CN102354227A - 太阳能发电站的定日镜校准系统及校准方法 - Google Patents

太阳能发电站的定日镜校准系统及校准方法 Download PDF

Info

Publication number
CN102354227A
CN102354227A CN2011103031313A CN201110303131A CN102354227A CN 102354227 A CN102354227 A CN 102354227A CN 2011103031313 A CN2011103031313 A CN 2011103031313A CN 201110303131 A CN201110303131 A CN 201110303131A CN 102354227 A CN102354227 A CN 102354227A
Authority
CN
China
Prior art keywords
heliostat
imageing sensor
calibration system
solar power
calibration
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN2011103031313A
Other languages
English (en)
Other versions
CN102354227B (zh
Inventor
孙海翔
朱亮
许迪
窦新国
王威
钟强
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
SHENZHEN LIANXUN INNOVATION WORKSHOP TECHNOLOGY DEVELOPMENT CO LTD
Original Assignee
SHENZHEN LIANXUN INNOVATION WORKSHOP TECHNOLOGY DEVELOPMENT CO LTD
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by SHENZHEN LIANXUN INNOVATION WORKSHOP TECHNOLOGY DEVELOPMENT CO LTD filed Critical SHENZHEN LIANXUN INNOVATION WORKSHOP TECHNOLOGY DEVELOPMENT CO LTD
Priority to CN201110303131.3A priority Critical patent/CN102354227B/zh
Publication of CN102354227A publication Critical patent/CN102354227A/zh
Priority to PCT/CN2012/082325 priority patent/WO2013044848A1/zh
Application granted granted Critical
Publication of CN102354227B publication Critical patent/CN102354227B/zh
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24SSOLAR HEAT COLLECTORS; SOLAR HEAT SYSTEMS
    • F24S50/00Arrangements for controlling solar heat collectors
    • F24S50/20Arrangements for controlling solar heat collectors for tracking
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24SSOLAR HEAT COLLECTORS; SOLAR HEAT SYSTEMS
    • F24S23/00Arrangements for concentrating solar-rays for solar heat collectors
    • F24S23/70Arrangements for concentrating solar-rays for solar heat collectors with reflectors
    • F24S2023/87Reflectors layout
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24SSOLAR HEAT COLLECTORS; SOLAR HEAT SYSTEMS
    • F24S50/00Arrangements for controlling solar heat collectors
    • F24S50/20Arrangements for controlling solar heat collectors for tracking
    • F24S2050/25Calibration means; Methods for initial positioning of solar concentrators or solar receivers
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/40Solar thermal energy, e.g. solar towers
    • Y02E10/47Mountings or tracking

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Sustainable Development (AREA)
  • Sustainable Energy (AREA)
  • Thermal Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Length Measuring Devices By Optical Means (AREA)
  • Control Of Position Or Direction (AREA)

Abstract

本发明公开了一种太阳能发电站的定日镜校准系统,其包括:接收器;安装于所述接收器的周围的定日镜场;用于捕捉校准光源照射在定日镜上的反射光斑的图像传感器组;以及控制单元,所述图像传感器组可移动地设置于所述定日镜场上,所述控制单元控制所述定日镜转动,使所述定日镜的反射图像落入所述图像传感器组采集范围;再通过所述图像传感器组的移动获得所述定日镜反射的光斑中心位置,最终得出所述定日镜所需校准的误差值。本发明通过图像传感器组的移动来确定定日镜的反射光斑中心位置,其校准动作快,机械误差小,校准精度提高。本发明同时公开了这种校准系统的校准方法。

Description

太阳能发电站的定日镜校准系统及校准方法
技术领域
本发明属于太阳能发电领域,特别涉及一种太阳能发电站的定日镜校准系统及跟踪方法。
背景技术
中央塔式接收器发电站中,塔顶的接收器接受来自定日镜组反射的太阳光。接收器转换入射辐射能输出高压高温蒸汽,之后可送入涡轮机进行电力发电。定日镜一般安装于塔周围的地面。各定日镜具有刚性反射表面,可跟踪太阳,表面白天采用向阳方位,保持反射移动的太阳光至接收器。需要高度准确地跟踪太阳,减少接收器周围溢出的反射光。因此提供一种能够准确跟踪太阳实现较小损耗的定日镜校准系统成为本领域人员亟需解决的技术问题。
为解决上述问题,现有的定日镜校准系统常用的校准方法为:通过图像传感器检测定日镜反射太阳光的光斑空间位置,也就是光斑的中心位置,以及该对应的定日镜的旋转角度,此处的旋转角度是指定日镜的俯仰角φ和平摇角ω,得出该定日镜所需校准的误差值,根据获得的误差值,更新定日镜在数据库中的参数,根据这些参数和接收器及太阳的位置,计算出定日镜将阳光反射在接收器上需旋转的角度,开始跟踪。
例如,中国专利CN101918769A公开了一种中央塔式接收器太阳能发电厂中的定日镜定标和跟踪控制方法,其包括反射阳光至接收器的定日镜场、指向至少一定日镜子分组的摄像机。摄像机配置为可产生多个定日镜反射的阳光图像。该系统就是通过上述校准方法进行校准的。在校准过程中,确定光斑中心位置的过程如下:首先通过摄像机捕捉定日镜反射的光斑,此时定日镜处于起始配置,为了使摄像机找到定日镜的反射光斑中心位置,控制系统控制定日镜转动,最终使定日镜转动到摄像机捕捉到光斑中心位置为止。图1为使用摄像机获得光斑中心样本时执行的定日镜转动的轨线图,定日镜的方位以两个旋转角控制,平摇角ω和俯仰角
Figure BSA00000587364700011
平摇角ω沿水平轴表示。俯仰角
Figure BSA00000587364700012
沿垂直轴表示。通过该轨迹图可以得出,该系统需要定日镜多次转动才能到达摄像机能够检测到光斑中心的位置。其控制方案复杂,校准动作较慢;同时定日镜的多次轨迹转动引入了机械误差,校准精度降低。而增加摄像机可以获得定日镜光斑,但是这种系统的成本将大大增加。又例如,美国专利US20100139644中,虽然校准时,定日镜的转动轨迹较CN101918769A有所简化,但为了获得定日镜反射光斑轮廓位置,仍需通过控制系统控制大量定日镜转动,使摄像机能够扑捉到的光斑中心的位置。
发明内容
为此,本发明所要解决的技术问题在于现有定日镜校准系统校准动作较慢的问题,提供一种能够校准精度高,校准速度快同时运行成本低的太阳能发电站的定日镜校准系统。
为实现上述目的,本发明的太阳能发电站的定日镜校准系统,其包括:接收器,所述接收器用于接收定日镜反射的太阳光;至少一个定日镜组成的定日镜场:其安装于所述接收器的周围;至少一个图像传感器组成的图像传感器组:用于采集定日镜的校准光源反射图像;以及控制单元:用于处理图像传感器组获得的图像信息,并校准跟踪太阳的定日镜的参数同时控制定日镜转动;所述图像传感器组可移动地设置所述定日镜场内。
所述图像传感器组采集到的定日镜的反射图像为斑点,用于获得定日镜反射光斑的轮廓;所述控制单元控制所述定日镜转动,使所述定日镜的反射图像落入所述图像传感器组采集范围;再通过所述图像传感器组的移动获得所述定日镜反射的光斑中心位置,最终得出所述定日镜所需校准的误差值。
所述图像传感器组的图像采集范围与所述接收器的接收范围相隔离。
所述图像传感器安装于平面安装支架上,所述图像传感器沿水平方向排列,所述平面安装支架可上下移动地安装于所述接收器的支撑塔上。
所述图像传感器组为一个图像传感器,所述图像传感器沿平面安装支架水平方向移动,其随所述平面安装支架上下移动。
所述图像传感器组为多个安装于所述定日镜场内安装支架上的图像传感器,其沿所述安装支架上下移动。
所述图像传感器组配置有用于减弱光强的减光装置,所述减光装置包括光的反射装置和/或光的吸收装置。
所述减光装置为可调减光强度的减光装置。
所述图像传感器组配置有用于遮挡阳光的遮光装置。
所述图像传感器组配置有用于测量光强的光强传感器。
所述图像传感器组配置有冷却装置,所述冷却装置为风冷或水冷装置。
所述定日镜配置有两个旋转轴,所述定日镜绕所述旋转轴进行俯仰转动以及平摇转动;所述双旋转轴配有角度传感器,用于精确测定两个旋转轴转过的实际角度。
所述定日镜配置有两个旋转轴,所述定日镜分别绕两所述旋转轴进行俯仰转动;所述双旋转轴配有角度传感器,用于精确测定两个旋转轴转过的实际角度。
所述校准系统还包括视日跟踪传感器,其用于实时跟踪太阳位置。
所述校准系统还包括安装于所述图像传感器组移动轨道上的位置传感器,用于确定接收器以及图像传感器的位置。
所述校准光源为太阳光光源或人工光源。
本发明同时公开了一种应用上述太阳能发电站的定日镜校准系统的校准方法,包括以下步骤:
a.控制单元控制所述定日镜转动,使所述定日镜的反射光斑位置落入所述图像传感器组采集范围;
b.所述图像传感器组采集定日镜的反射图像,所述控制单元根据所述图像传感器组检测的光斑确定光斑中心位置及对应的定日镜,并通过所述角度传感器的测量值或者控制单元的命令得到所述定日镜旋转角;
c.控制单元控制所述定日镜旋转,使定日镜的反射光斑到达所述图像传感器能够检测到的位置;
d.根据需要校准的误差值个数n,重复至少n/2次步骤b-c;
e.根据获得的光斑中心位置以及定日镜的旋转角度信息,计算所需校准的误差值,并将校准的误差值存储至所述控制单元。
步骤b所述的图像传感器组通过上下移动或者旋转移动的方式采集定日镜的反射图像,使待校准的所述定日镜的反射图像的至少一部分落入所述图像传感器组的采集范围内。
本发明的上述技术方案相比现有技术具有以下优点:
(1)本发明通过首先将定日镜转动到使其反射光斑处于传感器的图像采集范围的位置,再通过图像传感器组的移动确定定日镜的反射光斑中心位置,其相比于现有技术中完全通过定日镜的转动使定日镜中心对准图像传感器,最终使图像传感器捕捉到光斑中心位置的方式,本发明的校准动作快,机械误差小,校准精度提高。
(2)另外,本发明通过较少的图像传感器移动的方式采集到定日镜场内所有定日镜反射光斑,其相比现有技术,在不增加很大成本的条件下,提高了校准精度;同时,所述图像传感器组的移动轨迹覆盖的图像采集范围与所述接收器的接受范围相隔离,用于实现校准与发电分步执行。
(3)本发明的校准光源可以选用太阳光也可以选用人工光源,晴天时可以通过太阳光进行校准,阴天或者夜晚时选择人工光源同样实现定日镜的校准。
附图说明
为了使本发明的内容更容易被清楚的理解,下面根据本发明的具体实施例并结合附图,对本发明作进一步详细的说明,其中
图1是现有技术中使用摄像机获得光斑中心样本时执行的定日镜转动的轨线图;
图2是实施例1中的定日镜校准系统的示意图;
图3是图像传感器移动时获得的光斑图;
图4是具有减光装置的图像传感器结构示意图;
图5是具有减光装置和遮光装置的图像传感器结构示意图;
图6是控制单元的信息流框图;
图7是实施例2的定日镜校准系统的示意图;
图8是实施例3的定日镜校准系统的示意图。
图中附图标记表示为:
1-接收器2-定日镜3-图像传感器4-安装支架5-减光装置6-太阳光光源9-支撑塔10-平面安装支架12-视日跟踪传感器13-光强传感器14,14’-电机15-冷却装置51-减光圆盘52-遮光装置
具体实施方式
以下将结合附图,使用以下实施例对本发明进行进一步阐述。
实施例1
图2所示为太阳能发电站的定日镜校准系统,其包括一个安装于支撑塔9上的接收器1,所述接收器1接收定日镜2反射的太阳光以直接产生蒸汽或电;所述接收器1距地面的高度保证所述定日镜场中的定日镜2均能反射到所述接收器1上。
还包括安装于所述接收器的周围的定日镜场;所述定日镜场包括至少一个定日镜2;所述定日镜2配置有两个旋转轴,所述定日镜2绕所述旋转轴进行俯仰转动,平摇转动;所述双旋转轴配有角度传感器,用于精确测定两个旋转轴转过的实际俯仰角度
Figure BSA00000587364700041
以及平摇角度ω。所述定日镜2通过调整镜面方位以跟踪移动的太阳,以使得太阳光被持续反射至接收器1上。本实施例中,所述定日镜场设置于所述接收器1的一侧。
以及用于捕捉校准光源照射在定日镜2上的反射光斑的图像传感器组,所述图像传感器组包括至少一个图像传感器3。本实施例中的校准光源为太阳光光源6,所述图像传感器3为安装于平面安装支架10上的摄像机,所述平面安装支架10位于所述接收器1的支撑塔9上,所述图像传感器沿水平方向排列,其随所述平面安装支架10上下移动。所述平面安装支架10移动范围即图像传感器的采集范围与接收器1的接受范围相隔离。
本实施例中,所述图像传感器组配置有用于减弱光强的减光装置5;该减光装置5为光的反射装置和光的吸收装置的组合,用于保护图像传感器组不受强光影响。本实施例中的减光装置5的减光程度可变,如图4所示,所述减光装置5包括一个减光圆盘51,其设置于所述图像传感器3前面,沿圆周方向均分为6块,每块的减光率不同,光强传感器13检测到光强较强,控制电机14将该减光圆盘51转动到减光率高的一块;光强传感器13检测到光强较弱,控制电机14将该减光圆盘51转动到减光率低的一块。
更优选的,在所述减光圆盘51前还可以设置一个与减光圆盘51同轴的遮光装置52,如图5所示。所述遮光装置52设置一个通光孔,允许所有太阳光通过,其他部分遮蔽所有阳光。工作时,通过电机14’带动该遮光装置52连续旋转,与减光圆盘51异步,当通光孔与图像传感器对准时,图像传感器完成采集。该遮光装置52可以减小曝光时间,进一步减小强光对图像传感器的影响。
所述图像传感器组还配置有冷却装置15,所述冷却装置为风冷或水冷装置,该冷却装置用于避免经过接收器处的图像传感器受热辐射而损坏。
所述校准系统还包括视日跟踪传感器12,其用于实时跟踪太阳位置获得太阳光线向量。
所述校准系统还包括安装于所述图像传感器组移动轨道上的位置传感器,用于确定接收器以及图像传感器的位置。
该校准系统还包括控制单元。如图6所示,所述控制单元接受图像传感器组采集的定日镜图像信息,位置传感器采集的图像传感器3位置信息,视日跟踪传感器12采集到的太阳光位置信息,以及角度传感器采集的定日镜2旋转角度信息;并控制图像传感器3的移动以及定日镜2的转动。在所述控制单元控制所述定日镜2转动,所述图像传感器组3采集所述定日镜反射光斑的图像,所述控制单元根据图像传感器组采集的图像信息,确定所述定日镜2反射的光斑中心位置,对定日镜2进行校准。
所述控制单元通过图像传感器组的连续移动获得所述定日镜反射的光斑中心位置。当串行图像传感器组用时30t从导轨的一端匀速运动到另一端后,可以得到图3所示的二维图,它反映整个时间段内能捕捉到反射光斑的图像传感器的情况。依据此图便可推出反射光斑中心的空间位置,即光斑图的形心位置。所述校准系统通过安装于定日镜旋转轴上的角度传感器获得定日镜的旋转角,也就是通过俯仰角
Figure BSA00000587364700042
平摇角ω信息,进而得出该定日镜所需校准的误差值。其中,定日镜的俯仰角
Figure BSA00000587364700043
为定日镜绕与水平面平行的轴的旋转角度,定日镜的平摇角ω为定日镜绕与水平面垂直的轴的旋转角度。
在定日镜校准时,首先确定需要校准的误差,本实施例中需要校准的误差为:俯仰角及平摇角
Figure BSA00000587364700044
两旋转轴的非垂直度η0,定日镜镜面中心o的的空间位置(x,y,z),以及定日镜自身坐标系相对全局坐标系的三个欧拉转角(α0,β0,γ0)。在其他的实施例中,还可以引入更多的误差参数,以提高校准精度。
其中,定日镜的俯仰角为定日镜绕与水平面平行的轴的旋转角度,定日镜的平摇角ω为定日镜绕与水平面垂直的轴的旋转角度,定日镜的中心位置为定日镜的镜面中心的位置坐标(x,y,z),旋转轴非垂直度误差η0为两旋转轴实际夹角值。欧拉转角(α0,β0,γ0)为定日镜自身坐标系相对于全局坐标系的三个坐标轴的偏角。
根据所需校准的误差,该定日镜校准系统的校准方法包括以下步骤:
a.控制单元控制所述定日镜转动,使所述定日镜的反射光斑位置落入所述图像传感器组采集范围;
b.图像传感器组由上至下移动一次,所述图像传感器组检测到定日镜反射的光斑,控制单元确定定日镜的光斑中心位置,同时通过角度传感器得到所述定日镜的俯仰角及平摇角;
c.控制单元控制所述定日镜旋转,使定日镜的反射光斑到达所述图像传感器能够检测到的位置;
d.重复5次步骤b-c,得到5组光斑中心位置及定日镜俯仰角及平摇角度数值;
e.根据上述5组数据,通过误差校准公式计算所需校准的误差值:俯仰角误差,平摇角误差,旋转非垂直度误差、定日镜的中心位置误差以及欧拉转角误差,并将上述误差值存储至所述控制单元。
上述误差校准公式为:
Figure BSA00000587364700052
其中,ω为定日镜绕旋转轴旋转的平摇角;
Figure BSA00000587364700053
为定日镜绕旋转轴旋转的俯仰角;
Figure BSA00000587364700054
为与水平面垂直的单位向量;
为太阳光光线向量;
k为光斑中心位置坐标;
o为定日镜镜面中心位置坐标。
为提高校准精度,还可以重复更多次步骤b-c,得到更多组的光斑中心位置及定日镜俯仰角及平摇角度数值,根据多组数据,通过误差校准公式计算所需校准的误差值。
实施例2
图7所示为本实施例的定日镜校准系统,该校准系统与实施例1中的校准系统的不同在于:本实施例的图像传感器为1个,其安装于所述平面安装支架10上,其沿平面安装支架10水平方向移动,并可以随所述平面安装支架10上下移动。所述平面安装支架10移动范围即图像传感器的采集范围与接收器1的接受范围相隔离。
在定日镜误差较小时,只需校准定日镜的俯仰角和平摇角误差即可。本实施例中,需要校准的误差为:定日镜的俯仰角和平摇角误差,该定日镜校准系统的校准过程包括以下步骤:
a.控制单元首先控制所述定日镜转动,使所述定日镜的反射光斑位置落入所述图像传感器组采集范围;
b.图像传感器由左向右移动,然后向下移动段距离,再从右向左移动;使图像传感器的移动轨迹呈Z字型,所述图像传感器的采集范围大于对待校准定日镜的反射图像的误差范围;
c.所述图像传感器组采集定日镜反射的光斑,控制单元确定定日镜的光斑中心位置,同时得到所述定日镜的俯仰角及平摇角;
d.控制单元控制所述定日镜旋转,使定日镜的反射光斑到达所述图像传感器能够检测到的位置;
e.图像传感器组由接收器下部至接收器上部第二次移动:所述图像传感器由左向右移动,然后向上移动一段距离,再从右向左移动;使图像传感器的移动轨迹呈Z字型,控制单元确定新的光斑中心位置,并通过所述角度传感器的测量值得到所述定日镜的俯仰角及平摇角;
f.根据上述2组数据,通过实施例1所述的校准公式计算所需校准的误差值:俯仰角误差,平摇角误差并将校准的误差值储存至所述控制单元。
其中,欧拉转角(α0,β0,γ0)的误差值、定日镜镜面中心o的的空间位置(x,y,z)的误差值以及两旋转轴的非垂直度η0误差值调用控制单元中的存储值。
本实施例中的校准误差通过图像传感器获得的两组光斑位置数据以及定日镜的俯仰角及平摇角数据求得,其校准精度较高。而本领域技术人员应该很容易想到,上述校准误差还可以根据传感器一次移动获得的一组光斑位置数据以及定日镜的俯仰角及平摇角数据求得。
实施例3
图8为本实施例中的校准系统,其与实施例1的校准系统基本一致,其区别点在于:所述图像传感器组为3组,其包括安装于所述定日镜场内安装支架4上的两组图像传感器,其沿所述安装支架4上下移动。还包括一组安装于平面安装支架10上的图像传感器,所述平面安装支架10位于所述接收器1的支撑塔9上,所述图像传感器沿水平方向排列,其随所述平面安装支架10上下移动。本实施例中,三组图像传感器可以对定日镜场内不同区域的图像传感器进行校准。
本实施例中,需要校准的误差为:俯仰角及平摇角
Figure BSA00000587364700061
两旋转轴的非垂直度η0,定日镜镜面中心o的的空间位置(x,y,z),以及定日镜自身坐标系相对全局坐标系的三个欧拉转角(α0,β0,γ0)。该定日镜校准系统的校准过程包括以下步骤:
a.控制单元首先控制所述定日镜转动,使所述定日镜的反射光斑位置落入安装于平面安装支架10上的所述图像传感器组的采集范围;
b.图像传感器由上向下移动,所述图像传感器组检测到定日镜反射的光斑,控制单元确定定日镜的光斑中心位置,并通过所述角度传感器的测量值得到所述定日镜的俯仰角及平摇角;
c.控制单元控制所述定日镜旋转,使定日镜的反射光斑到达所述图像传感器能够检测到的位置;
d.重复9次步骤b-c,得到9组数据,根据实施例1所述的校准公式计算所需校准的误差值:俯仰角误差,平摇角误差,旋转轴的非垂直度误差,定日镜镜面中心o空间位置误差以及欧拉转角误差,并将校准的误差值储存至所述控制单元。
对于不同校准光源的设置位置情况,还可以选择用另外两组图像传感器采集定日镜的校准光源反射光斑情况,这种情况下,控制单元首先控制所述定日镜转动,使所述定日镜的反射光斑位置落入安装于安装支架4上的所述图像传感器组的采集范围内,然后通过图像传感器的移动对定日镜的反射光斑进行采集,控制单元确定定日镜的光斑中心位置后对定日镜进行校准。
显然,上述实施例仅仅是为清楚地说明所作的举例,而并非对实施方式的限定。对于所属领域的普通技术人员来说,在上述说明的基础上还可以做出其它不同形式的变化或变动。这里无需也无法对所有的实施方式予以穷举。而由此所引伸出的显而易见的变化或变动仍处于本发明创造的保护范围之中。

Claims (18)

1.一种太阳能发电站的定日镜校准系统,其包括:
接收器(1),所述接收器(1)用于接收定日镜反射的太阳光;
至少一个定日镜(2)组成的定日镜场:其安装于所述接收器的周围;
至少一个图像传感器(3)组成的图像传感器组:用于采集定日镜的校准光源反射图像;
以及控制单元:用于处理图像传感器组获得的图像信息,并校准跟踪太阳的定日镜的参数同时控制定日镜转动;其特征在于:
所述图像传感器组可移动地设置所述定日镜场内。
2.根据权利要求1所述的太阳能发电站的定日镜校准系统,其特征在于:
所述图像传感器组采集到的定日镜的反射图像为斑点,用于获得定日镜反射光斑的轮廓;
所述控制单元控制所述定日镜转动,使所述定日镜的反射图像落入所述图像传感器组采集范围;再通过所述图像传感器组的移动获得所述定日镜(2)反射的光斑中心位置,最终得出所述定日镜(2)所需校准的误差值。
3.根据权利要求1或2所述的太阳能发电站的定日镜校准系统,其特征在于:
所述图像传感器组的图像采集范围与所述接收器(1)的接收范围相隔离。
4.根据权利要求1或2所述的太阳能发电站的定日镜校准系统,其特征在于:
所述图像传感器(3)安装于平面安装支架(10)上,所述图像传感器沿水平方向排列,所述平面安装支架(10)可上下移动地安装于所述接收器(1)的支撑塔(9)上。
5.根据权利要求4所述的太阳能发电站的定日镜校准系统,其特征在于:
所述图像传感器组为一个图像传感器(3),所述图像传感器(3)沿平面安装支架(10)水平方向移动,其随所述平面安装支架(10)上下移动。
6.根据权利要求1或2所述的太阳能发电站的定日镜校准系统,其特征在于:
所述图像传感器组为多个安装于所述定日镜场内安装支架(4)上的图像传感器(3),其沿所述安装支架(4)上下移动。
7.根据权利要求1-6所述的太阳能发电站的定日镜校准系统,其特征在于:
所述图像传感器组配置有用于减弱光强的减光装置(5),所述减光装置(5)包括光的反射装置和/或光的吸收装置。
8.根据权利要求7所述的太阳能发电站的定日镜校准系统,其特征在于:
所述减光装置为可调减光强度的减光装置(5)。
9.根据权利要求1-8任一所述的太阳能发电站的定日镜校准系统,其特征在于:
所述图像传感器组配置有用于遮挡阳光的遮光装置(52)。
10.根据权利要求1-9任一所述的太阳能发电站的定日镜校准系统,其特征在于:
所述图像传感器组配置有用于测量光强的光强传感器(13)。
11.根据权利要求1-10任一所述的太阳能发电站的定日镜校准系统,其特征在于:
所述图像传感器组配置有冷却装置,所述冷却装置为风冷或水冷装置。
12.根据权利要求1-11任一所述的太阳能发电站的定日镜校准系统,其特征在于:
所述定日镜配置有两个旋转轴,所述定日镜绕所述旋转轴进行俯仰转动以及平摇转动;所述双旋转轴配有角度传感器,用于精确测定两个旋转轴转过的实际角度。
13.根据权利要求1-12任一所述的太阳能发电站的定日镜校准系统,其特征在于:
所述定日镜配置有两个旋转轴,所述定日镜分别绕两所述旋转轴进行俯仰转动;所述双旋转轴配有角度传感器,用于精确测定两个旋转轴转过的实际角度。
14.根据权利要求1-13任一所述的太阳能发电站的定日镜校准系统,其特征在于:
所述校准系统还包括视日跟踪传感器(12),其用于实时跟踪太阳位置。
15.根据权利要求1-14任一所述的太阳能发电站的定日镜校准系统,其特征在于:
所述校准系统还包括安装于所述图像传感器组移动轨道上的位置传感器,用于确定接收器以及图像传感器的位置。
16.根据权利要求1-15任一所述的太阳能发电站的定日镜校准系统,其特征在于:
所述校准光源为太阳光光源(6)或人工光源。
17.一种应用权利要求1-16任一所述的太阳能发电站的定日镜校准系统的校准方法,其特征在于:包括以下步骤:
a.控制单元控制所述定日镜转动,使所述定日镜的反射光斑位置落入所述图像传感器组采集范围;
b.所述图像传感器组采集定日镜的反射图像,所述控制单元根据所述图像传感器组检测的光斑确定光斑中心位置及对应的定日镜,并通过所述角度传感器的测量值或者控制单元的命令得到所述定日镜旋转角;
c.控制单元控制所述定日镜旋转,使定日镜的反射光斑到达所述图像传感器能够检测到的位置;
d.根据需要校准的误差值个数n,重复至少n/2次步骤b-c;
e.根据获得的光斑中心位置以及定日镜的旋转角度信息,计算所需校准的误差值,并将校准的误差值存储至所述控制单元。
18.根据权利要求17所述的太阳能发电站的定日镜校准方法,其特征在于:
步骤b所述的图像传感器组通过上下移动或者旋转移动的方式采集定日镜的反射图像,使待校准的所述定日镜反射图像的至少一部分落入所述图像传感器组的采集范围内。
CN201110303131.3A 2011-09-29 2011-09-29 太阳能发电站的定日镜校准系统及校准方法 Expired - Fee Related CN102354227B (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
CN201110303131.3A CN102354227B (zh) 2011-09-29 2011-09-29 太阳能发电站的定日镜校准系统及校准方法
PCT/CN2012/082325 WO2013044848A1 (zh) 2011-09-29 2012-09-28 太阳能发电站的定日镜校准系统及校准方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201110303131.3A CN102354227B (zh) 2011-09-29 2011-09-29 太阳能发电站的定日镜校准系统及校准方法

Publications (2)

Publication Number Publication Date
CN102354227A true CN102354227A (zh) 2012-02-15
CN102354227B CN102354227B (zh) 2014-04-30

Family

ID=45577798

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201110303131.3A Expired - Fee Related CN102354227B (zh) 2011-09-29 2011-09-29 太阳能发电站的定日镜校准系统及校准方法

Country Status (2)

Country Link
CN (1) CN102354227B (zh)
WO (1) WO2013044848A1 (zh)

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102778899A (zh) * 2012-07-27 2012-11-14 浙江中控太阳能技术有限公司 一种用于塔式太阳能热发电系统的镜场调度系统及方法
WO2013044848A1 (zh) * 2011-09-29 2013-04-04 Sun Haixiang 太阳能发电站的定日镜校准系统及校准方法
CN104165605A (zh) * 2014-09-03 2014-11-26 常州天合光能有限公司 光伏系统设计中阴影测量的方法及其阴影测量仪器
CN104956160A (zh) * 2013-01-22 2015-09-30 原子能和替代能源委员会 对出口气流温度进行改进控制的菲涅尔型太阳能集中器发电站
CN105022410A (zh) * 2015-05-07 2015-11-04 浙江中控太阳能技术有限公司 一种塔式太阳能发电系统定日镜校准系统及校准方法
CN106444854A (zh) * 2015-08-05 2017-02-22 联邦科学及工业研究组织 用于定日镜的闭环控制系统
CN108413987A (zh) * 2018-03-13 2018-08-17 深圳东康前海新能源有限公司 一种定日镜的校准方法、装置及系统
CN109062265A (zh) * 2018-08-29 2018-12-21 中国电力工程顾问集团西北电力设计院有限公司 一种太阳光热发电定日镜安装误差校正方法
CN109596212A (zh) * 2019-02-14 2019-04-09 浙江中控太阳能技术有限公司 定日镜聚光效率的检测系统及检测方法
CN110703813A (zh) * 2019-11-11 2020-01-17 深圳东康前海新能源有限公司 一种定日镜校准系统和方法

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
ES2607710B1 (es) * 2015-10-02 2017-10-11 Fundación Cener-Ciemat Método de calibración para heliostatos
ES2738907B2 (es) * 2018-07-25 2020-12-30 Fund Cener Ciemat Procedimiento de caracterizacion de elementos reflectores a partir de los haces de luz reflejados en los mismos

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101266078A (zh) * 2008-04-29 2008-09-17 河海大学 一种定日镜跟踪控制装置及其控制方法
US20090178668A1 (en) * 2007-11-14 2009-07-16 Deepak Boggavarapu Central Receiver Solar Power Systems: Architecture And Controls Methods
CN101614445A (zh) * 2008-06-23 2009-12-30 中国华电工程(集团)有限公司 提高定日镜自动跟踪太阳轨迹控制精度的方法
CN101776919A (zh) * 2009-12-29 2010-07-14 中国科学院电工研究所 一种定日镜跟踪误差校正方法
CN101918769A (zh) * 2007-10-24 2010-12-15 伊苏勒有限公司 一种中央塔式接收器太阳能发电厂中的定日镜定标和跟踪控制
EP2336836A1 (en) * 2009-12-08 2011-06-22 GE Intelligent Platforms, Inc. Method, system, and controller for controlling heliostat mirrors
CN201983486U (zh) * 2011-02-18 2011-09-21 南京科远自动化集团股份有限公司 塔式太阳能热发电站的定日镜跟踪控制装置

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20100139644A1 (en) * 2008-10-29 2010-06-10 Brightsource Industries (Israel), Ltd. Heliostat calibration
CN102354227B (zh) * 2011-09-29 2014-04-30 深圳市联讯创新工场科技开发有限公司 太阳能发电站的定日镜校准系统及校准方法

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101918769A (zh) * 2007-10-24 2010-12-15 伊苏勒有限公司 一种中央塔式接收器太阳能发电厂中的定日镜定标和跟踪控制
US20090178668A1 (en) * 2007-11-14 2009-07-16 Deepak Boggavarapu Central Receiver Solar Power Systems: Architecture And Controls Methods
CN101266078A (zh) * 2008-04-29 2008-09-17 河海大学 一种定日镜跟踪控制装置及其控制方法
CN101614445A (zh) * 2008-06-23 2009-12-30 中国华电工程(集团)有限公司 提高定日镜自动跟踪太阳轨迹控制精度的方法
EP2336836A1 (en) * 2009-12-08 2011-06-22 GE Intelligent Platforms, Inc. Method, system, and controller for controlling heliostat mirrors
CN101776919A (zh) * 2009-12-29 2010-07-14 中国科学院电工研究所 一种定日镜跟踪误差校正方法
CN201983486U (zh) * 2011-02-18 2011-09-21 南京科远自动化集团股份有限公司 塔式太阳能热发电站的定日镜跟踪控制装置

Cited By (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013044848A1 (zh) * 2011-09-29 2013-04-04 Sun Haixiang 太阳能发电站的定日镜校准系统及校准方法
CN102778899A (zh) * 2012-07-27 2012-11-14 浙江中控太阳能技术有限公司 一种用于塔式太阳能热发电系统的镜场调度系统及方法
CN104956160A (zh) * 2013-01-22 2015-09-30 原子能和替代能源委员会 对出口气流温度进行改进控制的菲涅尔型太阳能集中器发电站
CN104165605B (zh) * 2014-09-03 2017-03-29 常州天合光能有限公司 光伏系统设计中阴影测量的方法及其阴影测量仪器
CN104165605A (zh) * 2014-09-03 2014-11-26 常州天合光能有限公司 光伏系统设计中阴影测量的方法及其阴影测量仪器
CN105022410A (zh) * 2015-05-07 2015-11-04 浙江中控太阳能技术有限公司 一种塔式太阳能发电系统定日镜校准系统及校准方法
CN105022410B (zh) * 2015-05-07 2018-03-20 浙江中控太阳能技术有限公司 一种塔式太阳能发电系统定日镜校准系统及校准方法
CN106444854A (zh) * 2015-08-05 2017-02-22 联邦科学及工业研究组织 用于定日镜的闭环控制系统
CN108413987A (zh) * 2018-03-13 2018-08-17 深圳东康前海新能源有限公司 一种定日镜的校准方法、装置及系统
CN108413987B (zh) * 2018-03-13 2021-03-26 深圳中科能投能源有限公司 一种定日镜的校准方法、装置及系统
CN109062265A (zh) * 2018-08-29 2018-12-21 中国电力工程顾问集团西北电力设计院有限公司 一种太阳光热发电定日镜安装误差校正方法
CN109596212A (zh) * 2019-02-14 2019-04-09 浙江中控太阳能技术有限公司 定日镜聚光效率的检测系统及检测方法
CN109596212B (zh) * 2019-02-14 2021-01-12 浙江中控太阳能技术有限公司 定日镜聚光效率的检测系统及检测方法
CN110703813A (zh) * 2019-11-11 2020-01-17 深圳东康前海新能源有限公司 一种定日镜校准系统和方法

Also Published As

Publication number Publication date
CN102354227B (zh) 2014-04-30
WO2013044848A1 (zh) 2013-04-04

Similar Documents

Publication Publication Date Title
CN102354225B (zh) 太阳能发电站的定日镜校准系统及校准方法
CN102354227B (zh) 太阳能发电站的定日镜校准系统及校准方法
CN102495640B (zh) 太阳能发电站的定日镜校准方法及校准系统
CN102354226B (zh) 太阳能发电站的定日镜校准系统及校准方法
CN108413987B (zh) 一种定日镜的校准方法、装置及系统
CN101614445B (zh) 提高定日镜自动跟踪太阳轨迹控制精度的方法
CN107678448B (zh) 一种基于天体图像的追日校正系统及其方法
CN105022410B (zh) 一种塔式太阳能发电系统定日镜校准系统及校准方法
CN201983486U (zh) 塔式太阳能热发电站的定日镜跟踪控制装置
CN108139115B (zh) 用于定日镜的校准方法
CN102298193A (zh) 一种定日镜校正设备及校正方法
US20150226461A1 (en) Solar energy collection utilizing heliostats
CN109508043B (zh) 一种基于图像的定日镜二次反射指向校正现场系统及方法
CN102980313A (zh) 太阳能塔式光热电站的定日镜误差校正系统和方法
CN104699116A (zh) 一种定日镜跟踪误差校正方法
CN103309361A (zh) 一种定日镜的跟踪瞄准控制方法及其装置
CN109508044B (zh) 一种定日镜二次反射指向校正系统及方法
WO2022007370A1 (zh) 一种定日镜光路闭环控制系统及方法
WO2015173899A1 (ja) 太陽熱発電システム、及び太陽熱発電システムのための校正システム
CN208985003U (zh) 一种快速定性检测定日镜跟踪准确性的装置
CN102597798B (zh) 太阳跟踪器设备和系统
CN116907535A (zh) 一种采用人工光源和相机进行定日镜的校验方法
CN104679035A (zh) 一种定日镜自适应追日装置
CN116389857B (zh) 植物表型采集平台、方法、电子设备及存储介质
CN102768107A (zh) 一种针对探测器像元响应率的非均匀校正装置及方法

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C14 Grant of patent or utility model
GR01 Patent grant
CF01 Termination of patent right due to non-payment of annual fee

Granted publication date: 20140430

Termination date: 20160929

CF01 Termination of patent right due to non-payment of annual fee