CN102331577A - An Improved NCS Imaging Algorithm for Geosynchronous Orbit SAR - Google Patents

An Improved NCS Imaging Algorithm for Geosynchronous Orbit SAR Download PDF

Info

Publication number
CN102331577A
CN102331577A CN201110280669A CN201110280669A CN102331577A CN 102331577 A CN102331577 A CN 102331577A CN 201110280669 A CN201110280669 A CN 201110280669A CN 201110280669 A CN201110280669 A CN 201110280669A CN 102331577 A CN102331577 A CN 102331577A
Authority
CN
China
Prior art keywords
centerdot
rightarrow
lambda
center dot
formula
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN201110280669A
Other languages
Chinese (zh)
Other versions
CN102331577B (en
Inventor
龙腾
胡程
刘志鹏
朱宇
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Beijing Institute of Technology BIT
Original Assignee
Beijing Institute of Technology BIT
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Beijing Institute of Technology BIT filed Critical Beijing Institute of Technology BIT
Priority to CN 201110280669 priority Critical patent/CN102331577B/en
Publication of CN102331577A publication Critical patent/CN102331577A/en
Application granted granted Critical
Publication of CN102331577B publication Critical patent/CN102331577B/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Radar Systems Or Details Thereof (AREA)

Abstract

本发明涉及一种适用于地球同步轨道SAR的的改进NCS成像算法,属于合成孔径雷达(SAR)成像技术领域。本发明对NCS成像算法的改进之处在于两个部分:一是建立弯曲轨迹信号模型取代原NCS成像算法中的等效直线模型,二是并在建立弯曲轨迹信号模型的基础上求出适用于NCS成像算法的二维解析频谱表达式。本发明相对于现有技术相比的优势在于:通过高阶泰勒展开的方法得到了一种新的适用于GEO SAR的弯曲轨迹模型,该轨迹模型可以解决GEOSAR近地点等效直线模型误差比较大,远地点等效直线模型完全不能应用等缺点;同时基于等效直线模型,得到了一个解析适用于NCS算法的二位频谱,利用此频谱,NCS算法的各个补偿函数都可以求得,实现了GEO SAR大场景成像的要求。

Figure 201110280669

The invention relates to an improved NCS imaging algorithm suitable for geosynchronous orbit SAR, belonging to the technical field of synthetic aperture radar (SAR) imaging. The improvement of the present invention to the NCS imaging algorithm lies in two parts: one is to establish a curved trajectory signal model to replace the equivalent straight line model in the original NCS imaging algorithm; 2D analytical spectral representation of the NCS imaging algorithm. Compared with the prior art, the present invention has the advantages that a new curved trajectory model suitable for GEO SAR is obtained through the method of high-order Taylor expansion, and the trajectory model can solve the problem that the error of the GEOSAR perigee equivalent straight line model is relatively large. The apogee equivalent straight line model cannot be applied at all; at the same time, based on the equivalent straight line model, a binary spectrum suitable for the NCS algorithm is obtained. Using this spectrum, each compensation function of the NCS algorithm can be obtained, and the GEO SAR is realized. Large scene imaging requirements.

Figure 201110280669

Description

一种适用于地球同步轨道SAR的改进NCS成像算法An Improved NCS Imaging Algorithm for Geosynchronous Orbit SAR

技术领域 technical field

本发明涉及一种改进NCS成像算法,特别涉及一种适用于地球同步轨道(GEO)SAR的的改进NCS成像算法,属于合成孔径雷达(SAR)成像技术领域。The invention relates to an improved NCS imaging algorithm, in particular to an improved NCS imaging algorithm suitable for geosynchronous orbit (GEO) SAR, and belongs to the technical field of synthetic aperture radar (SAR) imaging.

背景技术 Background technique

目前的SAR卫星均为低轨卫星,轨道高度不超过1,000km,对特定地区的重复观测周期一般为3到5天,在进行轨道机动时也需要至少1天时间;因此,低轨SAR存在时间分辨率低、应对突发事件滞后时间长的问题。解决此问题的一种有效方法是地球同步轨道合成孔径雷达(GEO SAR)卫星,这是运行在36,000km高度地球同步轨道上的SAR卫星;这种地球同步轨道并非地球静止轨道,它具有一定的倾斜角度,其星下点轨迹为‘8’字形,由此可获得与地面目标的相对运动,实现二维SAR成像。The current SAR satellites are all low-orbit satellites, with an orbital height of no more than 1,000km. The repeated observation period for a specific area is generally 3 to 5 days, and at least 1 day is required for orbital maneuvering; therefore, the existence of low-orbit SAR Low resolution and long lag time to respond to emergencies. An effective method to solve this problem is the Geosynchronous Orbit Synthetic Aperture Radar (GEO SAR) satellite, which is a SAR satellite operating in a geosynchronous orbit at a height of 36,000 km; this geosynchronous orbit is not a geostationary orbit, and it has certain Inclination angle, its sub-satellite point trajectory is in the shape of '8', so that the relative motion with the ground target can be obtained, and two-dimensional SAR imaging can be realized.

目前的SAR成像算法都是基于低轨(LEO)情况建立的,缺陷在于:LEO SAR一般合成孔径时间比较短,卫星飞行的轨迹可以用等效直线模型来近似,但是在GEO SAR中合成孔径时间一般达到上百秒,因而低轨SAR成像算法所依赖的等效直线模型因GEO SAR超长的孔径时间而失效。NCS算法是一种优秀的大场景成像算法,但是它是基于等效直线模型,因此很难直接应用于GEO SAR。针对以上情况,我们提出了一种改进的NCS成像算法去实现GEO SAR大场景成像的要求。The current SAR imaging algorithms are all established based on low-orbit (LEO) conditions. The disadvantages are: LEO SAR generally has a relatively short synthetic aperture time, and the trajectory of satellite flight can be approximated by an equivalent straight line model, but the synthetic aperture time in GEO SAR Generally, it reaches hundreds of seconds, so the equivalent linear model relied on by the low-orbit SAR imaging algorithm is invalid due to the ultra-long aperture time of GEO SAR. The NCS algorithm is an excellent large-scene imaging algorithm, but it is based on the equivalent straight line model, so it is difficult to be directly applied to GEO SAR. In view of the above situation, we propose an improved NCS imaging algorithm to meet the requirements of GEO SAR large scene imaging.

发明内容 Contents of the invention

本发明的目的是为了实现GEO SAR大场景成像,提出了一种适用于地球同步轨道SAR的改进NCS成像算法。The purpose of the present invention is to realize GEO SAR large scene imaging, and propose an improved NCS imaging algorithm suitable for geosynchronous orbit SAR.

本发明是通过以下技术方案实现的。The present invention is achieved through the following technical solutions.

本发明的一种适用于地球同步轨道SAR的改进NCS成像算法,其改进之处在于两个部分:一是建立弯曲轨迹信号模型取代原NCS成像算法中的等效直线模型,二是并在建立弯曲轨迹信号模型的基础上求出适用于NCS成像算法的二维解析频谱表达式,两个部分的具体过程分别为:An improved NCS imaging algorithm suitable for geosynchronous orbit SAR of the present invention, its improvement lies in two parts: one is to establish a curved trajectory signal model to replace the equivalent straight line model in the original NCS imaging algorithm, and the other is to establish On the basis of the curved trajectory signal model, the two-dimensional analytical spectrum expression suitable for the NCS imaging algorithm is obtained. The specific processes of the two parts are as follows:

1)传统的NCS算法是基于等效直线模型,但是等效直线模型在GEO SAR中出现误差比较大甚至失效等问题,因此需要建立一种弯曲轨迹信号模型去近似卫星和目标之间的真实斜距历史,建立弯曲轨迹信号模型的过程为:1) The traditional NCS algorithm is based on the equivalent straight line model, but the equivalent straight line model has problems such as relatively large error or even failure in GEO SAR, so it is necessary to establish a curved trajectory signal model to approximate the real slope between the satellite and the target. From history, the process of building a curved trajectory signal model is:

定义卫星和目标在每个脉冲重复时间(PRT)的坐标分别为

Figure BDA0000092885010000021
Figure BDA0000092885010000022
卫星和目标之间的真实斜距历史表示为Define the coordinates of the satellite and the target at each pulse repetition time (PRT) as
Figure BDA0000092885010000021
and
Figure BDA0000092885010000022
The true slant range history between the satellite and the target is expressed as

RR nno == || || rr →&Right Arrow; snsn -- rr →&Right Arrow; gngn || || -- -- -- (( 11 ))

对式(1)进行泰勒展开后得到弯曲轨迹模型The curved trajectory model is obtained after Taylor expansion of formula (1)

Rn=R+k1·ta+k2·ta 2+k3·ta 3+k4·ta 4+…                  (2)R n =R+k 1 ·t a +k 2 ·t a 2 +k 3 ·t a 3 +k 4 ·t a 4 +... (2)

其中ta为方位向时间,R、k1、k2、k3和k4为Rn的0到4阶的泰勒展开系数,其中k1、k2、k3和k4具体表达式分别为:where t a is the azimuth time, R, k 1 , k 2 , k 3 and k 4 are the Taylor expansion coefficients of order 0 to 4 of R n , and the specific expressions of k 1 , k 2 , k 3 and k 4 are respectively for:

kk 11 == kk 1010 ++ kk .. 11 ·&Center Dot; (( RR -- RR 00 )) -- -- -- (( 33 ))

kk 22 == kk 2020 ++ kk .. 22 ·&Center Dot; (( RR -- RR 00 )) -- -- -- (( 44 ))

kk 33 == kk 3030 ++ kk .. 33 ·· (( RR -- RR 00 )) -- -- -- (( 55 ))

kk 44 == kk 4040 ++ kk .. 44 ·· (( RR -- RR 00 )) -- -- -- (( 66 ))

在式(3)~(6)中,k10~k40的具体表达式分别为:In formulas (3) to (6), k 10 to k 40 , The specific expressions are:

kk 1010 == vv →&Right Arrow; sthe s 00 ·· (( rr →&Right Arrow; sthe s 00 -- rr →&Right Arrow; gg 00 )) TT // || || rr →&Right Arrow; sthe s 00 -- rr →&Right Arrow; gg 00 || || -- -- -- (( 77 ))

kk 2020 == aa →&Right Arrow; sthe s 00 ·· (( rr →&Right Arrow; sthe s 00 -- rr →&Right Arrow; gg 00 )) TT ++ || || vv →&Right Arrow; sthe s 00 || || 22 22 ·· || || rr →&Right Arrow; sthe s 00 -- rr →&Right Arrow; gg 00 || || -- [[ vv →&Right Arrow; sthe s 00 ·&Center Dot; (( rr →&Right Arrow; sthe s 00 -- rr →&Right Arrow; gg 00 )) TT ]] 22 22 ·&Center Dot; || || rr →&Right Arrow; sthe s 00 -- rr →&Right Arrow; gg 00 || || 33 -- -- -- (( 88 ))

k 30 = b → s 0 · ( r → s 0 - r → g 0 ) T + 3 · a → s 0 · v → s 0 T 6 · | | r → s 0 - r → g 0 | | + [ v → s 0 · ( r → s 0 - r → g 0 ) T ] 3 2 · | | r → s 0 - r → g 0 | | 5 (9) k 30 = b &Right Arrow; the s 0 &Center Dot; ( r &Right Arrow; the s 0 - r &Right Arrow; g 0 ) T + 3 &Center Dot; a &Right Arrow; the s 0 · v &Right Arrow; the s 0 T 6 &Center Dot; | | r &Right Arrow; the s 0 - r &Right Arrow; g 0 | | + [ v &Right Arrow; the s 0 · ( r &Right Arrow; the s 0 - r &Right Arrow; g 0 ) T ] 3 2 · | | r &Right Arrow; the s 0 - r &Right Arrow; g 0 | | 5 (9)

-- vv →&Right Arrow; sthe s 00 ·&Center Dot; (( rr →&Right Arrow; sthe s 00 -- rr →&Right Arrow; gg 00 )) TT ·&Center Dot; aa →&Right Arrow; sthe s 00 ·&Center Dot; (( rr →&Right Arrow; sthe s 00 -- rr →&Right Arrow; gg 00 )) TT 22 ·&Center Dot; || || rr →&Right Arrow; sthe s 00 -- rr →&Right Arrow; gg 00 || || 33 -- vv →&Right Arrow; sthe s 00 ·&Center Dot; (( rr →&Right Arrow; sthe s 00 -- rr →&Right Arrow; gg 00 )) TT ·&Center Dot; || || vv →&Right Arrow; sthe s 00 || || 22 22 ·&Center Dot; || || rr →&Right Arrow; sthe s 00 -- rr →&Right Arrow; gg 00 || || 33

kk 4040 == dd →&Right Arrow; sthe s 00 ·· (( rr →&Right Arrow; sthe s 00 -- rr →&Right Arrow; gg 00 )) TT ++ 33 ·· bb →&Right Arrow; sthe s 00 ·· vv →&Right Arrow; sthe s 00 TT 24twenty four ·· || || rr →&Right Arrow; sthe s 00 -- rr →&Right Arrow; gg 00 || || ++ || || aa →&Right Arrow; sthe s 00 || || 22 88 ·· || || rr →&Right Arrow; sthe s 00 -- rr →&Right Arrow; gg 00 || || -- kk 22 22 ++ 22 ·· kk 11 ·&Center Dot; kk 33 22 ·· || || rr →&Right Arrow; sthe s 00 -- rr →&Right Arrow; gg 00 || || -- -- -- (( 1010 ))

kk .. 11 == vv sthe s 00 xx rr sthe s 00 xx -- vv →&Right Arrow; sthe s 00 ·· (( rr →&Right Arrow; sthe s 00 -- rr →&Right Arrow; gg 00 )) TT RR 00 22 -- -- -- (( 1111 ))

kk ·· 22 == aa sthe s 00 xx ·&Center Dot; RR 00 22 -- rr sthe s 00 xx ·· (( aa →&Right Arrow; sthe s 00 ·· (( rr →&Right Arrow; sthe s 00 -- rr →&Right Arrow; gg 00 )) TT ++ || || vv →&Right Arrow; sthe s 00 || || 22 )) 22 ·· RR 00 22 ·· rr sthe s 00 xx -- vv sthe s 00 xx ·· vv →&Right Arrow; sthe s 00 ·· (( rr →&Right Arrow; sthe s 00 -- rr →&Right Arrow; gg 00 )) TT RR 00 22 ·· rr sthe s 00 xx ++ 33 ·· vv →&Right Arrow; sthe s 00 ·· (( rr →&Right Arrow; sthe s 00 -- rr →&Right Arrow; gg 00 )) TT 22 ·· RR 00 44 -- -- -- (( 1212 ))

kk ·· 33 == bb sthe s 00 xx ·· RR 00 22 -- rr sthe s 00 xx ·· [[ bb →&Right Arrow; sthe s 00 ·· (( rr →&Right Arrow; sthe s 00 -- rr →&Right Arrow; gg 00 )) TT ++ 33 ·&Center Dot; aa →&Right Arrow; sthe s 00 ·&Center Dot; vv →&Right Arrow; sthe s 00 TT ]] 66 ·&Center Dot; RR 00 22 ·· rr sthe s 00 xx ++

33 ·· vv sthe s 00 xx ·· [[ vv →&Right Arrow; sthe s 00 ·· (( rr →&Right Arrow; sthe s 00 -- rr →&Right Arrow; gg 00 )) TT ]] 22 -- 55 ·&Center Dot; rr sthe s 00 xx ·&Center Dot; [[ vv →&Right Arrow; sthe s 00 ·· (( rr →&Right Arrow; sthe s 00 -- rr →&Right Arrow; gg 00 )) TT ]] 33 22 ·&Center Dot; RR 00 66 ·· rr sthe s 00 xx -- vv sthe s 00 xx ·· aa →&Right Arrow; sthe s 00 ·&Center Dot; (( rr →&Right Arrow; sthe s 00 -- rr →&Right Arrow; gg 00 )) TT ++ aa sthe s 00 xx ·&Center Dot; vv →&Right Arrow; sthe s 00 ·&Center Dot; (( rr →&Right Arrow; sthe s 00 -- rr →&Right Arrow; gg 00 )) TT 22 ·&Center Dot; RR 00 22 ·&Center Dot; rr sthe s 00 xx -- -- -- (( 1313 ))

++ 33 ·&Center Dot; vv →&Right Arrow; sthe s 00 ·· (( rr →&Right Arrow; sthe s 00 -- rr →&Right Arrow; gg 00 )) TT ·&Center Dot; aa →&Right Arrow; sthe s 00 ·&Center Dot; (( rr →&Right Arrow; sthe s 00 -- rr →&Right Arrow; gg 00 )) TT 22 ·· RR 00 44 -- vv sthe s 00 xx ·&Center Dot; || || vv →&Right Arrow; sthe s 00 || || 22 22 ·· RR 00 22 ·· rr sthe s 00 xx ++ 33 ·· vv →&Right Arrow; sthe s 00 ·· (( rr →&Right Arrow; sthe s 00 -- rr →&Right Arrow; gg 00 )) TT ·· || || vv →&Right Arrow; sthe s 00 || || 22 22 ·&Center Dot; RR 00 44

k . 4 = d s 0 x · R 0 2 - r s 0 x · [ d → s 0 · ( r → s 0 - r → g 0 ) T + 4 · b → s 0 · v → s 0 T ] 24 · R 0 2 · r s 0 x - | | a → s 0 | | 2 8 · R 0 2 (14) k . 4 = d the s 0 x &Center Dot; R 0 2 - r the s 0 x &Center Dot; [ d &Right Arrow; the s 0 · ( r &Right Arrow; the s 0 - r &Right Arrow; g 0 ) T + 4 · b &Right Arrow; the s 0 &Center Dot; v &Right Arrow; the s 0 T ] twenty four · R 0 2 &Center Dot; r the s 0 x - | | a &Right Arrow; the s 0 | | 2 8 &Center Dot; R 0 2 (14)

++ kk 2020 ·· kk ·· 22 ++ kk 3030 ·&Center Dot; kk ·· 11 ++ kk 1010 ·· kk ·&Center Dot; 33 rr sthe s 00 xx ++ kk 2020 22 ++ 22 ·&Center Dot; kk 1010 ·· kk 3030 22 ·&Center Dot; RR 00 22

式(7)~式(14)中,

Figure BDA00000928850100000311
表示卫星在孔径中心时刻的位置矢量,
Figure BDA00000928850100000313
分别表示卫星在孔径中心时刻的速度矢量、加速度矢量、加加速度矢量和加加加速度矢量,R0表示卫星和参考点目标在孔径中心时刻的距离,rs0x、as0x、bs0x、vs0x和ds0x分别为
Figure BDA00000928850100000315
Figure BDA00000928850100000316
在场景坐标系下的距离向分量;In formula (7) ~ formula (14),
Figure BDA00000928850100000311
and Indicates the position vector of the satellite at the moment of the aperture center,
Figure BDA00000928850100000313
and respectively represent the velocity vector, acceleration vector, jerk vector and jerk vector of the satellite at the aperture center moment, R 0 represents the distance between the satellite and the reference point target at the aperture center moment, r s0x , a s0x , b s0x , v s0x and d s0x are
Figure BDA00000928850100000315
and
Figure BDA00000928850100000316
The distance component in the scene coordinate system;

2)基于弯曲轨迹,求出适用于NCS成像算法的二维解析频谱表达式的过程为:2) Based on the curved trajectory, the process of finding the two-dimensional analytical spectrum expression suitable for the NCS imaging algorithm is as follows:

NCS算法的处理是从二维频域开始的,因此求得弯曲轨迹下的二维解析频谱表达式尤为重要;所提出的弯曲轨迹是高阶泰勒展开,故利用级数反转原理求得驻定相位点后,得到的频谱表达式为The processing of the NCS algorithm starts from the two-dimensional frequency domain, so it is particularly important to obtain the two-dimensional analytical spectrum expression under the curved trajectory; the proposed curved trajectory is a high-order Taylor expansion, so the resident After phasing the points, the obtained spectrum expression is

SS (( ff rr ,, ff aa )) == uu rr (( ff rr KK rr )) ·&Center Dot; uu aa [[ ff aa ++ 22 ·&Center Dot; kk 11 cc ·&Center Dot; (( ff rr ++ ff cc )) ]] ·&Center Dot; expexp (( -- jj ·· ππ ·· ff rr 22 KK rr ))

expexp {{ jj ·· 22 ·&Center Dot; ππ ·&Center Dot; -- 22 ·· (( ff rr ++ ff cc )) cc ·· RR ++ 11 44 ·· kk 22 ·· (( cc 22 ·· (( ff rr ++ ff cc )) )) ·· (( ff aa ++ 22 ·&Center Dot; kk 11 cc ·&Center Dot; (( ff rr ++ ff cc )) )) 22 ++ kk 33 88 ·&Center Dot; kk 22 33 ·· (( cc 22 ·· (( ff rr ++ ff cc )) )) 22 ·&Center Dot; (( ff aa ++ 22 ·· kk 11 cc ·· (( ff rr ++ ff cc )) )) 33 ++ 99 ·· kk 33 22 -- 44 ·· kk 22 ·&Center Dot; kk 44 6464 ·&Center Dot; kk 22 55 ·&Center Dot; (( cc 22 ·&Center Dot; (( ff rr ++ ff cc )) )) 33 ·&Center Dot; (( ff aa ++ 22 ·&Center Dot; kk 11 cc ·&Center Dot; (( ff rr ++ ff cc )) )) 44 }} -- -- -- (( 1515 ))

其中,fr和fa分别为距离向和方位向频率,ur(·)和ua(·)分别为距离向和方位向包络,kr为距离向调频率,c为光速,fc为雷达载频;where f r and f a are the range and azimuth frequencies respectively, u r ( ) and u a ( ) are the range and azimuth envelopes respectively, k r is the range modulation frequency, c is the speed of light, f c is the radar carrier frequency;

式(15)不能在NCS算法中直接应用,需要进一步推导,得出Equation (15) cannot be directly applied in the NCS algorithm, and needs to be further deduced to obtain

11 ff rr ++ ff cc == 11 ff cc [[ 11 -- ff rr ff cc ++ (( ff rr ff cc )) 22 -- (( ff rr ff cc )) 33 ++ ·&Center Dot; ·&Center Dot; ·&Center Dot; ]]

(( 11 ff rr ++ ff cc )) 22 == 11 ff cc 22 [[ 11 -- 22 ·&Center Dot; ff rr ff cc ++ 33 ·&Center Dot; (( ff rr ff cc )) 22 -- 44 ·&Center Dot; (( ff rr ff cc )) 33 ++ ·&Center Dot; ·&Center Dot; ·&Center Dot; ]] -- -- -- (( 1616 ))

(( 11 ff rr ++ ff cc )) 33 == 11 ff cc 33 [[ 11 -- 33 ·&Center Dot; ff rr ff cc ++ 66 ·&Center Dot; (( ff rr ff cc )) 22 -- 1010 ·&Center Dot; (( ff rr ff cc )) 33 ++ ·&Center Dot; ·&Center Dot; ·· ]]

利用式(16),经过推导后,得出GEO SAR二维频谱为:Using formula (16), after derivation, the two-dimensional spectrum of GEO SAR is obtained as:

S ( f r , f a ) = u r ( f r K r ) · u a [ f a + 2 k 1 c ( f r + f c ) ] · exp [ j · 2 · π · φ az ( f a , R ) ] · exp [ j · 2 · π · φ RP ( R ) ] (17) S ( f r , f a ) = u r ( f r K r ) &Center Dot; u a [ f a + 2 k 1 c ( f r + f c ) ] &Center Dot; exp [ j &Center Dot; 2 &Center Dot; π · φ az ( f a , R ) ] · exp [ j · 2 · π · φ RP ( R ) ] (17)

·&Center Dot; expexp [[ -- jj ·&Center Dot; 22 ·· ππ ·&Center Dot; bb (( ff aa ,, ff rr )) ]] ·· expexp [[ -- jj ·· 44 ·&Center Dot; ππ ·· RR cc ·&Center Dot; Mm (( ff aa )) ·&Center Dot; ff rr ]] ·· expexp [[ -- jj ·&Center Dot; ππ ·· ff rr 22 KK sthe s (( ff aa ,, RR )) ]] ·&Center Dot; expexp [[ jj ·&Center Dot; φφ 33 (( ff aa ,, RR )) ·&Center Dot; ff rr 33 ]]

对式(17)作进一步的说明如下:A further description of formula (17) is as follows:

2.1式(17)等号右侧的фaz(fa,R)为方位向调制函数,具体表达式为2.1 The ф az (f a , R) on the right side of the equal sign in formula (17) is the azimuth modulation function, and the specific expression is

φφ azaz (( ff aa ,, RR )) == [[ kk 11 22 ·&Center Dot; kk 22 ++ 33 ·&Center Dot; kk 11 22 ·&Center Dot; kk 33 88 ·&Center Dot; kk 22 33 ++ kk 11 33 ·&Center Dot; (( 99 ·&Center Dot; kk 33 22 -- 44 ·&Center Dot; kk 22 ·· kk 44 )) 1616 ·&Center Dot; kk 22 55 ]] ·&Center Dot; ff aa ++

[[ λλ 88 ·&Center Dot; kk 22 ++ 33 ·&Center Dot; λλ ·&Center Dot; kk 11 ·&Center Dot; kk 33 1616 ·&Center Dot; kk 22 33 ++ 33 ·&Center Dot; λλ ·&Center Dot; kk 11 22 ·&Center Dot; (( 99 ·&Center Dot; kk 33 22 -- 44 ·&Center Dot; kk 22 ·&Center Dot; kk 44 )) 6464 ·&Center Dot; kk 22 55 ]] ·&Center Dot; ff aa 22 ++ -- -- -- (( 1818 ))

[[ λλ 22 ·&Center Dot; kk 33 3232 ·&Center Dot; kk 22 33 ++ λλ ·&Center Dot; kk 11 ·&Center Dot; (( 99 ·&Center Dot; kk 33 22 -- 44 ·&Center Dot; kk 22 ·&Center Dot; kk 44 )) 6464 ·&Center Dot; kk 22 55 ]] ·· ff aa 33 ++ λλ 33 ·&Center Dot; (( 99 ·· kk 33 22 -- 44 ·· kk 22 ·&Center Dot; kk 44 )) 512512 ·· kk 22 55 ·&Center Dot; ff aa 44

由于фaz(fa,R)只与方位向频率和目标位置有关,与距离向频率无关,因此可以在距离多普勒域进行补偿;Since ф az (f a , R) is only related to the azimuth frequency and the target position, and has nothing to do with the range frequency, it can be compensated in the range-Doppler domain;

2.2式(17)等号右侧的фRP(R)为精确二维频谱泰勒展开后的剩余相位,表达式为2.2 ф RP (R) on the right side of the equation (17) is the residual phase after Taylor expansion of the exact two-dimensional spectrum, the expression is

φφ RPRP (( RR )) == kk 11 22 22 ·&Center Dot; λλ ·· kk 22 ++ kk 11 33 ·· kk 33 44 ·· λλ ·· kk 22 33 ++ kk 11 44 ·· (( 99 ·· kk 33 22 -- 44 ·· kk 22 ·· kk 44 )) 3232 ·· λλ ·· kk 22 55 -- 22 ·· RR λλ -- -- -- (( 1919 ))

该项与方位向频率和距离向频率无关,与目标的距离向位置有关,可以在距离多普勒域予以补偿;This item has nothing to do with the azimuth frequency and the range frequency, but is related to the range position of the target, and can be compensated in the range-Doppler domain;

2.3式(17)等号右侧的b(fa,fr)为二维频谱展开时得到的参考点处徙动相位,其表达式为2.3 The b(f a , f r ) on the right side of the equation (17) is the migratory phase at the reference point obtained when the two-dimensional spectrum is expanded, and its expression is

bb (( ff aa ,, ff rr )) == -- [[ kk 1010 22 22 ·&Center Dot; kk 2020 ·· cc ++ kk 1010 33 ·· kk 3030 44 ·· kk 2020 33 ·&Center Dot; cc ++ kk 1010 ·· (( 99 ·&Center Dot; kk 3030 22 -- 44 ·&Center Dot; kk 2020 ·&Center Dot; kk 4040 )) 3232 ·&Center Dot; cc ·&Center Dot; kk 2020 55 ]] ·&Center Dot; ff rr ++

[ λ 8 · k 20 · f c + 3 · λ · k 10 · k 30 16 · k 20 3 · f c + 3 · λ k 10 2 · ( 9 · k 30 2 - 4 · k 20 · k 40 ) 64 · f c · k 20 5 ] · f a 2 · f r + (20) [ λ 8 · k 20 &Center Dot; f c + 3 &Center Dot; λ &Center Dot; k 10 &Center Dot; k 30 16 · k 20 3 &Center Dot; f c + 3 &Center Dot; λ k 10 2 &Center Dot; ( 9 · k 30 2 - 4 &Center Dot; k 20 · k 40 ) 64 · f c &Center Dot; k 20 5 ] · f a 2 · f r + (20)

[[ λλ 22 ·&Center Dot; kk 3030 1616 ·&Center Dot; kk 2020 33 ·· ff cc ++ λλ 22 ·&Center Dot; kk 1010 ·&Center Dot; (( 99 ·&Center Dot; kk 3030 22 -- 44 ·&Center Dot; kk 2020 ·&Center Dot; kk 4040 )) 3232 ·&Center Dot; ff cc ·· kk 2020 55 ]] ·&Center Dot; ff aa 33 ·· ff rr ++

33 ·· λλ 22 ·· (( 99 ·&Center Dot; kk 3030 22 -- 44 ·· kk 2020 ·· kk 4040 )) 512512 ·· ff cc ·· kk 2020 55 ff aa 44 ·· ff rr ++ (( 22 ·· RR 00 cc -- BB ·&Center Dot; 11 ·&Center Dot; RR 00 )) ·· ff rr

其中in

BB ·&Center Dot; 11 == -- 22 ·&Center Dot; kk 1010 ·&Center Dot; kk 2020 ·&Center Dot; kk .. 11 -- kk 1010 22 ·· kk .. 22 22 ·&Center Dot; cc ·&Center Dot; kk 2020 22 -- (( 33 ·· kk 1010 22 ·· kk 3030 ·&Center Dot; kk ·&Center Dot; 11 ++ kk 1010 33 ·&Center Dot; kk ·&Center Dot; 33 )) ·&Center Dot; kk 2020 -- 33 ·&Center Dot; kk 1010 33 ·· kk 3030 ·&Center Dot; kk ·&Center Dot; 22 44 ·&Center Dot; cc ·&Center Dot; kk 2020 44 -- AA 33 ·&Center Dot; kk .. 11 -- kk 1010 ·&Center Dot; AA ·&Center Dot; 33 3232 ·&Center Dot; cc ++

{{ -- λλ ·&Center Dot; kk .. 22 88 ·&Center Dot; ff cc ·&Center Dot; kk 2020 22 ++ 33 ·&Center Dot; λλ ·&Center Dot; [[ (( kk 1010 ·· kk ·&Center Dot; 33 ++ kk 3030 ·· kk .. 11 )) ·&Center Dot; kk 2020 -- 33 ·&Center Dot; kk 1010 ·· kk 3030 ·&Center Dot; kk ·&Center Dot; 22 ]] 1616 ·&Center Dot; ff cc ·· kk 2020 44 ++ 33 ·&Center Dot; λλ ·· (( 22 ·&Center Dot; kk 1010 ·&Center Dot; AA 33 ·· kk ·· 11 -- kk 1010 22 ·· AA ·&Center Dot; 33 )) 6464 ·&Center Dot; ff cc }} ·· ff aa 22 (( 21twenty one ))

++ [[ λλ 22 ·&Center Dot; (( kk 2020 ·· kk ·&Center Dot; 33 -- 33 ·· kk 3030 ·· kk ·&Center Dot; 22 )) 1616 ·&Center Dot; ff cc ·· kk 2020 44 ++ λλ 22 ·· (( AA 33 ·&Center Dot; kk ·· 11 -- kk 1010 ·&Center Dot; AA ·· 33 )) 3232 ·· ff cc ]] ·&Center Dot; ff aa 33 ++ 33 ·· λλ 22 ·&Center Dot; AA .. 33 512512 ·· ff cc ·· ff aa 44 ++ 22 cc

AA 33 == 99 ·· kk 3030 22 -- 44 ·&Center Dot; kk 2020 ·&Center Dot; kk 4040 kk 2020 55 -- -- -- (( 22twenty two ))

AA .. 33 == [[ 1818 ·&Center Dot; kk 3030 ·&Center Dot; kk .. 33 -- 44 ·&Center Dot; (( kk 2020 ·&Center Dot; kk ·&Center Dot; 44 ++ kk 4040 ·&Center Dot; kk ·&Center Dot; 22 )) ]] kk 2020 -- 55 ·· (( 99 ·&Center Dot; kk 3030 22 -- 44 ·&Center Dot; kk 2020 ·&Center Dot; kk 4040 )) ·&Center Dot; kk .. 22 kk 2020 66 -- -- -- (( 23twenty three ))

该相位只是参考点处徙动相位的一部分,在传统的基于等效直线模型的CS、NCS算法中是没有这一项的,而在基于弯曲轨迹的CS算法、NCS算法中这一项是特有的,必须需要补偿;而由于该项不具有空变性,因此可以在二维频谱补偿;This phase is only a part of the migration phase at the reference point, which is not available in the traditional CS and NCS algorithms based on the equivalent straight line model, but is unique to the CS algorithm and NCS algorithm based on curved trajectories , it must be compensated; and since this item does not have space variation, it can be compensated in the two-dimensional spectrum;

2.4在式(17)等号右侧的第四个指数项即

Figure BDA00000928850100000610
中,
Figure BDA00000928850100000611
为距离徙动,M(fa)为徙动因子且2.4 The fourth exponent term on the right side of the equation (17) is
Figure BDA00000928850100000610
middle,
Figure BDA00000928850100000611
is the distance migration, M(f a ) is the migration factor and

Mm (( ff aa )) == 11 BB .. 11 ·&Center Dot; cc -- -- -- (( 24twenty four ))

其中的表达式如(21)所示;in The expression of is shown in (21);

可以发现该项对于不同的距离向位置徙动不一致,在CS算法中主要是在距离多普勒域乘以一个Chirp信号调整这一空变性,在NCS算法中同样需要调整这一空变性;It can be found that this item is inconsistent for different distances to position migration. In the CS algorithm, this spatial variability is mainly multiplied by a Chirp signal in the range Doppler domain. This spatial variability also needs to be adjusted in the NCS algorithm;

2.5在式(17)等号右侧的第五个指数项即

Figure BDA0000092885010000073
Figure BDA0000092885010000074
为距离向调制项,其中ks(fa,R)为新的距离向调频因子,且2.5 The fifth exponent term on the right side of the equal sign in formula (17) is
Figure BDA0000092885010000073
middle
Figure BDA0000092885010000074
is the range modulation item, where k s (f a , R) is the new range frequency modulation factor, and

1 K s ( f a , R ) = - [ λ 4 · k 2 · f c 2 + 3 · λ · k 1 · k 3 8 · k 2 3 · f c 2 + 3 · λ · k 1 2 · ( 9 · k 3 2 - 4 · k 2 · k 4 ) 32 · k 2 5 · f c 2 ] · f a 2 - (25) 1 K the s ( f a , R ) = - [ λ 4 &Center Dot; k 2 · f c 2 + 3 · λ &Center Dot; k 1 &Center Dot; k 3 8 &Center Dot; k 2 3 &Center Dot; f c 2 + 3 &Center Dot; λ · k 1 2 · ( 9 &Center Dot; k 3 2 - 4 &Center Dot; k 2 &Center Dot; k 4 ) 32 · k 2 5 &Center Dot; f c 2 ] · f a 2 - (25)

[[ 33 ·&Center Dot; λλ 22 ·&Center Dot; kk 33 1616 ·&Center Dot; kk 22 33 ·&Center Dot; ff cc 22 ++ 33 ·· λλ 22 ·&Center Dot; kk 11 ·&Center Dot; (( 99 ·&Center Dot; kk 33 22 -- 44 ·&Center Dot; kk 22 ·· kk 44 )) 3232 ·&Center Dot; kk 22 55 ·&Center Dot; ff cc 22 ]] ·&Center Dot; ff aa 33 -- 33 ·&Center Dot; λλ 33 ·· (( 99 ·&Center Dot; kk 33 22 -- 44 ·&Center Dot; kk 22 ·&Center Dot; kk 44 )) 128128 ·· kk 22 55 ·&Center Dot; ff cc 22 ·&Center Dot; ff aa 44 ++ 11 KK rr

ks(fa,R)具有空变性,在CS算法中并不考虑它的空变性,在NCS算法中它是空变性调制的一部分,但是它很难直接应用,为此需要进行近似:k s (f a , R) is space-variant, and its space-variation is not considered in the CS algorithm. In the NCS algorithm, it is a part of the space-variation modulation, but it is difficult to apply directly, and an approximation is needed for this:

Ks(fa,R)=ks(fa,R0)+Δks(fa)·[τ(fa,R)-τ(fa,R0)]           (26)K s (f a , R)=k s (f a , R 0 )+Δk s (f a )·[τ(f a ,R)-τ(f a ,R 0 )] (26)

其中in

1 K s ( f a , R 0 ) = - [ λ 4 · k 20 · f c 2 + 3 · λ · k 10 · k 30 8 · k 20 3 · f c 2 + 3 · λ · k 10 2 · ( 9 · k 30 2 - 4 · k 20 · k 40 ) 32 · k 20 5 · f c 2 ] · f a 2 - (27) 1 K the s ( f a , R 0 ) = - [ λ 4 · k 20 · f c 2 + 3 &Center Dot; λ &Center Dot; k 10 &Center Dot; k 30 8 · k 20 3 &Center Dot; f c 2 + 3 · λ &Center Dot; k 10 2 &Center Dot; ( 9 &Center Dot; k 30 2 - 4 &Center Dot; k 20 &Center Dot; k 40 ) 32 &Center Dot; k 20 5 &Center Dot; f c 2 ] &Center Dot; f a 2 - (27)

[[ 33 ·&Center Dot; λλ 22 ·· kk 3030 1616 ·&Center Dot; kk 2020 33 ·&Center Dot; ff cc 22 ++ 33 ·&Center Dot; λλ 22 ·&Center Dot; kk 1010 ·&Center Dot; (( 99 ·&Center Dot; kk 3030 22 -- 44 ·&Center Dot; kk 2020 ·&Center Dot; kk 4040 )) 3232 ·&Center Dot; kk 2020 55 ·&Center Dot; ff cc 22 ]] ·&Center Dot; ff aa 33 -- 33 ·&Center Dot; λλ 33 ·· (( 99 ·&Center Dot; kk 3030 22 -- 44 ·&Center Dot; kk 2020 ·&Center Dot; kk 4040 )) 128128 ·&Center Dot; kk 2020 55 ·&Center Dot; ff cc 22 ·&Center Dot; ff aa 44 ++ 11 KK rr

ΔkΔk sthe s (( ff aa )) == KK sthe s 22 (( ff aa ,, RR 00 )) ·&Center Dot; cc ·&Center Dot; Mm (( ff aa )) 22 ..

-- λλ ·&Center Dot; kk ·&Center Dot; 22 ·· ff aa 22 44 ·· ff cc 22 ·· kk 2020 22 ++ 33 ·· λλ ·· [[ (( kk 1010 ·· kk ·· 33 ++ kk 3030 ·· kk ·· 11 )) ·· kk 2020 -- 33 ·&Center Dot; kk 1010 ·· kk 3030 ·&Center Dot; kk ·· 22 ]] 88 ·· ff cc 22 ·&Center Dot; kk 2020 44 ·· ff aa 22 ++ 33 ·&Center Dot; λλ ·· (( 22 ·&Center Dot; kk 1010 ·· AA 33 ·· kk .. 11 -- kk 1010 22 ·&Center Dot; AA ·&Center Dot; 33 )) 3232 ·· ff cc 22 ·&Center Dot; ff aa 22 ++ 33 ·&Center Dot; λλ 22 ·&Center Dot; (( kk 2020 ·· kk ·· 33 -- 33 ·&Center Dot; kk 3030 ·· kk ·&Center Dot; 22 )) 1616 ·· ff cc 22 ·· kk 2020 44 ·&Center Dot; ff aa 33 ++ 33 ·&Center Dot; λλ 22 ·· (( AA 33 ·&Center Dot; kk ·&Center Dot; 11 -- kk 1010 ·&Center Dot; AA ·&Center Dot; 33 )) 3232 ·&Center Dot; ff cc 22 ·· ff aa 33 ++ 33 ·&Center Dot; λλ 33 ·&Center Dot; AA ·· 33 128128 ·&Center Dot; ff cc 22 ff aa 44 -- -- -- (( 2828 ))

ττ (( ff aa ,, RR )) == 22 ·· RR cc ·&Center Dot; Mm (( ff aa )) -- -- -- (( 2929 ))

ττ (( ff aa ,, RR 00 )) == 22 ·· RR 00 cc ·· Mm (( ff aa )) -- -- -- (( 3030 ))

根据式(26)~(30),得到在NCS算法中用到的操作因子Ym(fa)、q2和q3,它们的表达式分别为(31)~(33),其中Ym(fa)一方面要除三次相位的影响,另一方面用于调整由于后续的调频率空变形的调整所引入的残留三次相位误差;q2和q3主要用于调整距离徙动的空变性和调频率的空变性。According to formulas (26)-(30), the operation factors Y m (f a ), q 2 and q 3 used in the NCS algorithm are obtained, and their expressions are (31)-(33), where Y m (f a ) On the one hand, it is necessary to remove the influence of the third-order phase, and on the other hand, it is used to adjust the residual third-order phase error introduced by the subsequent adjustment of frequency-space deformation; q 2 and q 3 are mainly used to adjust the space of distance migration Spatial variability of denaturation and tuning frequency.

YY mm (( ff aa )) == ΔkΔk sthe s (( ff aa )) ·&Center Dot; (( Mm (( ff refref )) // Mm (( ff aa )) -- 0.50.5 )) KK sthe s 33 (( ff aa ,, RR 00 )) ·· (( Mm (( ff refref )) // Mm (( ff aa )) -- 11 )) -- -- -- (( 3131 ))

q2=Ks(fa,R0)·(M(fref)/M(fa)-1)      (32)q 2 =K s (f a , R 0 )·(M(f ref )/M(f a )-1) (32)

qq 33 == ΔkΔk sthe s (( ff aa )) ·· (( Mm (( ff refref )) // Mm (( ff aa )) -- 11 )) 22 -- -- -- (( 3333 ))

2.6在式(17)等号右侧的第六个指数项

Figure BDA0000092885010000087
中的
Figure BDA0000092885010000088
为在二维频谱解耦时得到的,与距离向频率的三次方有关,且2.6 The sixth exponent term on the right side of the equal sign in formula (17)
Figure BDA0000092885010000087
middle
Figure BDA0000092885010000088
is obtained when the two-dimensional spectrum is decoupled, and is related to the cube of the distance to the frequency, and

φφ 33 (( ff aa ,, RR )) ==

22 ·· ππ ·· -- λλ ·· ff aa 22 88 ·· kk 22 ·· ff cc 33 -- 33 ·· λλ ·· kk 11 ·· kk 33 1616 ·&Center Dot; kk 22 33 ·· ff cc 33 ·· ff aa 22 -- 33 ·&Center Dot; λλ ·· kk 11 22 ·· (( 99 ·· kk 33 22 -- 44 ·· kk 22 ·· kk 44 )) 6464 ·&Center Dot; kk 22 55 ·&Center Dot; ff cc 33 ·&Center Dot; ff aa 22 -- λλ 22 ·&Center Dot; kk 33 ·&Center Dot; ff aa 33 88 ·· kk 22 33 ·&Center Dot; ff cc 33 -- λλ 22 ·· kk 11 ·&Center Dot; (( 99 ·· kk 33 22 -- 44 ·&Center Dot; kk 22 ·· kk 44 )) 1616 ·· kk 22 55 ·&Center Dot; ff cc 33 ·&Center Dot; ff aa 33 -- 55 ·· λλ 33 ·&Center Dot; (( 99 ·&Center Dot; kk 33 22 -- 44 ·&Center Dot; kk 22 ·&Center Dot; kk 44 )) 256256 ·· kk 22 55 ·· ff cc 33 ·· ff aa 44 -- -- -- (( 3434 ))

ф3(fa,R)具有空变性,但是它随距离向的变化可以忽略,一般用ф3(fa,R0)代替ф3(fa,R),也即在(34)中k1~k4要用R0处的结果k10~k40,因此,ф3(fa,R0)的表达式为ф 3 (f a , R) is space-variant, but its variation with distance can be ignored. Generally, ф 3 (f a , R 0 ) is used to replace ф 3 (f a , R), that is, in (34) k 1 ~ k 4 need to use the result k 10 ~ k 40 at R 0 , therefore, the expression of ф 3 (f a , R 0 ) is

φφ 33 (( ff aa ,, RR )) == φφ 33 (( ff aa ,, RR 00 )) ==

22 ·· ππ ·· -- λλ ·· ff aa 22 88 ·· kk 2020 ·· ff cc 33 -- 33 ·· λλ ·· kk 1010 ·· kk 3030 1616 ·· kk 2020 33 ·· ff cc 33 ·· ff aa 22 -- 33 ·· λλ ·· kk 1010 22 ·· (( 99 ·· kk 3030 22 -- 44 ·· kk 2020 ·· kk 4040 )) 6464 ·&Center Dot; kk 2020 55 ·· ff cc 33 ·· ff aa 22 -- λλ 22 ·· kk 3030 ·· ff aa 33 88 ·· kk 2020 33 ·· ff cc 33 -- λλ 22 ·&Center Dot; kk 11 ·· (( 99 ·· kk 3030 22 -- 44 ·· kk 2020 ·&Center Dot; kk 4040 )) 1616 ·&Center Dot; kk 2020 55 ·· ff cc 33 ·· ff aa 33 -- 55 ·&Center Dot; λλ 33 ·&Center Dot; (( 99 ·&Center Dot; kk 3030 22 -- 44 ·&Center Dot; kk 2020 ·&Center Dot; kk 4040 )) 256256 ·&Center Dot; kk 2020 55 ·&Center Dot; ff cc 33 ·· ff aa 44 -- -- -- (( 3535 ))

有益效果Beneficial effect

本发明相对于现有技术相比,其优势在于:通过高阶泰勒展开的方法得到了一种新的适用于GEO SAR的弯曲轨迹模型,该轨迹模型可以解决GEO SAR近地点等效直线模型误差比较大,远地点等效直线模型完全不能应用等缺点;同时基于等效直线模型,得到了一个解析适用于NCS算法的二位频谱,利用此频谱,NCS算法的各个补偿函数都可以求得,实现了GEO SAR大场景成像的要求。Compared with the prior art, the present invention has the advantage that a new curved trajectory model suitable for GEO SAR is obtained through the method of high-order Taylor expansion, and the trajectory model can solve the error comparison of GEO SAR perigee equivalent straight line model. large, the apogee equivalent straight line model cannot be applied at all; at the same time, based on the equivalent straight line model, a binary spectrum suitable for the NCS algorithm is obtained. Using this spectrum, each compensation function of the NCS algorithm can be obtained, and the realization of GEO SAR large scene imaging requirements.

附图说明 Description of drawings

图1为本发明改进后的NCS算法技术方案实施流程图;Fig. 1 is the implementation flowchart of the NCS algorithm technical scheme after the improvement of the present invention;

图2为本发明实施例中的点目标(-30km,-30km)的仿真验证结果图;Fig. 2 is the simulation verification result figure of the point target (-30km,-30km) in the embodiment of the present invention;

图3为本发明实施例中的点目标(30km,-30km)的仿真验证结果图;Fig. 3 is the simulation verification result figure of the point target (30km,-30km) in the embodiment of the present invention;

图4为本发明实施例中的点目标(0km,0km)的仿真验证结果图;Fig. 4 is the simulation verification result figure of the point target (0km, 0km) in the embodiment of the present invention;

图5为本发明实施例中的点目标(-30km,30km)的仿真验证结果图;Fig. 5 is the simulation verification result figure of the point target (-30km, 30km) in the embodiment of the present invention;

图6为本发明实施例中的点目标(30km,30km)的仿真验证结果图;Fig. 6 is the simulation verification result figure of the point target (30km, 30km) in the embodiment of the present invention;

具体实施方式 Detailed ways

下面结合附图对本发明方法的实施方式做详细说明。The implementation of the method of the present invention will be described in detail below in conjunction with the accompanying drawings.

实施例Example

雷达在地球同步轨道上以一定的速度飞行,向地面发射chirp信号,并接受来自地面的回波。对得到的回波进行成像处理,提出一种适用于GEO SAR改进的NCS算法,其具体步骤如图1所示,包括:The radar flies at a certain speed in a geosynchronous orbit, transmits chirp signals to the ground, and receives echoes from the ground. Imaging processing is performed on the obtained echoes, and an improved NCS algorithm suitable for GEO SAR is proposed. The specific steps are shown in Figure 1, including:

1)雷达接收到的目标回波1) The target echo received by the radar

雷达发射一载波频率为fc的线性调频信号。对接收到的回波经过解调后,可以得到The radar transmits a chirp signal with a carrier frequency fc . After demodulating the received echo, we can get

sthe s (( tt rr ,, tt aa )) == uu rr (( tt rr -- 22 ·· RR nno cc )) ·&Center Dot; uu aa (( tt aa )) ·· expexp [[ jj ·· ππ ·&Center Dot; KK rr ·&Center Dot; (( tt rr -- 22 ·· RR nno cc )) 22 ]] ·&Center Dot; expexp (( -- jj ·&Center Dot; 44 ·&Center Dot; ππ λλ ·&Center Dot; RR nno )) -- -- -- (( 3636 ))

其中ur(·)和ua(·)分别为距离向和方位向包络,tr和ta分别为距离向和方位向时间,Kr为距离向调频率,c为光速,λ为波长,Rn为目标的斜距历史,具体表达式可以用公式(2)来表示。where u r (·) and u a (·) are the range and azimuth envelopes respectively, t r and t a are the range and azimuth time respectively, K r is the range modulation frequency, c is the speed of light, λ is Wavelength, R n is the slant distance history of the target, and the specific expression can be expressed by formula (2).

2)对回波进行距离徙动初校正和三次相位去除2) Carry out initial range migration correction and triple phase removal on the echo

距离向和方位向FFT后,可以得到SAR回波的二维频谱表达式,即After range and azimuth FFT, the two-dimensional spectrum expression of the SAR echo can be obtained, namely

S ( f r , f a ) = u r ( f r K r ) · u a [ f a + 2 k 1 c ( f r + f c ) ] · exp [ j · 2 · π · φ az ( f a , R ) ] · exp [ j · 2 · π · φ RP ( R ) ] (37) S ( f r , f a ) = u r ( f r K r ) · u a [ f a + 2 k 1 c ( f r + f c ) ] &Center Dot; exp [ j · 2 &Center Dot; π &Center Dot; φ az ( f a , R ) ] &Center Dot; exp [ j &Center Dot; 2 &Center Dot; π &Center Dot; φ RP ( R ) ] (37)

·· expexp [[ -- jj ·· 22 ·· ππ ·· bb (( ff aa ,, ff rr )) ]] ·· expexp [[ -- jj ·· 44 ·· ππ ·· RR cc ·· Mm (( ff aa )) ·· ff rr ]] expexp [[ -- jj ·· ππ ·· ff rr 22 KK sthe s (( ff aa ,, RR )) ]] ·· expexp [[ jj ·· φφ 33 (( ff aa ,, RR )) ·· ff rr 33 ]]

在二维频域需要做两个工作。第一,要去除在二维频谱推导中得到的参考点处的徙动相位b(fa,fr),以方便后续算法的推导,补偿函数的表达式为(38)。需要说明的是这里去除的距离徙动只是参考点距离徙动的一部分;第二,要乘以一个非线性调频函数,表达式为(39),该函数一方面要去除三次相位的影响,另一方面用于调整由于后续的调频率空变形的调整所引入的残留三次相位误差。In the two-dimensional frequency domain, two tasks need to be done. First, the migratory phase b(f a , f r ) at the reference point obtained in the derivation of the two-dimensional spectrum should be removed to facilitate the derivation of the subsequent algorithm. The expression of the compensation function is (38). It should be noted that the distance migration removed here is only a part of the distance migration of the reference point; secondly, it needs to be multiplied by a non-linear frequency modulation function, the expression is (39), on the one hand, this function needs to remove the influence of the third phase, On the other hand, it is used to adjust the residual third-order phase error introduced by the subsequent adjustment of modulation frequency-space deformation.

H1=exp[j·2·π·B10(fa,fr)]                       (38)H 1 = exp[j·2·π·B 10 (f a , f r )] (38)

Hh 22 == expexp [[ jj ·· 22 ·· ππ 33 ·&Center Dot; (( ff aa )) ·&Center Dot; ff rr 33 ]] -- -- -- (( 3939 ))

其中in

YY (( ff aa )) == ΔkΔk sthe s (( ff aa )) ·&Center Dot; (( αα -- 0.50.5 )) KK sthe s 33 (( ff aa ,, RR 00 )) ·· (( αα -- 11 )) -- 33 22 ·&Center Dot; ππ ·· φφ 33 (( ff aa ,, RR 00 )) -- -- -- (( 4040 ))

在(40)中,α的表达式为In (40), the expression of α is

αα == Mm (( ff refref )) Mm (( ff aa )) -- -- -- (( 4141 ))

fref为方位向参考频率。f ref is the azimuth reference frequency.

经过处理后的回波表达式为The processed echo expression is

S 1 ( f r , f a ) = u r ( f r K r ) · u a [ f a + 2 k 1 c ( f r + f c ) ] · exp [ j · 2 · π · φ az ( f a , R ) ] · exp [ j · 2 · π · φ RP ( R ) ] (42) S 1 ( f r , f a ) = u r ( f r K r ) · u a [ f a + 2 k 1 c ( f r + f c ) ] &Center Dot; exp [ j &Center Dot; 2 &Center Dot; π &Center Dot; φ az ( f a , R ) ] &Center Dot; exp [ j · 2 · π &Center Dot; φ RP ( R ) ] (42)

·&Center Dot; expexp [[ -- jj ·&Center Dot; 44 ·&Center Dot; ππ ·· RR cc ·· Mm (( ff aa )) ·· ff rr ]] ·&Center Dot; expexp [[ -- jj ·&Center Dot; ππ ·&Center Dot; ff rr 22 KK sthe s (( ff aa ,, RR )) ]] ·&Center Dot; expexp [[ jj ·&Center Dot; 22 ·&Center Dot; ππ 33 ·&Center Dot; YY mm (( ff aa )) ·&Center Dot; ff rr 33 ]]

其中in

YY mm (( ff aa )) == ΔkΔk sthe s (( ff aa )) ·&Center Dot; (( αα -- 0.50.5 )) KK sthe s 33 (( ff aa ,, RR 00 )) ·&Center Dot; (( αα -- 11 )) -- -- -- (( 4343 ))

3)对回波数据进行距离徙动的空变性和调频率的空变性的调整距离向IFFT,得到回波的距离多普勒域的表达式为3) Adjust the range-wise IFFT of the space-variation of the range migration and the space-variation of the modulation frequency on the echo data, and obtain the expression of the range-Doppler domain of the echo as

SS 11 (( tt rr ,, ff aa )) == uu rr {{ KK sthe s (( ff aa ,, RR )) kk rr [[ tt rr -- 22 ·· RR cc ·· Mm (( ff aa )) ]] }} ·· uu aa (( ff aa )) ·· expexp [[ jj ·· 22 ·· ππ ·· φφ azaz (( ff aa ,, RR )) ]] ··

expexp [[ jj ·· 22 ·· ππ ·· φφ RPRP (( RR )) ]] ·&Center Dot; expexp {{ jj ·· ππ ·· KK sthe s (( ff aa ,, RR )) [[ tt rr -- 22 ·· RR cc ·&Center Dot; Mm (( ff aa )) ]] 22 }} ·&Center Dot; -- -- -- (( 4444 ))

expexp {{ jj ·&Center Dot; 22 ·· ππ 33 ·&Center Dot; YY mm (( ff aa )) ·&Center Dot; KK sthe s (( ff aa ,, RR )) [[ tt rr -- 22 ·&Center Dot; RR cc ·&Center Dot; Mm (( ff aa )) ]] 33 }}

在距离多普勒域进行非线性CS操作,主要是调整距离徙动的空变性和调频率的空变性。经过此步的操作后,场景内的空变性去除,实现距离徙动可以在二维频域进行统一处理。非线性CS操作函数为The non-linear CS operation in the range-Doppler domain is mainly to adjust the spatial variation of the range migration and the spatial variation of the modulation frequency. After this step, the spatial variability in the scene is removed, and distance migration can be processed uniformly in the two-dimensional frequency domain. The nonlinear CS operation function is

Hh 33 == expexp {{ jj ·· ππ ·&Center Dot; qq 22 ·· [[ tt rr -- ττ (( ff aa ,, RR 00 )) ]] 22 }} ·&Center Dot; expexp {{ jj ·&Center Dot; 22 ·&Center Dot; ππ 33 ·&Center Dot; qq 33 ·&Center Dot; [[ tt rr -- ττ (( ff aa ,, RR 00 )) ]] 33 }} -- -- -- (( 4545 ))

其中in

q2=q2=ks(fa,R0)·(α-1)                      (46)q 2 =q 2 =k s (f a ,R 0 )·(α-1) (46)

qq 33 == qq 33 == ΔkΔk sthe s (( ff aa )) ·&Center Dot; (( αα -- 11 )) 22 -- -- -- (( 4747 ))

4)对回波进行距离向压缩和距离徙动校正4) Perform range compression and range migration correction on the echo

(45)和(44)相乘后,再进行距离向FFT。此时的回波数据在二维频域,此时回波表达式为(45) and (44) are multiplied, and then the range FFT is performed. The echo data at this time is in the two-dimensional frequency domain, and the echo expression at this time is

SS 22 (( ff rr ,, ff aa )) == uu rr [[ ff rr KK sthe s (( ff aa ,, RR 00 )) ·&Center Dot; αα ]] ·&Center Dot; uu aa (( ff aa )) ·&Center Dot; expexp [[ jj ·&Center Dot; 22 ·&Center Dot; ππ ·&Center Dot; φφ azaz (( ff aa ,, RR )) ]] ·&Center Dot; expexp [[ jj ·· 22 ·· φφ RPRP (( RR )) ]] ·&Center Dot;

expexp [[ -- jj ·· ππ ·· ff rr 22 αα ·· KK sthe s (( ff aa ,, RR 00 )) ]] ·· expexp {{ jj ·· 22 ·· ππ 33 ·· [[ YY mm (( ff aa )) ·· KK sthe s 33 (( ff aa ,, RR 00 )) ++ qq 33 ]] [[ αα ·· KK sthe s (( ff aa ,, RR 00 )) ]] 33 ·· ff rr 33 }} ·· -- -- -- (( 4848 ))

expexp {{ -- jj ·&Center Dot; 44 ·&Center Dot; ππ ·&Center Dot; RR 00 cc ·&Center Dot; [[ 11 Mm (( ff aa )) -- 11 Mm (( ff refref )) ]] ·&Center Dot; ff rr }} expexp [[ -- jj ·&Center Dot; 44 ·&Center Dot; ππ ·&Center Dot; RR cc ·· Mm (( ff refref )) ·&Center Dot; ff rr ]] ·· expexp (( jj ·&Center Dot; ππ ·&Center Dot; CC 00 ))

在(48)中,最后一个指数项是关于C0,它是在求解Ym(fa)、q2和q3过程中残留下的,具体表达式为In (48), the last exponential term is about C 0 , which is left over from the process of solving Y m (f a ), q 2 and q 3 , and the specific expression is

C 0 = K s ( f a , R ) · Δτ 2 · ( 1 α - 1 ) 2 + 2 3 · Y m ( f a ) · K s 3 ( f a , R ) · Δτ 3 · ( 1 α - 1 ) 3 (49) C 0 = K the s ( f a , R ) &Center Dot; Δτ 2 &Center Dot; ( 1 α - 1 ) 2 + 2 3 · Y m ( f a ) · K the s 3 ( f a , R ) &Center Dot; Δτ 3 &Center Dot; ( 1 α - 1 ) 3 (49)

++ qq 22 ·&Center Dot; (( ΔτΔτ αα )) 22 ++ 22 33 ·&Center Dot; qq 33 ·&Center Dot; (( ΔτΔτ αα )) 33

其中in

Δτ=τ(fa,R)-τ(fa,R0)                        (50)Δτ=τ(f a ,R)-τ(f a ,R 0 ) (50)

C0不仅与方位向频率有关,而且是沿着距离向在变化,因此(48)中最后一个指数项的补偿只能在距离多普勒域进行。C 0 is not only related to the azimuth frequency, but also changes along the range direction, so the compensation of the last exponential term in (48) can only be performed in the range-Doppler domain.

由于经过上一步的非线性CS操作,距离徙动校正可以在方位频域进行统一处理,而且在二维频域要进行距离向压缩和二次距离压缩等。距离向压缩函数为Due to the nonlinear CS operation in the previous step, range migration correction can be processed uniformly in the azimuth frequency domain, and range compression and secondary range compression must be performed in the two-dimensional frequency domain. The distance compression function is

Hh 44 == expexp [[ jj ·&Center Dot; ππ ·&Center Dot; ff rr 22 αα ·&Center Dot; KK sthe s (( ff aa ,, RR 00 )) ]] -- -- -- (( 5151 ))

二次距离压缩函数为The quadratic distance compression function is

Hh 55 == expexp {{ -- jj ·&Center Dot; 22 ·&Center Dot; ππ 33 ·&Center Dot; [[ YY mm (( ff aa )) ·&Center Dot; KK sthe s 33 (( ff aa ,, RR 00 )) ++ qq 33 ]] [[ αα ·&Center Dot; KK sthe s (( ff aa ,, RR 00 )) ]] 33 ·&Center Dot; ff rr 33 }} -- -- -- (( 5252 ))

距离徙动校正函数为The distance migration correction function is

Hh 66 == expexp {{ jj ·&Center Dot; 44 ·&Center Dot; ππ ·&Center Dot; RR 00 cc ·&Center Dot; [[ 11 Mm (( ff aa )) -- 11 Mm (( ff refref )) ]] ·&Center Dot; ff rr }} -- -- -- (( 5353 ))

距离向压缩、二次距离压缩和距离徙动校正后的回波表达式为The echo expression after range compression, secondary range compression and range migration correction is

S 3 ( f r , f a ) = u r { f r K s ( f a , R 0 ) · α } · u a ( f a ) · exp [ j · 2 · π · φ az ( f a , R ) ] · (54) S 3 ( f r , f a ) = u r { f r K the s ( f a , R 0 ) &Center Dot; α } &Center Dot; u a ( f a ) &Center Dot; exp [ j · 2 &Center Dot; π &Center Dot; φ az ( f a , R ) ] &Center Dot; (54)

expexp [[ jj ·&Center Dot; 22 ·&Center Dot; ππ ·&Center Dot; φφ RPRP (( RR )) ]] ·&Center Dot; expexp [[ -- jj ·&Center Dot; 44 ·&Center Dot; ππ ·&Center Dot; RR cc ·&Center Dot; Mm (( ff refref )) ·&Center Dot; ff rr ]] ·&Center Dot; expexp (( jj ·&Center Dot; ππ ·&Center Dot; CC 00 ))

5)对回波进行方位向压缩5) Azimuth compression of the echo

经过距离向压缩和距离徙动校正后,此时的回波在距离向上已经聚焦好,需要进行的是方位向压缩,方位向压缩函数要沿着不同的距离门进行更新。首先将在二维频域经过距离压缩和徙动校正处理后的回波数据进行距离向IFFT,得到距离多普勒域的回波表达式After range compression and range migration correction, the echo at this time has been focused in the range direction, and what needs to be performed is azimuth compression, and the azimuth compression function needs to be updated along different range gates. Firstly, the range-directed IFFT is performed on the echo data processed by range compression and migration correction in the two-dimensional frequency domain, and the echo expression in the range-Doppler domain is obtained

SS 33 (( tt rr ,, ff aa )) == sinsin cc [[ tt rr -- 22 ·&Center Dot; RR cc ·&Center Dot; Mm (( ff refref )) ]] ·&Center Dot; uu aa (( ff aa )) ·&Center Dot; -- -- -- (( 5555 ))

expexp [[ jj ·&Center Dot; 22 ·&Center Dot; ππ ·&Center Dot; φφ azaz (( ff aa ,, RR )) ]] ·&Center Dot; expexp [[ jj ·· 22 ·&Center Dot; ππ ·&Center Dot; φφ RPRP (( RR )) ]] ·&Center Dot; expexp (( jj ·&Center Dot; ππ ·· CC 00 ))

进行方位向压缩,压缩函数为Perform azimuth compression, the compression function is

H7=exp[-j·2·π·фaz(fa,R)]        (56)H 7 =exp[-j·2·π·ф az (f a , R)] (56)

然后再进行残留相位的去除,表达式为Then remove the residual phase, the expression is

H8=exp[-j·2·π·фRP(R)-j·π·C0]              (57)H 8 =exp[-j·2·π·ф RP (R)-j·π·C 0 ] (57)

6)最后一步是方位向IFFT,可以将回波变到二维时间域,得到聚焦好的SAR图像。6) The last step is the azimuth IFFT, which can transform the echo into the two-dimensional time domain and obtain a well-focused SAR image.

下面进行仿真验证。这里利用如下参数进行仿真验证:距离向带宽18MHz,采样频率20MHz,PRF为200Hz,脉冲宽度20us,合成孔径时间为100s。得到的结果如图2~图6所示,其中图2、3、5、6为场景边缘点的仿真结果,图4为场景中心点的仿真结果。可以发现这5个点的二维旁瓣清晰可见,没有耦合现象的发生。The simulation verification is carried out below. The following parameters are used here for simulation verification: the range bandwidth is 18MHz, the sampling frequency is 20MHz, the PRF is 200Hz, the pulse width is 20us, and the synthetic aperture time is 100s. The obtained results are shown in Figures 2 to 6, in which Figures 2, 3, 5, and 6 are the simulation results of the edge points of the scene, and Figure 4 is the simulation result of the center point of the scene. It can be found that the two-dimensional side lobes of these five points are clearly visible, and no coupling phenomenon occurs.

以上所述为本发明的较佳实施例而已,本发明不应该局限于该实施例和附图所公开的内容。凡是不脱离本发明所公开的精神下完成的等效或修改,都落入本发明保护的范围。The above description is only a preferred embodiment of the present invention, and the present invention should not be limited to the content disclosed in this embodiment and the accompanying drawings. All equivalents or modifications accomplished without departing from the disclosed spirit of the present invention fall within the protection scope of the present invention.

Claims (1)

1. improvement NCS imaging algorithm that is applicable to geostationary orbit SAR; It is characterized in that its improvements are two parts: the one, set up the serpentine track signal model and replace the equivalent straight line model in the former NCS imaging algorithm; The 2nd, and on the basis of setting up the serpentine track signal model, obtain the two-dimensional analysis spectrum expression formula that is applicable to the NCS imaging algorithm, the detailed process of two parts is respectively:
1) process of setting up the serpentine track signal model is:
Definition satellite and the target in each pulse repetition time (PRT) coordinates were
Figure FDA0000092885000000011
and
Figure FDA0000092885000000012
satellite and target slant range between the real history is expressed as
R n = | | r → sn - r → gn | | - - - ( 1 )
Formula (1) is carried out obtaining the serpentine track model after the Taylor expansion
R n=R+k 1·t a+k 2·t a 2+k 3·t a 3+k 4·t a 4+… (2)
T wherein aFor the orientation to the time, R, k 1, k 2, k 3And k 4Be R nThe Taylor expansion coefficient on 0 to 4 rank, k wherein 1, k 2, k 3And k 4The formula of embodying is respectively:
k 1 = k 10 + k . 1 · ( R - R 0 ) - - - ( 3 )
k 2 = k 20 + k . 2 · ( R - R 0 ) - - - ( 4 )
k 3 = k 30 + k . 3 · ( R - R 0 ) - - - ( 5 )
k 4 = k 40 + k . 4 · ( R - R 0 ) - - - ( 6 )
In formula (3)~(6), k 10~k 40,
Figure FDA0000092885000000018
The formula that embodies be respectively:
k 10 = v → s 0 · ( r → s 0 - r → g 0 ) T / | | r → s 0 - r → g 0 | | - - - ( 7 )
k 20 = a → s 0 · ( r → s 0 - r → g 0 ) T + | | v → s 0 | | 2 2 · | | r → s 0 - r → g 0 | | - [ v → s 0 · ( r → s 0 - r → g 0 ) T ] 2 2 · | | r → s 0 - r → g 0 | | 3 - - - ( 8 )
k 30 = b → s 0 · ( r → s 0 - r → g 0 ) T + 3 · a → s 0 · v → s 0 T 6 · | | r → s 0 - r → g 0 | | + [ v → s 0 · ( r → s 0 - r → g 0 ) T ] 3 2 · | | r → s 0 - r → g 0 | | 5 (9)
- v → s 0 · ( r → s 0 - r → g 0 ) T · a → s 0 · ( r → s 0 - r → g 0 ) T 2 · | | r → s 0 - r → g 0 | | 3 - v → s 0 · ( r → s 0 - r → g 0 ) T · | | v → s 0 | | 2 2 · | | r → s 0 - r → g 0 | | 3
k 40 = d → s 0 · ( r → s 0 - r → g 0 ) T + 3 · b → s 0 · v → s 0 T 24 · | | r → s 0 - r → g 0 | | + | | a → s 0 | | 2 8 · | | r → s 0 - r → g 0 | | - k 2 2 + 2 · k 1 · k 3 2 · | | r → s 0 - r → g 0 | | - - - ( 10 )
k . 1 = v s 0 x r s 0 x - v → s 0 · ( r → s 0 - r → g 0 ) T R 0 2 - - - ( 11 )
k · 2 = a s 0 x · R 0 2 - r s 0 x · ( a → s 0 · ( r → s 0 - r → g 0 ) T + | | v → s 0 | | 2 ) 2 · R 0 2 · r s 0 x - v s 0 x · v → s 0 · ( r → s 0 - r → g 0 ) T R 0 2 · r s 0 x + 3 · v → s 0 · ( r → s 0 - r → g 0 ) T 2 · R 0 4
(12)
k · 3 = b s 0 x · R 0 2 - r s 0 x · [ b → s 0 · ( r → s 0 - r → g 0 ) T + 3 · a → s 0 · v → s 0 T ] 6 · R 0 2 · r s 0 x +
3 · v s 0 x · [ v → s 0 · ( r → s 0 - r → g 0 ) T ] 2 - 5 · r s 0 x · [ v → s 0 · ( r → s 0 - r → g 0 ) T ] 3 2 · R 0 6 · r s 0 x - - - ( 13 )
- v s 0 x · a → s 0 · ( r → s 0 - r → g 0 ) T + a s 0 x · v → s 0 · ( r → s 0 - r → g 0 ) T 2 · R 0 2 · r s 0 x
+ 3 · v → s 0 · ( r → s 0 - r → g 0 ) T · a → s 0 · ( r → s 0 - r → g 0 ) T 2 · R 0 4 - v s 0 x · | | v → s 0 | | 2 2 · R 0 2 · r s 0 x + 3 · v → s 0 · ( r → s 0 - r → g 0 ) T · | | v → s 0 | | 2 2 · R 0 4
k . 4 = d s 0 x · R 0 2 - r s 0 x · [ d → s 0 · ( r → s 0 - r → g 0 ) T + 4 · b → s 0 · v → s 0 T ] 24 · R 0 2 · r s 0 x - | | a → s 0 | | 2 8 · R 0 2 (14)
+ k 20 · k · 2 + k 30 · k . 1 + k 10 · k . 3 r s 0 x + k 20 2 + 2 · k 10 · k 30 2 · R 0 2
In formula (7)~formula (14),
Figure FDA0000092885000000031
With
Figure FDA0000092885000000032
Represent satellite at aperture center position vector constantly, With
Figure FDA0000092885000000034
Represent respectively satellite aperture center constantly velocity, acceleration, acceleration vector and add acceleration vector, R 0Expression satellite and reference point target are at aperture center distance constantly, r S0x, a S0x, b S0x, v S0xAnd d S0xBe respectively
Figure FDA0000092885000000035
Figure FDA0000092885000000036
With
Figure FDA0000092885000000037
Distance under the scene coordinate system is to component;
2), obtain the two-dimensional analysis frequency spectrum table 2-d spectrum that is applicable to the NCS imaging algorithm and do based on serpentine track
S ( f r , f a ) = u r ( f r K r ) · u a [ f a + 2 · k 1 c · ( f r + f c ) ] ·
exp [ j · 2 · π · φ az ( f a , R ) ] · exp [ j · 2 · π · φ RP ( R ) ]
· exp [ - j · 2 · π · b ( f a , f r ) ] · exp [ - j · 4 · π · R c · M ( f a ) · f r ] · - - - ( 15 )
exp [ - j · π · f r 2 K s ( f a , R ) ] · exp [ j · φ 3 ( f a , R ) · f r 3 ]
Formula (15) is further described as follows:
2.1 the ф on formula (15) equal sign right side Az(f a, R) be the orientation to modulating function, the formula of embodying does
φ az ( f a , R ) = [ k 1 2 · k 2 + 3 · k 1 2 · k 3 8 · k 2 3 + k 1 3 · ( 9 · k 3 2 - 4 · k 2 · k 4 ) 16 · k 2 5 ] · f a +
[ λ 8 · k 2 + 3 · λ · k 1 · k 3 16 · k 2 3 + 3 · λ · k 1 2 · ( 9 · k 3 2 - 4 · k 2 · k 4 ) 64 · k 2 5 ] · f a 2 + - - - ( 16 )
[ λ 2 · k 3 32 · k 2 3 + λ · k 1 · ( 9 · k 3 2 - 4 · k 2 · k 4 ) 64 · k 2 5 ] · f a 3 + λ 3 · ( 9 · k 3 2 - 4 · k 2 · k 4 ) 512 · k 2 5 · f a 4
2.2 the ф on formula (15) equal sign right side RP(R) be excess phase after the accurate 2-d spectrum Taylor expansion, expression formula does
φ RP ( R ) = k 1 2 2 · λ · k 2 + k 1 3 · k 3 4 · λ · k 2 3 + k 1 4 · ( 9 · k 3 2 - 4 · k 2 · k 4 ) 32 · λ · k 2 5 - 2 · R λ - - - ( 17 )
2.3 the b (f on formula (15) equal sign right side a, f r) the RP place migration phase place that obtains when launching for 2-d spectrum, its expression formula does
b ( f a , f r ) = - [ k 10 2 2 · k 20 · c + k 10 3 · k 30 4 · k 20 3 · c + k 10 · ( 9 · k 30 2 - 4 · k 20 · k 40 ) 32 · c · k 20 5 ] · f r +
[ λ 8 · k 20 · f c + 3 · λ · k 10 · k 30 16 · k 20 3 · f c + 3 · λ k 10 2 · ( 9 · k 30 2 - 4 · k 20 · k 40 ) 64 · f c · k 20 5 ] · f a 2 · f r + (18)
[ λ 2 · k 30 16 · k 20 3 · f c + λ 2 · k 10 · ( 9 · k 30 2 - 4 · k 20 · k 40 ) 32 · f c · k 20 5 ] · f a 3 · f r +
3 · λ 2 · ( 9 · k 30 2 - 4 · k 20 · k 40 ) 512 · f c · k 20 5 f a 4 · f r + ( 2 · R 0 c - B · 1 · R 0 ) · f r
Wherein
B · 1 = - 2 · k 10 · k 20 · k . 1 - k 10 2 · k . 2 2 · c · k 20 2 - ( 3 · k 10 2 · k 30 · k · 1 + k 10 3 · k · 3 ) · k 20 - 3 · k 10 3 · k 30 · k · 2 4 · c · k 20 4 - A 3 · k . 1 - k 10 · A · 3 32 · c +
- λ · k · 2 8 · f c · k 20 2 + 3 · λ · [ ( k 10 · k · 3 + k 30 · k · 1 ) · k 20 - 3 · k 10 · k 30 · k · 2 ] 16 · f c · k 20 4 + 3 · λ · ( 2 · k 10 · A 3 · k . 1 - k 10 2 · A · 3 ) 64 · f c · f a 2
+ [ λ 2 · ( k 20 · k · 3 - 3 · k 30 · k · 2 ) 16 · f c · k 20 4 + λ 2 · ( A 3 · k · 1 - k 10 · A · 3 ) 32 · f c ] · f a 3 + 3 · λ 2 · A . 3 512 · f c · f a 4 + 2 c
(19)
A 3 = 9 · k 30 2 - 4 · k 20 · k 40 k 20 5 - - - ( 20 )
A . 3 = [ 18 · k 30 · k . 3 - 4 · ( k 20 · k · 4 + k 40 · k · 2 ) ] k 20 - 5 · ( 9 · k 30 2 - 4 · k 20 · k 40 ) · k . 2 k 20 6 - - - ( 21 )
2.4 the 4th exponential term on formula (15) equal sign right side is
Figure FDA0000092885000000051
In,
Figure FDA0000092885000000052
Be range migration, M (f a) be the migration factor and
M ( f a ) = 1 B . 1 · c - - - ( 22 )
2.5 the 5th exponential term on formula (15) equal sign right side is
Figure FDA0000092885000000054
In
Figure FDA0000092885000000055
For distance to modulation item, K wherein s(f a, R) be new distance to frequency modulation factor, and
K s(f a,R)=K s(f a,R 0)+Δk s(f a)·[τ(f a,R)-τ(f a,R 0)] (23)
Wherein
1 K s ( f a , R 0 ) = - [ λ 4 · k 20 · f c 2 + 3 · λ · k 10 · k 30 8 · k 20 3 · f c 2 + 3 · λ · k 10 2 · ( 9 · k 30 2 - 4 · k 20 · k 40 ) 32 · k 20 5 · f c 2 ] · f a 2 -
[ 3 · λ 2 · k 30 16 · k 20 3 · f c 2 + 3 · λ 2 · k 10 · ( 9 · k 30 2 - 4 · k 20 · k 40 ) 32 · k 20 5 · f c 2 ] · f a 3 - - - ( 24 )
- 3 · λ 3 · ( 9 · k 30 2 - 4 · k 20 · k 40 ) 128 · k 20 5 · f c 2 · f a 4 + 1 K r
Δk s ( f a ) = K s 2 ( f a , R 0 ) · c · M ( f a ) 2 .
- λ · k · 2 · f a 2 4 · f c 2 · k 20 2 + 3 · λ · [ ( k 10 · k · 3 + k 30 · k · 1 ) · k 20 - 3 · k 10 · k 30 · k · 2 ] 8 · f c 2 · k 20 4 · f a 2 + 3 · λ · ( 2 · k 10 · A 3 · k . 1 - k 10 2 · A · 3 ) 32 · f c 2 · f a 2 + 3 · λ 2 · ( k 20 · k · 3 - 3 · k 30 · k · 2 ) 16 · f c 2 · k 20 4 · f a 3 + 3 · λ 2 · ( A 3 · k · 1 - k 10 · A · 3 ) 32 · f c 2 · f a 3 + 3 · λ 3 · A · 3 128 · f c 2 f a 4 - - - ( 25 )
τ ( f a , R ) = 2 · R c · M ( f a ) - - - ( 26 )
τ ( f a , R 0 ) = 2 · R 0 c · M ( f a ) - - - ( 27 )
According to formula (23)~(27), obtain the operations factor Y that in the NCS algorithm, uses m(f a), q 2And q 3, its expression formula is respectively (28)~(30), wherein Y m(f a) be used to eliminate the influence of three phase places and be used to adjust residual three phase errors of introducing owing to the adjustment of follow-up frequency modulation rate space-variant shape, q 2And q 3Be used to adjust the space-variant property of range migration and the space-variant property of frequency modulation rate.
Y m ( f a ) = Δk s ( f a ) · ( M ( f ref ) / M ( f a ) - 0.5 ) K s 3 ( f a , R 0 ) · ( M ( f ref ) / M ( f a ) - 1 ) - - - ( 28 )
q 2=K s(f a,R 0)·(M(f ref)/M(f a)-1) (29)
q 3 = Δk s ( f a ) · ( M ( f ref ) / M ( f a ) - 1 ) 2 - - - ( 30 )
2.6 the 6th exponential term on formula (15) equal sign right side is In For what obtain when the 2-d spectrum decoupling zero, relevant with distance to the cube of frequency, adopt RP R here 0The value at place, promptly
φ 3 ( f a , R ) = φ 3 ( f a , R 0 ) =
2 · π · - λ · f a 2 8 · k 20 · f c 3 - 3 · λ · k 10 · k 30 16 · k 20 3 · f c 3 · f a 2 - 3 · λ · k 10 2 · ( 9 · k 30 2 - 4 · k 20 · k 40 ) 64 · k 20 5 · f c 3 · f a 2 - λ 2 · k 30 · f a 3 8 · k 20 3 · f c 3 - λ 2 · k 1 · ( 9 · k 30 2 - 4 · k 20 · k 40 ) 16 · k 20 5 · f c 3 · f a 3 - 5 · λ 3 · ( 9 · k 30 2 - 4 · k 20 · k 40 ) 256 · k 20 5 · f c 3 · f a 4
(31)
CN 201110280669 2011-09-21 2011-09-21 Improved NCS (Nonlinear Chirp Scaling) imaging algorithm suitable for geosynchronous orbit (GEO) SAR (Synthetic Aperture Radar) Expired - Fee Related CN102331577B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN 201110280669 CN102331577B (en) 2011-09-21 2011-09-21 Improved NCS (Nonlinear Chirp Scaling) imaging algorithm suitable for geosynchronous orbit (GEO) SAR (Synthetic Aperture Radar)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN 201110280669 CN102331577B (en) 2011-09-21 2011-09-21 Improved NCS (Nonlinear Chirp Scaling) imaging algorithm suitable for geosynchronous orbit (GEO) SAR (Synthetic Aperture Radar)

Publications (2)

Publication Number Publication Date
CN102331577A true CN102331577A (en) 2012-01-25
CN102331577B CN102331577B (en) 2013-05-01

Family

ID=45483415

Family Applications (1)

Application Number Title Priority Date Filing Date
CN 201110280669 Expired - Fee Related CN102331577B (en) 2011-09-21 2011-09-21 Improved NCS (Nonlinear Chirp Scaling) imaging algorithm suitable for geosynchronous orbit (GEO) SAR (Synthetic Aperture Radar)

Country Status (1)

Country Link
CN (1) CN102331577B (en)

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103364782A (en) * 2013-07-04 2013-10-23 北京理工大学 Geosynchronous orbit synthetic aperture radar velocity spatial variability compensating method
CN103677741A (en) * 2013-12-30 2014-03-26 南京大学 Imaging method based on NCS algorithm and mixing precision floating point coprocessor
CN104749575A (en) * 2015-04-01 2015-07-01 北京理工大学 Modified geosynchronous orbit SAR (synthetic aperture radar) frequency-domain imaging method
CN105182338A (en) * 2015-09-10 2015-12-23 北京理工大学 GEO SAR interference system data acquiring method
CN105717508A (en) * 2016-01-29 2016-06-29 西安电子科技大学 Foresight imaging method of airborne radar based on azimuth modulation of emitted waveform
CN106443670A (en) * 2016-08-29 2017-02-22 西北工业大学 Non-uniform velocity chirp scaling (CS) imaging method
CN107102330A (en) * 2017-04-24 2017-08-29 清华大学 A kind of WNLCS imaging methods towards airborne geo Reference Strip SAR
CN109901162A (en) * 2019-03-06 2019-06-18 北京理工大学 A Long Baseline Imaging STAP Method for Distributed Geosynchronous Orbit SAR
CN110133646A (en) * 2019-04-19 2019-08-16 电子科技大学 Multi-channel two-pulse clutter cancellation method for bistatic forward-looking SAR based on NLCS imaging
CN113866767A (en) * 2021-11-29 2021-12-31 中南大学 A self-focusing method for wide-beam SAR based on blind NCS

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110596701B (en) * 2019-07-01 2021-09-28 杭州电子科技大学 Non-level-flight double-station SAR frequency domain FENLCS imaging method based on quadratic ellipse model

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
LIJIA HUANG等: "Focusing of Medium-Earth-Orbit SAR With Advanced Nonlinear Chirp Scaling Algorithm", 《IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING》 *
刘高高 等: "一种曲线轨迹下的大场景前斜视成像算法", 《电子与信息学报》 *
程玉平: "SAR成像中几个问题的研究", 《中国博士学位论文全文数据库(信息科技辑)》 *

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103364782A (en) * 2013-07-04 2013-10-23 北京理工大学 Geosynchronous orbit synthetic aperture radar velocity spatial variability compensating method
CN103364782B (en) * 2013-07-04 2015-05-06 北京理工大学 Geosynchronous orbit synthetic aperture radar velocity spatial variability compensating method
CN103677741A (en) * 2013-12-30 2014-03-26 南京大学 Imaging method based on NCS algorithm and mixing precision floating point coprocessor
CN104749575A (en) * 2015-04-01 2015-07-01 北京理工大学 Modified geosynchronous orbit SAR (synthetic aperture radar) frequency-domain imaging method
CN105182338A (en) * 2015-09-10 2015-12-23 北京理工大学 GEO SAR interference system data acquiring method
CN105717508A (en) * 2016-01-29 2016-06-29 西安电子科技大学 Foresight imaging method of airborne radar based on azimuth modulation of emitted waveform
CN106443670A (en) * 2016-08-29 2017-02-22 西北工业大学 Non-uniform velocity chirp scaling (CS) imaging method
CN106443670B (en) * 2016-08-29 2018-10-19 西北工业大学 A kind of non-at the uniform velocity big strabismus CS imaging methods
CN107102330A (en) * 2017-04-24 2017-08-29 清华大学 A kind of WNLCS imaging methods towards airborne geo Reference Strip SAR
CN109901162A (en) * 2019-03-06 2019-06-18 北京理工大学 A Long Baseline Imaging STAP Method for Distributed Geosynchronous Orbit SAR
CN110133646A (en) * 2019-04-19 2019-08-16 电子科技大学 Multi-channel two-pulse clutter cancellation method for bistatic forward-looking SAR based on NLCS imaging
CN113866767A (en) * 2021-11-29 2021-12-31 中南大学 A self-focusing method for wide-beam SAR based on blind NCS
CN113866767B (en) * 2021-11-29 2022-03-01 中南大学 A self-focusing method for wide-beam SAR based on blind NCS

Also Published As

Publication number Publication date
CN102331577B (en) 2013-05-01

Similar Documents

Publication Publication Date Title
CN102331577A (en) An Improved NCS Imaging Algorithm for Geosynchronous Orbit SAR
CN102169174B (en) Method for focusing geo-synchronization orbit synthetic aperture radar in high precision
EP2650695B1 (en) Imaging method for synthetic aperture radar in high squint mode
CN102226841B (en) Synchronous orbit SAR imaging method based on high-order polynomial range equation
CN102176016A (en) Large squint sliding spotlight SAR (synthetic aperture radar) imaging processing method
CN105259552A (en) Synthetic aperture radar imaging method and device based on non-linear frequency-modulated signals
CN103869314B (en) Round trip flight moves and becomes bistatic forward sight synthetic aperture radar image-forming method
CN101776755B (en) Preprocessing method of ultra-high resolution SAR data for high-speed platform
CN102288961B (en) Imaging method for synthetic aperture radar nonlinear frequency modulation label change
CN102230964B (en) Geo-synchronous orbit synthetic aperture radar (GEO SAR) frequency modulation changeable standard imaging method under curve track model
CN101975948B (en) A Forward-Looking Synthetic Aperture Radar Imaging Method for Remote Sensing Satellite Irradiation Source
CN101430380A (en) Large slanting view angle machine-carried SAR beam bunching mode imaging method based on non-uniform sampling
CN103364782B (en) Geosynchronous orbit synthetic aperture radar velocity spatial variability compensating method
CN105223572B (en) A kind of positive forward sight Bistatic SAR image processing method based on PFA algorithms
CN106291548B (en) Ka CW with frequency modulation SAR motion compensation process based on inertial navigation information and echo data
CN106093870A (en) The SAR GMTI clutter suppression method of hypersonic aircraft descending branch
CN108037497B (en) Transceiving and combining conversion method for multi-subarray synthetic aperture sonar data
CN113589285B (en) SAR real-time imaging method for aircraft
CN110208799A (en) Curvilinear motion track SAR wave-number domain imaging method based on Legendre Orthogonal Decomposition
CN108226891B (en) Scanning radar echo calculation method
CN105759263A (en) High resolution satellite-borne squint SAR imaging method in large-scale scene
He et al. Fast non-searching method for ground moving target refocusing and motion parameters estimation
CN104330779B (en) Airborne synthetic aperture radar kinematic error compensation method
CN103308913A (en) Foresight SAR ambiguity resolving algorithm of double antennas carried by high-speed aircraft
CN105093225A (en) Inverse synthetic aperture radar self-focusing imaging method based on double sparse constraints

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C14 Grant of patent or utility model
GR01 Patent grant
CF01 Termination of patent right due to non-payment of annual fee

Granted publication date: 20130501

Termination date: 20150921

EXPY Termination of patent right or utility model