CN102335479A - 植入式微型电渗流可控输药芯片及其制备方法 - Google Patents

植入式微型电渗流可控输药芯片及其制备方法 Download PDF

Info

Publication number
CN102335479A
CN102335479A CN2011102932967A CN201110293296A CN102335479A CN 102335479 A CN102335479 A CN 102335479A CN 2011102932967 A CN2011102932967 A CN 2011102932967A CN 201110293296 A CN201110293296 A CN 201110293296A CN 102335479 A CN102335479 A CN 102335479A
Authority
CN
China
Prior art keywords
driver element
chip
silicon dioxide
eof
sprue
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN2011102932967A
Other languages
English (en)
Other versions
CN102335479B (zh
Inventor
张文光
胡牧风
吴栋栋
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shanghai Jiaotong University
Original Assignee
Shanghai Jiaotong University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shanghai Jiaotong University filed Critical Shanghai Jiaotong University
Priority to CN 201110293296 priority Critical patent/CN102335479B/zh
Publication of CN102335479A publication Critical patent/CN102335479A/zh
Application granted granted Critical
Publication of CN102335479B publication Critical patent/CN102335479B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Abstract

一种植入式微型电渗流可控输药芯片及其制备方法,其构成包括主流道,在该主流道的两端各连接一个电渗驱动单元阵列。通过对电渗驱动单元、主流道及驱动单元阵列的设计,以及芯片加工工艺流程的确定,使得芯片的生产工艺简单,生产成本低,易于大规模生产,所设计的芯片可以实现极低电压直流(DC)驱动,药物输出量微量、稳定、可控,不会产生液体电解和大量焦耳热。本发明提供的植入式微型电渗流可控输药芯片可广泛用于药物传输系统和生物医学的研究中。

Description

植入式微型电渗流可控输药芯片及其制备方法
技术领域
本发明涉及的是生物医学工程领域,具体涉及微型机电系统(micro electro mechanical system,以下简称为MEMS)范畴内的植入式电渗流可控输药芯片及其制备方法。
背景技术
药物传输系统(Drug Delivery Systems, DDS)是指人们在防治疾病的过程中所采用的各种治疗药物的不同给药形式。理想的药物传输系统不仅应具有良好的生物相容性,较高的载药率和包封率,良好的细胞或组织特异性——即靶向性;还应具有在达到目标病灶部位之前不释放药物分子,到达病灶部位后才以适当的速度释放出药物分子的特性。
随着MEMS技术的进步,具有不同功能的微型元器件和显微机电元件能够规模化生产。将MEMS 同药物传递系统结合,有助于改善现有多种药物的临床治疗效果,并在新药研发中扮演重要作用。MEMS 用于药物控释系统主要包括药物控释芯片、渗透压驱动微型药物释放系统、植入式智能药物释放系统、遥控透皮给药系统、微型泵、纳米微粒包和系统、微型注射针管阵列给药系统、微型药物输液给药装置、体腔内微型监测器械、高温微型阀、用于微液流标记的三维微阵列管道系统、皮下微型针刀等。其中,微型泵是药物传输系统中十分重要的部分。
经对现有技术文献的检索,N. A. A.Nisar, Banchong Mahaisavariya, Adisorn Tuantranont等在《Sensors and Actuators B》 2007(130) p917–942撰文"MEMS-based micropumps in drug delivery and biomedical applications,"(“基于MEMS技术的微型泵在药物传输系统和生物医学中的应用” )。文中提到,实现驱动流体的微型泵有各种驱动原理:静电机械式,气压式,记忆合金式,双金属层式,电磁式,相变式,压电陶瓷式,电渗式等。其中,电渗式流体驱动因其具有不需要移动的机械部件,器件将不受摩擦而提高稳定性以及能源利用率等优势,受到了各国学者的广泛关注。目前,国内外已研制出许多电渗流芯片,主要应用于生物质的分离,利用电渗流现象驱动器件内微管道中的流体,以达到传质的目的。但却很少涉及电渗流在微量药物的持续输送方面的应用,原因主要是由于电渗流的输出效率受电场强度的影响大,而一般电渗流芯片由于泳道长,需要施加高压才能达到一定效果。同时,高压产生的电流在芯片内形成并释放出大量的焦耳热,严重影响电渗效果,所以必须采取降温措施而使其不能长时间持续工作。此外,电渗过程中由于高压会使泳道内的液体发生电解产生气泡,也会严重影响器件的工作效果。目前利用极低电压驱动的电渗流芯片主要采用交流(AC)电压控制的方式。这种设计在泳道上依次排列许多平面的正负电极对,利用控制不同电极对泳道内流体实现接力式驱动。但该器件结构和控制都较复杂,并且驱动的电渗流不够稳定,很难实现大规模生产和应用。
发明内容
本发明的目的在于克服现有植入式微型电渗流可控输药芯片技术的不足,提供一种植入式微型药物输送芯片及其制备方法,该芯片的生产工艺简单,生产成本低,易于大规模生产。该芯片可实现极低电压直流(DC)驱动,药物输出量微量、稳定、可控,不会产生液体电解和大量焦耳热。
为实现本发明目的,本发明的技术解决方案如下:
一种植入式微型电渗流可控输药芯片,特点在于其构成包括主流道,在该主流道的两端各连接一个电渗驱动单元阵列。
所述的电渗驱动单元阵列是由2个以上单一的驱动单元串连构成,每个电渗驱动单元的结构是对称的,在两端设有流体的入口和出口,所述的入口连接前方来流方向的主通道,所述的出口连接后方出流的主通道,所述的主通道和电渗驱动单元的截面形状均为矩形,在入口和出口处仿照圆形简扩管和简缩管呈45°夹角的流道宽度渐变区;所述的驱动单元的宽度大于主通道,以便具有更多的空间实现电渗驱动;在硅基驱动单元内部刻蚀出矩形分流道,在整个驱动单元内部刻蚀多个分流道以加强电渗流的强度;每个分流道的长度按照流道宽度渐变区的夹角设定,分流道之间栅栏的两端与前后流道宽度渐变区的侧壁保持相同距离;所述的流道宽度渐变区的侧壁外侧实施离子注入,使那一部分的硅材料成为导体,离子注入区与单元内部被刻蚀的部分保持微小的距离,目的是利用二氧化硅绝缘离子注入区与驱动单元内部的电解质溶液。
所述的主流道呈折叠状,主流道的长度由背压与流阻的平衡决定:经过理论推导计算出单一电渗驱动单元所产生的背压与一定截面形状主流道的沿程压力损失,并按照背压与总输出量的关系设定主流道的长度,以达到背压与流阻的平衡。
所述的电渗驱动单元阵列是将单一驱动单元顺着主流道的方向排列,驱动单元之间,即前驱动单元的出口与后驱动单元的入口之间的距离不超过5um,所有驱动单元串联放置,在同一直线上的前后两驱动单元,连接电源正极的离子注入区应该以相同的方向指向连接负极的区域,同一直线上放置2个以上单一的驱动单元,形成阵列后连接主流道,不同直线上驱动单元按对齐的原则布置,间隔距离为一个单一驱动单元两个对称轴上较长的跨度。
上述的植入式微型电渗流可控输药芯片的制备方法,包括如下步骤:
(1)把单晶硅两面抛光,在硅片的一面氧化成二氧化硅层,硅在芯片的另一面甩胶光刻,所述的单晶硅厚度≧16um;
(2)光刻芯片,形成4个深沟道;
(3)氧化上表面,形成的二氧化硅层厚度应大于1.5um,同时所述的4个深沟道也利用氧化层的形成而填满;
(4)刻蚀上表面氧化层,在被二氧化硅填满的深沟道之间刻蚀出一定宽度的缺口;
(5)对所述的缺口所对应区域进行离子注入;
(6)上表面抛光并将二氧化硅层留至1um厚;
(7)在上表面溅射铝,厚度≧1um,按照连接相同一个电极的布线方案刻蚀铝;
(8)在上表面生长二氧化硅层,抛光磨平;
(9)对连接相反电极的离子注入区进行刻蚀,溅射铝,按照布线方案刻蚀铝,铝层的平均厚度应大于4um;
(10)在上表面生长二氧化硅层,使二氧化硅层的厚度能将埋入的铝线全部包裹覆盖,并且在铝线周围二氧化硅层最薄处也能起到良好的绝缘效果;
(11)在芯片的另一面甩胶,光刻出六个分流道的光刻胶图形;
(12)深度光刻使形成六个分流道,除去光刻胶层,在上表面氧化形成二氧化硅层,最后封装整个芯片。
所述的步骤(1)中余下的单晶硅厚度为≧16um,分流道的宽度为3um,间隔9um。
在步骤(3)中的二氧化硅层厚为≧1.5um,步骤(7)中溅射的铝层厚≧1um,步骤(9)中溅射的铝层平均厚度≧4um,在步骤(12)中的二氧化硅层厚为0.5 um。
步骤(5)中选取的注入离子为硼离子。
所采用的封装材料为玻璃薄膜。
本发明的技术效果如下:
本发明植入式微型电渗流可控输药芯片的结构不复杂,制备生产工艺简单,生产成本低,易于大规模生产,本发明芯片可以实现极低电压直流(DC)驱动,药物输出量微量、稳定、可控,不会产生液体电解和大量焦耳热。
附图说明
图1为本发明的电渗驱动单元俯视图。
图2为本发明的电渗驱动单元阵列与主流道俯视图。
图3为本发明芯片的工艺流程图。
具体实施方式
下面结合附图对本发明的实施例作详细说明:本实施例在以本发明技术方案为前提下进行实施,给出了具体的实施方法,但本发明的保护范围不限于下述的实施例。
如图1、2、3所示,本实施例主要对电渗驱动单元、主流道及驱动单元阵列和芯片器件制备的工艺流程进行说明。
图1为本发明的电渗驱动单元俯视图,由图可见,本发明的电渗驱动单元
(1)电渗驱动单元对称,在两端设有流体的入口和出口,一个连接前方来流方向的主通道,另一个连接后方出流的主通道。主通道和电渗驱动单元的截面形状均为矩形。在入口和出口处仿照圆形简括管和简缩管呈45°夹角的流道宽度渐变区。
(2)按上述设计理念连接两端的流道渐变区,使驱动单元的宽度大于主通道以便具有更多的空间实现电渗驱动。在24um深的硅基驱动单元内部刻蚀出3um宽的矩形分流道,在整个驱动单元内部共刻蚀六个分流道以加强电渗流的强度。每个分流道的长度按照流道宽度渐变区的夹角设定,分流道之间的栅栏的两端与前后流道宽度渐变区的侧壁保持相同距离。
(3)在上述流道宽度渐变区的侧壁外侧实施离子注入,使那一部分的硅材料成为导体。离子注入区与单元内部被刻蚀的部分保持微小的距离,目的是利用二氧化硅绝缘离子注入区与驱动单元内部的电解质溶液。
请参阅图2,图2为本发明的电渗驱动单元阵列与主流道俯视图。由图可见本发明植入式微型电渗流可控输药芯片,包括主流道,在该主流道的两端各连接一个电渗驱动单元阵列。
(1)经过理论推导计算出单一电渗驱动单元所产生的背压与一定截面形状主流道的沿程压力损失,并按照背压与总输出量的关系设定主流道的长度,以达到背压与流阻的平衡,主流道呈折叠状,连接两端的驱动单元阵列。
(2)将单一驱动单元顺着主流道的方向排列,驱动单元之间,即前驱动单元的出口与后驱动单元的入口之间的距离不超过5um,所有驱动单元串联放置,在同一直线上的前后两驱动单元,连接电源正极的离子注入区应该以相同的方向指向连接负极的区域,同一直线上放置2个及2个以上单一的驱动单元,形成阵列后连接主流道。不同直线上驱动单元按对齐的原则布置,间隔距离为一个单一驱动单元两个对称轴上较长的跨度。
图3为本发明芯片的工艺流程图。由图可见,本实施例关于芯片的制造工艺步骤如下:
(1)把单晶硅片两面抛光,在硅片的一面采用热粘合法氧化2um二氧化硅层,并保证余下的单晶硅厚度为24um。在芯片的另一面甩胶光刻,并在光刻胶层上刻上4个3 um宽的槽口。
(2)用深反应离子刻蚀方法光刻芯片,形成4个24um深,3um宽的深沟道。
(3)氧化上表面,使形成1.5um厚二氧化硅层,同时之前刻蚀的4个深沟道也利用氧化层的形成而填满。
(4)刻蚀上表面氧化层,在被二氧化硅填满的深沟道之间用HF清洗,刻蚀出两个9um宽的缺口。
(5)对前一步骤缺口所对应区域进行硼离子注入。
(6)上表面抛光并将二氧化硅层留至1um厚。
(7)在上表面溅射2um厚的铝,按照连接相同一个电极的布线方案刻蚀铝。
(8)用PECVD(等离子体增强化学汽相沉积)技术在上表面生长二氧化硅层,抛光磨平,使上表面与埋入的铝线(除了与离子注入区接触的部分)之间间隔1um。
(9)对连接相反电极的离子注入区进行刻蚀,溅射4um厚的铝,按照布线方案刻蚀铝。
(10)用PECVD技术在上表面生长二氧化硅层,使二氧化硅层的厚度能将埋入的铝线全部包裹覆盖,并且在铝线周围二氧化硅层最薄处也能起到良好的绝缘效果。
(11)在芯片的另一面甩胶,光刻出六个宽4um,间隔2um的分流道的光刻胶图形。
(12)深度光刻使形成六个分流道,除去光胶层,在上表面氧化形成0.5um厚的二氧化硅层,以用来产生电渗透现象。最后,用细的玻璃薄膜封装整个芯片,这样有利于诱导产生电渗透现象。
本实施例生产工艺简单,生产成本低,易于大规模生产。
实验表明,本发明芯片可以极低电压直流(DC)驱动,药物输出量微量、稳定、可控,不会产生液体电解和大量焦耳热。本发明提供的植入式微型电渗流可控输药芯片可广泛用于药物传输系统和生物医学的研究中。

Claims (9)

1.一种植入式微型电渗流可控输药芯片,特征在于其构成包括主流道,在该主流道的两端各连接一个电渗驱动单元阵列。
2.根据权利要求1所述的植入式微型电渗流可控输药芯片,其特征在于,所述的电渗驱动单元阵列是由2个以上单一的驱动单元串连构成,每个电渗驱动单元的结构是对称的,在两端设有流体的入口和出口,所述的入口连接前方来流方向的主通道,所述的出口连接后方出流的主通道,所述的主通道和电渗驱动单元的截面形状均为矩形,在入口和出口处仿照圆形简扩管和简缩管呈45°夹角的流道宽度渐变区;所述的驱动单元的宽度大于主通道,以便具有更多的空间实现电渗驱动;在硅基驱动单元内部刻蚀出矩形分流道,在整个驱动单元内部刻蚀多个分流道以加强电渗流的强度;每个分流道的长度按照流道宽度渐变区的夹角设定,分流道之间的栅栏的两端与前后流道宽度渐变区的侧壁保持相同距离;所述的流道宽度渐变区的侧壁外侧实施离子注入,使那一部分的硅材料成为导体,离子注入区与单元内部被刻蚀的部分保持微小的距离,目的是利用二氧化硅绝缘离子注入区与驱动单元内部的电解质溶液。
3.根据权利要求1或2所述的植入式微型电渗流可控输药芯片,其特征在于,所述的主流道呈折叠状,主流道的长度由背压与流阻的平衡决定,经过理论推导计算出单一电渗驱动单元所产生的背压与一定截面形状主流道的沿程压力损失,并按照背压与总输出量的关系设定主流道的长度,以达到背压与流阻的平衡。
4.根据权利要求3所述的植入式微型电渗流可控输药芯片,其特征在于,所述的电渗驱动单元阵列是将单一驱动单元顺着主流道的方向排列,驱动单元之间,即前驱动单元的出口与后驱动单元的入口之间的距离不超过5um,所有驱动单元串联放置,在同一直线上的前后两驱动单元,连接电源正极的离子注入区应该以相同的方向指向连接负极的区域,同一直线上放置2个以上单一的驱动单元,形成阵列后连接主流道,不同直线上驱动单元按对齐的原则布置,间隔距离为一个单一驱动单元两个对称轴上较长的跨度。
5.权利要求4所述的植入式微型电渗流可控输药芯片的制备方法,其特征在于,该方法包括如下步骤:
(1)把单晶硅两面抛光,在硅片的一面氧化成二氧化硅层,硅在芯片的另一面甩胶光刻,所述的单晶硅厚度≧16um;
(2)光刻芯片,形成4个深沟道;
(3)氧化上表面,形成的二氧化硅层厚度应大于1.5um,同时所述的4个深沟道也利用氧化层的形成而填满;
(4)刻蚀上表面氧化层,在被二氧化硅填满的深沟道之间刻蚀出一定宽度的缺口;
(5)对所述的缺口所对应区域进行离子注入;
(6)上表面抛光并将二氧化硅层留至1um厚;
(7)在上表面溅射铝,厚度≧1um,按照连接相同一个电极的布线方案刻蚀铝;
(8)在上表面生长二氧化硅层,抛光磨平;
(9)对连接相反电极的离子注入区进行刻蚀,溅射铝,按照布线方案刻蚀铝,铝层的平均厚度应大于4um;
(10)在上表面生长二氧化硅层,使二氧化硅层的厚度能将埋入的铝线全部包裹覆盖,并且在铝线周围二氧化硅层最薄处也能起到良好的绝缘效果;
(11)在芯片的另一面甩胶,光刻出六个分流道的光刻胶图形;
(12)深度光刻使形成六个分流道,除去光刻胶层,在上表面氧化形成二氧化硅层,最后封装整个芯片。
6.根据权利要求5所述的电渗流可控输药芯片加工方法,其特征在于,步骤(1)中余下的单晶硅厚度为≧16um,分流道的宽度为3um,间隔9um。
7.根据权利要求5所述的电渗流可控输药芯片加工方法,其特征在于,在步骤(3)中的二氧化硅层厚为≧1.5um,步骤(7)中溅射的铝层厚≧1um,步骤(9)中溅射的铝层平均厚度≧4um,在步骤(12)中的二氧化硅层厚为0.5 um。
8.根据权利要求5所述的电渗流可控输药芯片加工方法,其特征在于,步骤(5)中选取的注入离子为硼离子。
9.根据权利要求5所述的电渗流可控输药芯片加工方法,其特征在于,采用的封装材料为玻璃薄膜。
CN 201110293296 2011-09-28 2011-09-28 植入式微型电渗流可控输药芯片及其制备方法 Active CN102335479B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN 201110293296 CN102335479B (zh) 2011-09-28 2011-09-28 植入式微型电渗流可控输药芯片及其制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN 201110293296 CN102335479B (zh) 2011-09-28 2011-09-28 植入式微型电渗流可控输药芯片及其制备方法

Related Child Applications (1)

Application Number Title Priority Date Filing Date
CN201210421367.1A Division CN102872531B (zh) 2011-09-28 2011-09-28 一种电渗流可控输药芯片电渗驱动单元的制备方法

Publications (2)

Publication Number Publication Date
CN102335479A true CN102335479A (zh) 2012-02-01
CN102335479B CN102335479B (zh) 2013-03-13

Family

ID=45511576

Family Applications (1)

Application Number Title Priority Date Filing Date
CN 201110293296 Active CN102335479B (zh) 2011-09-28 2011-09-28 植入式微型电渗流可控输药芯片及其制备方法

Country Status (1)

Country Link
CN (1) CN102335479B (zh)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1419954A (zh) * 2001-11-15 2003-05-28 中国科学院大连化学物理研究所 芯片式微流量电渗泵
WO2003046170A1 (en) * 2001-11-27 2003-06-05 Cellectricon Ab A method for combined parallel agent delivery and electroporation for cell structures and use thereof
US6586253B1 (en) * 1998-02-27 2003-07-01 The Governors Of The University Of Alberta Microchip based enzymatic analysis
CN1912609A (zh) * 2006-08-22 2007-02-14 重庆大学 低电压芯片电泳电路控制系统及控制方法

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6586253B1 (en) * 1998-02-27 2003-07-01 The Governors Of The University Of Alberta Microchip based enzymatic analysis
CN1419954A (zh) * 2001-11-15 2003-05-28 中国科学院大连化学物理研究所 芯片式微流量电渗泵
WO2003046170A1 (en) * 2001-11-27 2003-06-05 Cellectricon Ab A method for combined parallel agent delivery and electroporation for cell structures and use thereof
CN1912609A (zh) * 2006-08-22 2007-02-14 重庆大学 低电压芯片电泳电路控制系统及控制方法

Also Published As

Publication number Publication date
CN102335479B (zh) 2013-03-13

Similar Documents

Publication Publication Date Title
Darabi et al. Design, fabrication, and testing of an electrohydrodynamic ion-drag micropump
Cao et al. Design and simulation of an implantable medical drug delivery system using microelectromechanical systems technology
US9011663B2 (en) Electrowetting-based valving and pumping systems
EP3818143B1 (en) Electroporation kits and methods of cell transfection
CN106593831B (zh) 一种非接触式电磁微泵装置
Tanzi et al. Fabrication of combined-scale nano-and microfluidic polymer systems using a multilevel dry etching, electroplating and molding process
CN105217565B (zh) 一种单晶硅空心微针结构的制作方法
CN203090949U (zh) 多级驱动电渗微泵装置
CN204746344U (zh) 一种电渗微泵装置
CN103170265B (zh) 一种压电微混合器
CN103816805A (zh) 电渗微泵装置
Huang et al. High cell viability microfluidic electroporation in a curved channel
Kim et al. Triangular prism and slit electrode pair for ECF jetting fabricated by thick micromold and electroforming as micro hydraulic pressure source for soft microrobots
CN103566987B (zh) 一种电渗流泵及其泵体设计工艺流程
CN102335479B (zh) 植入式微型电渗流可控输药芯片及其制备方法
Al Halhouli et al. Development and testing of a synchronous micropump based on electroplated coils and microfabricated polymer magnets
CN102872531B (zh) 一种电渗流可控输药芯片电渗驱动单元的制备方法
Shan et al. Implantable double-layer pump chamber piezoelectric valveless micropump with adjustable flow rate function
CN203525623U (zh) 一种压电微混合器
CN103638837B (zh) 一种基于合成射流的压电微混合器
Cao et al. Implantable medical drug delivery systems using microelectromechanical systems technology
Yang The influence of the geometry of the pump chamber on the characteristics of the thermopneumatic-drive surface tension micropump
CN201125904Y (zh) 三肋式微型气动阀
Salari et al. A novel AC electrothermal micropump consisting of two opposing parallel coplanar asymmetric microelectrode arrays
JP2004317340A (ja) 柱状構造体の製造方法およびこの柱状構造体を用いた電気泳動デバイス

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C14 Grant of patent or utility model
GR01 Patent grant