k is 0, 1,.., N/3-1; i-0, 1, ·, N-1; sequence { XiI.e. the GDHT-III domain coefficient of the original signal sequence of length N.
Compared with the prior art, the method has the advantages of low calculation complexity and better decoding instantaneity. The inventive method also has less signal distortion because, in general, the GDHT-III transform is followed by a quantization step, whereas the use of IGDHT-III with quantized coefficients results in signal distortion. The error is further increased by GDHT-III transformation of the distorted signal. Therefore, to reduce signal distortion, we need to minimize the number of IGDHT-III and GDHT-III. While the conventional method requires three IGDHT-III and three GDHT-III, the method of the present invention requires only two IGDHT-III and two GDHT-III. The inventive method therefore has less signal distortion.
Drawings
FIG. 1 is a schematic flow chart of a conventional method for performing segmented encoding;
FIG. 2 is a flow chart illustrating a conventional method for performing segmented decoding;
FIG. 3 is a signal flow diagram of a fast decoding method based on GDHT-III transform according to the present invention; where the numbers next to the arrowed line indicate the transmission factor (corresponding to the multiplier),an adder is shown. "deconvolution" means that the signal sequence { Z }is invertedN/3-1-kConvert to { Z }k},k=0,1,....,N/3-1。
Detailed Description
The technical scheme of the invention is explained in detail in the following with the accompanying drawings:
FIG. 1 shows the conventional block encoding procedure, first transmitting a signal { x }mIs equally divided into three sections { a }n},{bnAnd { c }andnI.e. an=xn,bn=xn+N/3,cn=xn+2N/3N is 0, 1,.., N/3-1, and is paired with { a ═ a, respectivelyn},{bnAnd { c }andnCarry out GDHT-III transform to obtain its corresponding coefficient { A }k},{BkAnd { C }kN/3-1, and then quantizing and entropy-coding the coefficients to obtain coefficients { a'k},{B′kAnd { C'kIt is transmitted to the receiving end or stored in the medium.
FIG. 2 shows the flow of segment decoding by the conventional method, first on the received coefficients { A'k},{B′kAnd { C'kRespectively carrying out inverse entropy coding and inverse quantization processing to obtain a recovered coefficient { A }k},{BkAnd { C }kAnd obtaining the original time domain signal { a } of the coefficients through IGDHT-IIIn},{bnAnd { c }andnThen combine these three sequences in series into { x }mAnd then calculating a sequence { x with the length of NnCoefficient of GDHT-III { X }i}. When the conventional method is used, if { x is inputmIs a real signal with a computational complexity of
<math> <mrow> <mfenced open='{' close=''> <mtable> <mtr> <mtd> <msup> <mi>M</mi> <mi>T</mi> </msup> <mrow> <mo>(</mo> <mi>N</mi> <mo>)</mo> </mrow> <mo>=</mo> <mn>6</mn> <msup> <mi>M</mi> <mi>III</mi> </msup> <mrow> <mo>(</mo> <mi>N</mi> <mo>/</mo> <mn>3</mn> <mo>)</mo> </mrow> <mo>+</mo> <mn>4</mn> <mi>N</mi> <mo>/</mo> <mn>3</mn> <mo>=</mo> <mi>N</mi> <msub> <mi>log</mi> <mn>2</mn> </msub> <mrow> <mo>(</mo> <mi>N</mi> <mo>/</mo> <mn>3</mn> <mo>)</mo> </mrow> <mo>+</mo> <mi>N</mi> <mo>/</mo> <mn>3</mn> </mtd> </mtr> <mtr> <mtd> <msup> <mi>A</mi> <mi>T</mi> </msup> <mrow> <mo>(</mo> <mi>N</mi> <mo>)</mo> </mrow> <mo>=</mo> <mn>6</mn> <msup> <mi>A</mi> <mi>III</mi> </msup> <mrow> <mo>(</mo> <mi>N</mi> <mo>/</mo> <mn>3</mn> <mo>)</mo> </mrow> <mo>+</mo> <mn>8</mn> <mi>N</mi> <mo>/</mo> <mn>3</mn> <mo>=</mo> <mn>3</mn> <mi>N</mi> <msub> <mi>log</mi> <mn>2</mn> </msub> <mrow> <mo>(</mo> <mi>N</mi> <mo>/</mo> <mn>3</mn> <mo>)</mo> </mrow> <mo>-</mo> <mi>N</mi> <mo>/</mo> <mn>3</mn> <mo>+</mo> <mn>24</mn> </mtd> </mtr> </mtable> </mfenced> <mo>,</mo> <mi>N</mi> <mo>=</mo> <mn>3</mn> <mo>&times;</mo> <msup> <mn>2</mn> <mi>l</mi> </msup> <mo>,</mo> <mi>l</mi> <mo>&GreaterEqual;</mo> <mn>2</mn> <mo>.</mo> </mrow> </math>
Wherein M isIII(N) and AIII(N) are the multiplicative and additive numbers, respectively, required to compute a real number GDHT-III of length N.
FIG. 3 shows a flow chart of an embodiment of the method of the present invention for decoding an N-point real signal, where the input is a real signal { a } of length N/3n},{bnAnd { c }andnThe GDHT-III domain coefficient of { A }k},{BkAnd { C }k}; the output is a real signal of length N xmThe GDHT-III domain coefficient of { X }i0, 1, N-1 is illustrated by { X ═ X3k},{X3k+1And { X }3k+2K is expressed in three parts, 0, 1.
When the method is adopted for decoding, one GDHT-III with the length of N is decomposed into three GDHT-III with the length of N/3 for calculation, namely { X is outputiThe calculation is divided into multiple output indices of 3X3kMultiple of { 3 } and 1 output index { X }3k+1Multiple of { and 3 } and 2 output index { X3k+2The three parts are calculated separately.
Index portion { X3k+1Obtained according to the following formula
<math> <mrow> <msub> <mi>X</mi> <mrow> <mn>3</mn> <mi>k</mi> <mo>+</mo> <mn>1</mn> </mrow> </msub> <mo>=</mo> <munderover> <mi>&Sigma;</mi> <mrow> <mi>m</mi> <mo>=</mo> <mn>0</mn> </mrow> <mrow> <mi>N</mi> <mo>-</mo> <mn>1</mn> </mrow> </munderover> <msub> <mi>x</mi> <mi>m</mi> </msub> <mi>cas</mi> <mfrac> <mrow> <mi>&pi;m</mi> <mrow> <mo>(</mo> <mn>2</mn> <mrow> <mo>(</mo> <mn>3</mn> <mi>k</mi> <mo>+</mo> <mn>1</mn> <mo>)</mo> </mrow> <mo>+</mo> <mn>1</mn> <mo>)</mo> </mrow> </mrow> <mi>N</mi> </mfrac> </mrow> </math>
<math> <mrow> <mo>=</mo> <munderover> <mi>&Sigma;</mi> <mrow> <mi>n</mi> <mo>=</mo> <mn>0</mn> </mrow> <mrow> <mi>N</mi> <mo>/</mo> <mn>3</mn> <mo>-</mo> <mn>1</mn> </mrow> </munderover> <msub> <mi>a</mi> <mi>n</mi> </msub> <mi>cas</mi> <mfrac> <mrow> <mi>&pi;n</mi> <mrow> <mo>(</mo> <mn>2</mn> <mi>k</mi> <mo>+</mo> <mn>1</mn> <mo>)</mo> </mrow> </mrow> <mrow> <mi>N</mi> <mo>/</mo> <mn>3</mn> </mrow> </mfrac> <mo>-</mo> <munderover> <mi>&Sigma;</mi> <mrow> <mi>n</mi> <mo>=</mo> <mn>0</mn> </mrow> <mrow> <mi>N</mi> <mo>/</mo> <mn>3</mn> <mo>-</mo> <mn>1</mn> </mrow> </munderover> <msub> <mi>b</mi> <mi>n</mi> </msub> <mi>cas</mi> <mfrac> <mrow> <mi>&pi;n</mi> <mrow> <mo>(</mo> <mn>2</mn> <mi>k</mi> <mo>+</mo> <mn>1</mn> <mo>)</mo> </mrow> </mrow> <mrow> <mi>N</mi> <mo>/</mo> <mn>3</mn> </mrow> </mfrac> <mo>,</mo> <mi>k</mi> <mo>=</mo> <mn>0,1</mn> <mo>,</mo> <mo>.</mo> <mo>.</mo> <mo>.</mo> <mo>,</mo> <mi>N</mi> <mo>/</mo> <mn>3</mn> <mo>-</mo> <mn>1</mn> <mo>.</mo> </mrow> </math>
<math> <mrow> <mo>+</mo> <munderover> <mi>&Sigma;</mi> <mrow> <mi>n</mi> <mo>=</mo> <mn>0</mn> </mrow> <mrow> <mi>N</mi> <mo>/</mo> <mn>3</mn> <mo>-</mo> <mn>1</mn> </mrow> </munderover> <msub> <mi>c</mi> <mi>n</mi> </msub> <mi>cas</mi> <mfrac> <mrow> <mi>&pi;n</mi> <mrow> <mo>(</mo> <mn>2</mn> <mi>k</mi> <mo>+</mo> <mn>1</mn> <mo>)</mo> </mrow> </mrow> <mrow> <mi>N</mi> <mo>/</mo> <mn>3</mn> </mrow> </mfrac> </mrow> </math>
= A k - B k + C k
Index portion { X3kAnd { X }3k+1The calculation is carried out according to the following two steps:
the first step is as follows: constructing and calculating an intermediate quantity YkAnd Zk,k=0,1,...,N/3-1
Order to
Yk=X3k+X3k+2,k=0,1,...,N/3-1
Zk=X3k-X3k+2,k=0,1,...,N/3-1
Then Y iskAnd ZkObtained according to the following formula
<math> <mrow> <msub> <mi>Y</mi> <mi>k</mi> </msub> <mo>=</mo> <munderover> <mi>&Sigma;</mi> <mrow> <mi>m</mi> <mo>=</mo> <mn>0</mn> </mrow> <mrow> <mi>N</mi> <mo>-</mo> <mn>1</mn> </mrow> </munderover> <msub> <mi>x</mi> <mi>m</mi> </msub> <mi>cas</mi> <mfrac> <mrow> <mi>&pi;m</mi> <mrow> <mo>(</mo> <mn>6</mn> <mi>k</mi> <mo>+</mo> <mn>1</mn> <mo>)</mo> </mrow> </mrow> <mi>N</mi> </mfrac> <mo>+</mo> <munderover> <mi>&Sigma;</mi> <mrow> <mi>m</mi> <mo>=</mo> <mn>0</mn> </mrow> <mrow> <mi>N</mi> <mo>-</mo> <mn>1</mn> </mrow> </munderover> <msub> <mi>x</mi> <mi>m</mi> </msub> <mi>cas</mi> <mfrac> <mrow> <mi>&pi;m</mi> <mrow> <mo>(</mo> <mn>6</mn> <mi>k</mi> <mo>+</mo> <mn>5</mn> <mo>)</mo> </mrow> </mrow> <mi>N</mi> </mfrac> </mrow> </math>
<math> <mrow> <mo>=</mo> <munderover> <mi>&Sigma;</mi> <mrow> <mi>m</mi> <mo>=</mo> <mn>0</mn> </mrow> <mrow> <mi>N</mi> <mo>-</mo> <mn>1</mn> </mrow> </munderover> <msub> <mrow> <mn>2</mn> <mi>x</mi> </mrow> <mi>m</mi> </msub> <mi>cos</mi> <mfrac> <mrow> <mn>2</mn> <mi>&pi;m</mi> </mrow> <mi>N</mi> </mfrac> <mi>cas</mi> <mfrac> <mrow> <mi>&pi;m</mi> <mrow> <mo>(</mo> <mn>2</mn> <mi>k</mi> <mo>+</mo> <mn>1</mn> <mo>)</mo> </mrow> </mrow> <mrow> <mi>N</mi> <mo>/</mo> <mn>3</mn> </mrow> </mfrac> </mrow> </math>
<math> <mrow> <mo>=</mo> <munderover> <mi>&Sigma;</mi> <mrow> <mi>m</mi> <mo>=</mo> <mn>0</mn> </mrow> <mrow> <mi>N</mi> <mo>/</mo> <mn>3</mn> <mo>-</mo> <mn>1</mn> </mrow> </munderover> <mo>{</mo> <mrow> <mo>(</mo> <msub> <mrow> <mn>2</mn> <mi>a</mi> </mrow> <mi>n</mi> </msub> <mo>+</mo> <msub> <mi>b</mi> <mi>n</mi> </msub> <mo>-</mo> <msub> <mi>c</mi> <mi>n</mi> </msub> <mo>)</mo> </mrow> <mi>cos</mi> <msub> <mi>&theta;</mi> <mi>n</mi> </msub> <mo>+</mo> <msqrt> <mn>3</mn> </msqrt> <mrow> <mo>(</mo> <msub> <mi>b</mi> <mi>n</mi> </msub> <mo>+</mo> <msub> <mi>c</mi> <mi>n</mi> </msub> <mo>)</mo> </mrow> <mi>sin</mi> <msub> <mi>&theta;</mi> <mi>n</mi> </msub> <mo>}</mo> <mi>cas</mi> <mfrac> <mrow> <mi>&pi;m</mi> <mrow> <mo>(</mo> <mn>2</mn> <mi>k</mi> <mo>+</mo> <mn>1</mn> <mo>)</mo> </mrow> </mrow> <mrow> <mi>N</mi> <mo>/</mo> <mn>3</mn> </mrow> </mfrac> </mrow> </math>
<math> <mrow> <mo>=</mo> <msubsup> <mi>GDHT</mi> <mrow> <mi>N</mi> <mo>/</mo> <mn>3</mn> </mrow> <mi>III</mi> </msubsup> <mo>{</mo> <mrow> <mo>(</mo> <msub> <mrow> <mn>2</mn> <mi>a</mi> </mrow> <mi>n</mi> </msub> <mo>+</mo> <msub> <mi>b</mi> <mi>n</mi> </msub> <mo>-</mo> <msub> <mi>c</mi> <mi>n</mi> </msub> <mo>)</mo> </mrow> <mi>cos</mi> <msub> <mi>&theta;</mi> <mi>n</mi> </msub> <mo>+</mo> <msqrt> <mn>3</mn> </msqrt> <mrow> <mo>(</mo> <msub> <mi>b</mi> <mi>n</mi> </msub> <mo>+</mo> <msub> <mi>c</mi> <mi>n</mi> </msub> <mo>)</mo> </mrow> <mi>sin</mi> <msub> <mi>&theta;</mi> <mi>n</mi> </msub> <mo>}</mo> </mrow> </math>
<math> <mrow> <mo>=</mo> <msubsup> <mi>GDHT</mi> <mrow> <mi>N</mi> <mo>/</mo> <mn>3</mn> </mrow> <mi>III</mi> </msubsup> <mo>{</mo> <msubsup> <mi>IGDHT</mi> <mrow> <mi>N</mi> <mo>/</mo> <mn>3</mn> </mrow> <mi>III</mi> </msubsup> <mrow> <mo>(</mo> <msub> <mrow> <mn>2</mn> <mi>A</mi> </mrow> <mi>k</mi> </msub> <mo>+</mo> <msub> <mi>B</mi> <mi>k</mi> </msub> <mo>-</mo> <msub> <mo>C</mo> <mi>k</mi> </msub> <mo>)</mo> </mrow> <mi>cos</mi> <msub> <mi>&theta;</mi> <mi>n</mi> </msub> <mo>+</mo> <msqrt> <mn>3</mn> </msqrt> <msubsup> <mi>IGDHT</mi> <mrow> <mi>N</mi> <mo>/</mo> <mn>3</mn> </mrow> <mi>III</mi> </msubsup> <mrow> <mo>(</mo> <msub> <mi>B</mi> <mi>k</mi> </msub> <mo>+</mo> <msub> <mi>C</mi> <mi>k</mi> </msub> <mo>)</mo> </mrow> <mi>sin</mi> <msub> <mi>&theta;</mi> <mi>n</mi> </msub> <mo>}</mo> </mrow> </math>
<math> <mrow> <msub> <mi>Z</mi> <mrow> <mi>N</mi> <mo>/</mo> <mn>3</mn> <mo>-</mo> <mn>1</mn> <mo>-</mo> <mi>k</mi> </mrow> </msub> <mo>=</mo> <munderover> <mi>&Sigma;</mi> <mrow> <mi>m</mi> <mo>=</mo> <mn>0</mn> </mrow> <mrow> <mi>N</mi> <mo>-</mo> <mn>1</mn> </mrow> </munderover> <msub> <mi>x</mi> <mi>m</mi> </msub> <mi>cas</mi> <mfrac> <mrow> <mi>&pi;m</mi> <mrow> <mo>(</mo> <mn>6</mn> <mrow> <mo>(</mo> <mi>N</mi> <mo>/</mo> <mn>3</mn> <mo>-</mo> <mn>1</mn> <mo>-</mo> <mi>k</mi> <mo>)</mo> </mrow> <mo>+</mo> <mn>1</mn> <mo>)</mo> </mrow> </mrow> <mi>N</mi> </mfrac> <mo>-</mo> <munderover> <mi>&Sigma;</mi> <mrow> <mi>m</mi> <mo>=</mo> <mn>0</mn> </mrow> <mrow> <mi>N</mi> <mo>-</mo> <mn>1</mn> </mrow> </munderover> <msub> <mi>x</mi> <mi>m</mi> </msub> <mi>cas</mi> <mfrac> <mrow> <mi>&pi;m</mi> <mrow> <mo>(</mo> <mn>6</mn> <mrow> <mo>(</mo> <mi>N</mi> <mo>/</mo> <mn>3</mn> <mo>-</mo> <mn>1</mn> <mo>-</mo> <mi>k</mi> <mo>)</mo> </mrow> <mo>+</mo> <mn>5</mn> <mo>)</mo> </mrow> </mrow> <mi>N</mi> </mfrac> </mrow> </math>
<math> <mrow> <mo>=</mo> <mo>-</mo> <munderover> <mi>&Sigma;</mi> <mrow> <mi>m</mi> <mo>=</mo> <mn>0</mn> </mrow> <mrow> <mi>N</mi> <mo>-</mo> <mn>1</mn> </mrow> </munderover> <msub> <mrow> <mn>2</mn> <mi>x</mi> </mrow> <mi>m</mi> </msub> <mi>sin</mi> <mfrac> <mrow> <mn>2</mn> <mi>&pi;m</mi> </mrow> <mi>N</mi> </mfrac> <mi>cas</mi> <mfrac> <mrow> <mi>&pi;m</mi> <mrow> <mo>(</mo> <mn>2</mn> <mi>k</mi> <mo>+</mo> <mn>1</mn> <mo>)</mo> </mrow> </mrow> <mrow> <mi>N</mi> <mo>/</mo> <mn>3</mn> </mrow> </mfrac> </mrow> </math>
<math> <mrow> <mo>=</mo> <munderover> <mi>&Sigma;</mi> <mrow> <mi>m</mi> <mo>=</mo> <mn>0</mn> </mrow> <mrow> <mi>N</mi> <mo>/</mo> <mn>3</mn> <mo>-</mo> <mn>1</mn> </mrow> </munderover> <mo>{</mo> <mo>-</mo> <mrow> <mo>(</mo> <msub> <mrow> <mn>2</mn> <mi>a</mi> </mrow> <mi>n</mi> </msub> <mo>+</mo> <msub> <mi>b</mi> <mi>n</mi> </msub> <mo>-</mo> <msub> <mi>c</mi> <mi>n</mi> </msub> <mo>)</mo> </mrow> <mi>sin</mi> <msub> <mi>&theta;</mi> <mi>n</mi> </msub> <mo>+</mo> <msqrt> <mn>3</mn> </msqrt> <mrow> <mo>(</mo> <msub> <mi>b</mi> <mi>n</mi> </msub> <mo>+</mo> <msub> <mi>c</mi> <mi>n</mi> </msub> <mo>)</mo> </mrow> <mi>cos</mi> <msub> <mi>&theta;</mi> <mi>n</mi> </msub> <mo>}</mo> <mi>cas</mi> <mfrac> <mrow> <mi>&pi;m</mi> <mrow> <mo>(</mo> <mn>2</mn> <mi>k</mi> <mo>+</mo> <mn>1</mn> <mo>)</mo> </mrow> </mrow> <mrow> <mi>N</mi> <mo>/</mo> <mn>3</mn> </mrow> </mfrac> </mrow> </math>
<math> <mrow> <mo>=</mo> <msubsup> <mi>GDHT</mi> <mrow> <mi>N</mi> <mo>/</mo> <mn>3</mn> </mrow> <mi>III</mi> </msubsup> <mo>{</mo> <mo>-</mo> <mrow> <mo>(</mo> <msub> <mrow> <mn>2</mn> <mi>a</mi> </mrow> <mi>n</mi> </msub> <mo>+</mo> <msub> <mi>b</mi> <mi>n</mi> </msub> <mo>-</mo> <msub> <mi>c</mi> <mi>n</mi> </msub> <mo>)</mo> </mrow> <mi>sin</mi> <msub> <mi>&theta;</mi> <mi>n</mi> </msub> <mo>+</mo> <msqrt> <mn>3</mn> </msqrt> <mrow> <mo>(</mo> <msub> <mi>b</mi> <mi>n</mi> </msub> <mo>+</mo> <msub> <mi>c</mi> <mi>n</mi> </msub> <mo>)</mo> </mrow> <mi>cos</mi> <msub> <mi>&theta;</mi> <mi>n</mi> </msub> <mo>}</mo> </mrow> </math>
<math> <mrow> <mo>=</mo> <msubsup> <mi>GDHT</mi> <mrow> <mi>N</mi> <mo>/</mo> <mn>3</mn> </mrow> <mi>III</mi> </msubsup> <mo>{</mo> <mo>-</mo> <msubsup> <mi>IGDHT</mi> <mrow> <mi>N</mi> <mo>/</mo> <mn>3</mn> </mrow> <mi>III</mi> </msubsup> <mrow> <mo>(</mo> <msub> <mrow> <mn>2</mn> <mi>A</mi> </mrow> <mi>k</mi> </msub> <mo>+</mo> <msub> <mi>B</mi> <mi>k</mi> </msub> <mo>-</mo> <msub> <mo>C</mo> <mi>k</mi> </msub> <mo>)</mo> </mrow> <mi>sin</mi> <msub> <mi>&theta;</mi> <mi>n</mi> </msub> <mo>+</mo> <msqrt> <mn>3</mn> </msqrt> <msubsup> <mi>IGDHT</mi> <mrow> <mi>N</mi> <mo>/</mo> <mn>3</mn> </mrow> <mi>III</mi> </msubsup> <mrow> <mo>(</mo> <msub> <mi>B</mi> <mi>k</mi> </msub> <mo>+</mo> <msub> <mi>C</mi> <mi>k</mi> </msub> <mo>)</mo> </mrow> <mi>cos</mi> <msub> <mi>&theta;</mi> <mi>n</mi> </msub> <mo>}</mo> </mrow> </math>
Wherein k is 0, 1,., N/3-1,
Figure BDA00000788255700000511
and
Figure BDA00000788255700000512
respectively representing the forward and reverse GDHT-III transformations of length N/3 on the signal sequence in brackets, theta n2N/N is the twiddle factor.
The second step is that: by an intermediate amount YkAnd ZkComputing the index portion { X3kAnd { X }3k+2}{X3kAnd { X }3k+2Can be obtained from the following formulae
X 3 k = 1 2 ( Y k + Z k ) , k=0,1,...,N/3-1
X 3 k + 2 = 1 2 ( Y k - Z k ) ,
Will sequence { X3k}、{X3k+1}、{X3k+2Sequentially combining elements in series to obtain a GDHT-III domain coefficient { X ] of an original signal sequence with the length of Ni}。
When the method of the invention is adopted for decoding, if { x is inputmIs a real signal with computational complexity:
<math> <mrow> <mfenced open='{' close=''> <mtable> <mtr> <mtd> <msup> <mi>M</mi> <mi>P</mi> </msup> <mrow> <mo>(</mo> <mi>N</mi> <mo>)</mo> </mrow> <mo>=</mo> <msup> <mrow> <mn>4</mn> <mi>M</mi> </mrow> <mi>III</mi> </msup> <mrow> <mo>(</mo> <mi>N</mi> <mo>/</mo> <mn>3</mn> <mo>)</mo> </mrow> <mo>+</mo> <mn>4</mn> <mi>N</mi> <mo>/</mo> <mn>3</mn> <mo>=</mo> <mrow> <mo>(</mo> <mn>2</mn> <mi>N</mi> <mo>/</mo> <mn>3</mn> <mo>)</mo> </mrow> <msub> <mi>log</mi> <mn>2</mn> </msub> <mrow> <mo>(</mo> <mi>N</mi> <mo>/</mo> <mn>3</mn> <mo>)</mo> </mrow> <mo>+</mo> <mn>2</mn> <mi>N</mi> <mo>/</mo> <mn>3</mn> </mtd> </mtr> <mtr> <mtd> <msup> <mi>A</mi> <mi>P</mi> </msup> <mrow> <mo>(</mo> <mi>N</mi> <mo>)</mo> </mrow> <mo>=</mo> <mn>4</mn> <msup> <mi>A</mi> <mi>III</mi> </msup> <mrow> <mo>(</mo> <mi>N</mi> <mo>/</mo> <mn>3</mn> <mo>)</mo> </mrow> <mo>+</mo> <mn>3</mn> <mi>N</mi> <mo>=</mo> <mn>2</mn> <mi>N</mi> <msub> <mi>log</mi> <mn>2</mn> </msub> <mrow> <mo>(</mo> <mi>N</mi> <mo>/</mo> <mn>3</mn> <mo>)</mo> </mrow> <mo>+</mo> <mi>N</mi> <mo>+</mo> <mn>16</mn> </mtd> </mtr> </mtable> </mfenced> <mo>,</mo> <mi>N</mi> <mo>=</mo> <mn>3</mn> <mo>&times;</mo> <msup> <mn>2</mn> <mi>l</mi> </msup> <mo>,</mo> <mi>l</mi> <mo>&GreaterEqual;</mo> <mn>2</mn> <mo>.</mo> </mrow> </math>
wherein M isIII(N) and AIII(N) are the multiplicative and additive numbers, respectively, required to compute a real number GDHT-III of length N.
Table 1 below shows the comparison of computational complexity (input as real signal) when decoding is performed using the method of the present invention versus using the conventional method.
TABLE 1
As can be seen from table 1, the decoding method of the present invention is more efficient than the conventional method. For real input signals, the inventive method saves 17% to 26% of computational complexity over the conventional method when the sequence length N is increased from 12 to 192. Also, the present invention has less signal distortion because it uses fewer GDHT-III/IGDHT-III transforms.

Claims (1)

1. A one-dimensional segmented coding signal fast decoding method based on GDHT-III domain, the segmented coding signal is obtained by equally dividing original signal sequence with length N into three signal sequences with length N/3, then respectively carrying out GDHT-III transformation on the three signal sequences to obtain corresponding GDHT-III domain coefficients, and finally respectively carrying out quantization and entropy coding processing on the three groups of GDHT-III domain coefficients, the fast decoding method is characterized by comprising the following steps:
step 1, performing inverse entropy coding and inverse quantization processing on the segmented coding signals to obtain three groups of recovered GDHT-III domain coefficients;
step 2, setting the three groups of GDHT-III domain coefficients obtained in the step 1 as { A }k}、{BkAnd { C }kK is 0, 1,.., N/3-1, and the sequence { X is calculated according to the following formula, respectively3k}、{X3k+1}、{X3k+2Where k is 0, 1.., N/3-1: x3k+1=Ak-Bk+Ck,k=0,1,...,N/3-1
X 3 k = 1 2 ( Y k + Z k ) , k = 0,1,2 L L , N / 3 - 1 ,
X 3 k + 2 = 1 2 ( Y k - Z k ) , k = 0,1,2 L L , N / 3 - 1
Wherein,
<math> <mrow> <msub> <mi>Y</mi> <mi>k</mi> </msub> <mo>=</mo> <msubsup> <mi>GDHT</mi> <mrow> <mi>N</mi> <mo>/</mo> <mn>3</mn> </mrow> <mi>III</mi> </msubsup> <mo>{</mo> <msubsup> <mi>IGDHT</mi> <mrow> <mi>N</mi> <mo>/</mo> <mn>3</mn> </mrow> <mi>III</mi> </msubsup> <mrow> <mo>(</mo> <msub> <mrow> <mn>2</mn> <mi>A</mi> </mrow> <mi>k</mi> </msub> <mo>+</mo> <msub> <mi>B</mi> <mi>k</mi> </msub> <mo>-</mo> <msub> <mi>C</mi> <mi>k</mi> </msub> <mo>)</mo> </mrow> <mi>cos</mi> <msub> <mi>&theta;</mi> <mi>n</mi> </msub> <mo>+</mo> <msqrt> <mn>3</mn> </msqrt> <msubsup> <mi>IGDHT</mi> <mrow> <mi>N</mi> <mo>/</mo> <mn>3</mn> </mrow> <mi>III</mi> </msubsup> <mrow> <mo>(</mo> <msub> <mi>B</mi> <mi>k</mi> </msub> <mo>+</mo> <msub> <mi>C</mi> <mi>k</mi> </msub> <mo>)</mo> </mrow> <mi>sin</mi> <msub> <mi>&theta;</mi> <mi>n</mi> </msub> <mo>}</mo> <mo>,</mo> </mrow> </math>
<math> <mrow> <msub> <mi>Z</mi> <mrow> <mi>N</mi> <mo>/</mo> <mn>3</mn> <mo>-</mo> <mn>1</mn> <mo>-</mo> <mi>k</mi> </mrow> </msub> <mo>=</mo> <msubsup> <mi>GDHT</mi> <mrow> <mi>N</mi> <mo>/</mo> <mn>3</mn> </mrow> <mi>III</mi> </msubsup> <mo>{</mo> <mo>-</mo> <msubsup> <mi>IGDHT</mi> <mrow> <mi>N</mi> <mo>/</mo> <mn>3</mn> </mrow> <mi>III</mi> </msubsup> <mrow> <mo>(</mo> <msub> <mrow> <mn>2</mn> <mi>A</mi> </mrow> <mi>k</mi> </msub> <mo>+</mo> <msub> <mi>B</mi> <mi>k</mi> </msub> <mo>-</mo> <msub> <mi>C</mi> <mi>k</mi> </msub> <mo>)</mo> </mrow> <mi>sin</mi> <msub> <mi>&theta;</mi> <mi>n</mi> </msub> <mo>+</mo> <msqrt> <mn>3</mn> </msqrt> <msubsup> <mi>IGDHT</mi> <mrow> <mi>N</mi> <mo>/</mo> <mn>3</mn> </mrow> <mi>III</mi> </msubsup> <mrow> <mo>(</mo> <msub> <mi>B</mi> <mi>k</mi> </msub> <mo>+</mo> <msub> <mi>C</mi> <mi>k</mi> </msub> <mo>)</mo> </mrow> <mi>cos</mi> <msub> <mi>&theta;</mi> <mi>n</mi> </msub> <mo>}</mo> <mo>,</mo> </mrow> </math>
in the formula,
Figure FDA0000078825560000015
and
Figure FDA0000078825560000016
respectively representing the forward and reverse GDHT-III transformations of length N/3 on the signal sequence in brackets, thetan2N/N is a twiddle factor;
step 3, converting the sequence { X }3k}、{X3k+1}、{X3k+2The elements in the sequence are sequentially connected in series to be combined to obtain a sequence (X)i}; wherein k is 0, 1,.., N/3-1; i-0, 1, ·, N-1; sequence { XiI.e. the GDHT-III domain coefficient of the original signal sequence of length N.
CN 201110211841 2011-07-27 2011-07-27 One-dimensional segment code signal rapid decoding method based on GDHT-III domain Expired - Fee Related CN102355269B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN 201110211841 CN102355269B (en) 2011-07-27 2011-07-27 One-dimensional segment code signal rapid decoding method based on GDHT-III domain

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN 201110211841 CN102355269B (en) 2011-07-27 2011-07-27 One-dimensional segment code signal rapid decoding method based on GDHT-III domain

Publications (2)

Publication Number Publication Date
CN102355269A true CN102355269A (en) 2012-02-15
CN102355269B CN102355269B (en) 2013-09-25

Family

ID=45578774

Family Applications (1)

Application Number Title Priority Date Filing Date
CN 201110211841 Expired - Fee Related CN102355269B (en) 2011-07-27 2011-07-27 One-dimensional segment code signal rapid decoding method based on GDHT-III domain

Country Status (1)

Country Link
CN (1) CN102355269B (en)

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20070201574A1 (en) * 2006-02-24 2007-08-30 Chih-Feng Wu Discrete multi-tone system having DHT-based frequency-domain equalizer
CN102036075A (en) * 2010-12-29 2011-04-27 东南大学 Image and digital video coding and decoding methods

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20070201574A1 (en) * 2006-02-24 2007-08-30 Chih-Feng Wu Discrete multi-tone system having DHT-based frequency-domain equalizer
CN102036075A (en) * 2010-12-29 2011-04-27 东南大学 Image and digital video coding and decoding methods

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
NENG-CHUNG HU等: "Generalized Discrete Hartley Transforms", 《IEEE TRANSACTIONS ON SIGNAL PROCESSING》, vol. 40, no. 12, 31 December 1992 (1992-12-31), pages 2931 - 2940, XP000324779, DOI: doi:10.1109/78.175737 *
成礼智: "离散Hartley变换(DHT)及其快速算法", 《数值计算与计算机应用》, no. 3, 30 September 1988 (1988-09-30), pages 162 - 168 *

Also Published As

Publication number Publication date
CN102355269B (en) 2013-09-25

Similar Documents

Publication Publication Date Title
CN1860527B (en) Device and method for processing a signal with a sequence of discrete values
CN100555862C (en) Utilize the complex exponential modulated filter bank and reduce the method and apparatus of aliasing
RU2323469C2 (en) Device and method for processing at least two input values
CN100416553C (en) Device and method for conversion into a transformed representation or for inversely converting the transformed representation.
RU2007100349A (en) MATRIX VALUES AND DEVICE FOR PROCESSING SIGNALS
CN103650037A (en) Sample rate scalable lossless audio coding
JP4429316B2 (en) Apparatus and medium for performing domain transformation of digital signals from time domain to frequency domain and vice versa
CN102036075B (en) Image and digital video coding and decoding methods
Siddeq et al. Applied minimized matrix size algorithm on the transformed images by DCT and DWT used for image compression
CN101944235B (en) Image compression method based on fractional fourier transform
CN102132342B (en) Method for updating an encoder by filter interpolation
CN107249130B (en) 3-by-3 integer DCT (discrete cosine transform) quantizer for digital video coding and decoding
CN102355269B (en) One-dimensional segment code signal rapid decoding method based on GDHT-III domain
CN100570597C (en) Digital signal is transformed to the method for frequency field and reciprocal transformation thereof from time domain
CN101960515A (en) Method and apparatus for transforming between different filter bank domains
Hong et al. Low-complexity direct computation algorithm for cubic-spline interpolation scheme
Fan et al. On fast algorithms for computing the inverse modified discrete cosine transform
TWI423046B (en) Recursive modified discrete cosine transform and inverse discrete cosine transform system with a computing kernel of rdft
CN102215406B (en) DCT (Discrete Cosine Transformation)-based fast decoding method of segmented encoded signal
CN102163976A (en) Fast decoding method based on generalized discrete Fourier transform (GDFT)-II
Li et al. Balanced multifilter banks for multiple description coding
CN102592601B (en) Signal processing method and device
CN101546560B (en) Audio coding and decoding device and coding and decoding method
CN105472395A (en) Discrete-Krawtchouk-orthogonal-polynomial-based image lossless compression method
CN102103859A (en) Methods and devices for coding and decoding digital audio signals

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C14 Grant of patent or utility model
GR01 Patent grant
CF01 Termination of patent right due to non-payment of annual fee
CF01 Termination of patent right due to non-payment of annual fee

Granted publication date: 20130925

Termination date: 20160727