CN102325328A - Service beamforming method and equipment - Google Patents

Service beamforming method and equipment Download PDF

Info

Publication number
CN102325328A
CN102325328A CN 201110329111 CN201110329111A CN102325328A CN 102325328 A CN102325328 A CN 102325328A CN 201110329111 CN201110329111 CN 201110329111 CN 201110329111 A CN201110329111 A CN 201110329111A CN 102325328 A CN102325328 A CN 102325328A
Authority
CN
Grant status
Application
Patent type
Prior art keywords
antenna
coefficients
corresponding
terminal device
windowing
Prior art date
Application number
CN 201110329111
Other languages
Chinese (zh)
Inventor
谭春白
Original Assignee
大唐移动通信设备有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date

Links

Abstract

The embodiment of the invention discloses a service beamforming method and service beamforming equipment. By the technical scheme provided by the embodiment of the invention, a downlink beamforming coefficient corresponding to terminal equipment is determined according to a spatial windowing beamforming coefficient of each antenna obtained by performing spatial windowing beamforming processing on a beamforming coefficient of each antenna corresponding to the terminal equipment, and beamforming processing is performed on the downlink data of the terminal equipment according to the downlink beamforming coefficient, thereby reducing a minor lobe level under the condition of slightly increasing a beam width, and reducing the interference of the service data transmission of the current terminal equipment in other terminal equipment beyond own beam width.

Description

业务赋形方法和设备 Traffic shaping method and apparatus

技术领域 FIELD

[0001] 本发明涉及通信技术领域,特别涉及一种业务赋形方法和设备。 [0001] The present invention relates to communication technologies, particularly to a method and apparatus for shaping traffic. 背景技术 Background technique

[0002] TD-SCDMA (Time Division-Synchronous Code Division Multiple Access,时分同步码分多址)系统上/下行采用相同的载波频点,上/下行信道具有对称性。 [0002] TD-SCDMA on (Time Division-Synchronous Code Division Multiple Access, Time Division Synchronous Code Division Multiple Access) system, uplink / downlink use the same carrier frequency, uplink / downlink channel having a symmetry.

[0003] 现有方案通过估计上行来波方向来对下行业务赋形,具体的赋形处理过程的流程示意图如图1所示,具体包括以下步骤: [0003] Existing solutions to the wave by estimating the uplink to the downlink traffic shaping, the specific shaping process of the process schematic shown in Figure 1, includes the following steps:

步骤S101、通过用户的训练序列计算其上行信道估计。 Step S101, the calculated uplink channel estimation by the user's training sequence.

[0004] 步骤S102、通过信道估计的结果,计算其本用户的互相关矩阵Rxx。 [0004] In step S102, the result of the channel estimation by calculating cross-correlation matrix Rxx its present users.

[0005] 步骤S103、对本用户的互相关矩阵Rxx进行处理得到如下系数: AF- [^1 j a2,已3,......,; [0005] In step S103, the cross-correlation matrix Rxx is obtained by processing the user present the following coefficients: AF- [^ 1 j a2, has 3, ......,;

其中,〜(i=l,2,3,……,N)标识第i个天线的系数。 Wherein, ~ (i = l, 2,3, ......, N) identifying the coefficient of the i-th antenna.

[0006] 在具体的处理场景中,得到上述系数的具体算法包括波束扫描法,即G0B(Grid Of Beam,固定波束赋形算法),或者特征向量法,即EBB(Eigenvalue Based Beamforming,特征分解赋形算法)。 [0006] In a particular process the scene, to give the specific algorithm described above coefficients comprises a beam scanning method, i.e. G0B (Grid Of Beam, fixed beamforming algorithm), or eigenvector method, i.e. EBB (Eigenvalue Based Beamforming, characterized in exploded Fu shape algorithm).

[0007] 步骤S104、确定本用户的下行波束赋形系数。 [0007] In step S104, the user determines the present downlink beamforming coefficients.

[0008] 具体的,在步骤S103中得到上述的系数后,对相应的系数进行幅度归一化处理, 得到本用户的下行波束赋形系数: [0008] Specifically, after the above-described coefficient obtained in step S103, the corresponding coefficients normalized amplitude, to present a user downlink beamforming coefficients:

N N

Σ W Σ W

kl kl

步骤S105、本用户下行数据的发送中使用其计算得到的下行波束赋形系数进行赋形并发送。 Step S105, the transmission of downlink user data present in the downlink using beamforming coefficient which is calculated and transmitted shaping.

[0009] 在实现本发明的过程中,发明人发现现有技术中至少存在以下问题: [0009] During the implementation of the present invention, the inventor finds at least the following problems in the prior art:

由于智能天线阵列口径有限,导致其在使用现有方法的过程中副瓣电平较高,从而,对本用户波束宽度外的用户的干扰较大。 Due to the limited diameter of the smart antenna array, which results in higher sidelobe levels during use of the conventional method, thereby, the user of this user outside the beamwidth interferences.

发明内容 SUMMARY

[0010] 本发明实施例提供一种业务赋形方法和设备,解决现有的业务赋形方案中由于副瓣电平过高,导致对用户波束宽度外的其他用户存在较大干扰的问题。 Embodiment [0010] The present invention provides a traffic shaping method and apparatus solve the problems of the conventional embodiment since the traffic shaping sidelobe level is too high, results in a big interference to other users outside the user's beamwidth.

[0011] 为达到上述目的,本发明实施例一方面提供了一种业务赋形方法,至少包括以下步骤: [0011] To achieve the above object, an aspect of embodiments of the present invention provides a service forming method, comprising at least the steps of:

网络设备根据终端设备的上行信道信息,确定所述终端设备所对应的各天线的赋形系 Network equipment according to the uplink channel information of the terminal device, determines based shaping each antenna corresponding to the terminal device

数;所述网络设备对所述各天线的赋形系数进行空间加窗赋形处理,得到所述终端设备所对应的各天线的空间加窗赋形系数; Number; the network device to each of said antenna shaped spatial windowing coefficients shaping to give each antenna a space corresponding to the terminal device shaped windowing coefficient;

所述网络设备根据所述各天线的空间加窗赋形系数,确定所述终端设备所对应的下行波束赋形系数; The network device according windowing coefficients shaped space of the respective antennas, determines that the terminal device corresponding to a downlink beamforming coefficients;

所述网络设备根据所述下行波束赋形系数对所述终端设备所对应的下行数据进行处理,并将处理后的下行数据发送给所述终端设备。 The network device for processing downlink data to the terminal device corresponding according to the downlink beamforming coefficients, and transmits the processed downlink data to the terminal device.

[0012] 另一方面,本发明实施例还提供了一种网络设备,至少包括: [0012] On the other hand, embodiments of the present invention further provides a network device, comprising at least:

第一确定模块,用于根据终端设备的上行信道信息,确定所述终端设备所对应的各天线的赋形系数; A first determining module configured to uplink channel information terminal device is determined according to coefficients shaping the antenna terminal of each corresponding device;

处理模块,用于对所述第一确定模块所确定的各天线的赋形系数进行空间加窗赋形处理,得到所述终端设备所对应的各天线的空间加窗赋形系数; A processing module, a space for each antenna shaped coefficient determined by the first determining module spatially shaped windowing processing, each antenna to obtain the corresponding terminal shaped windowing coefficient;

第二确定模块,用于根据所述处理模块所得到的各天线的空间加窗赋形系数,确定所述终端设备所对应的下行波束赋形系数; Second determining means for windowing coefficients shaping the antenna according to the space of each processing module obtained by the terminal device corresponding to the determined downlink beamforming coefficients;

赋形模块,用于根据所述第二确定模块所确定的下行波束赋形系数对所述终端设备所对应的下行数据进行处理,并将处理后的下行数据发送给所述终端设备。 Shaping module for processing downlink data to the terminal device corresponding to the downlink beamforming coefficients determined by the second determining module, and transmits the processed downlink data to the terminal device.

[0013] 与现有技术相比,本发明实施例所提出的技术方案具有以下优点: [0013] Compared with the prior art, the technical solutions proposed embodiment of the present embodiment has the following advantages:

通过应用本发明实施例的技术方案,根据对终端设备所对应的各天线的赋形系数进行空间加窗赋形处理所得到各天线的空间加窗赋形系数,确定终端设备所对应的下行波束赋形系数,并根据该下行波束赋形系数对该终端设备的下行数据进行赋形处理,从而,在少量增加波束宽度的情况下,减小副瓣电平,并降低当前终端设备的业务数据传输对自身波束宽度外的其他终端设备的干扰。 Technical solutions by the application of the present invention, according to shaping coefficients for each of the antennas of the terminal apparatus corresponding spatial windowing shaping process space of each antenna of the resulting windowed shaping coefficients, determines that the terminal device corresponding downlink beams shaping factor, and shaping the downlink data processing terminal device according to the downlink beamforming coefficient, whereby a small increase in the case where the width of the beam, sidelobe level is reduced, and reduction of the current traffic data terminal equipment transmission interference to other terminal devices outside the beam width itself.

附图说明 BRIEF DESCRIPTION

[0014] 图1为现有技术中的具体的赋形处理过程的流程示意图; 图2为本发明实施例所提出的一种业务赋形方法的流程示意图; [0014] FIG. 1 is a flow specific shaping process of the prior art; and FIG. 2 is a schematic flow of a service forming method according to the proposed embodiment of the invention;

图3为本发明实施例所提出的一种具体场景中的业务赋形方法的流程示意图; 图4为本发明实施例提出的一种网络设备的结构示意图。 3 a schematic flow chart a particular scenario of the proposed traffic shaping method of the embodiment of the present invention; schematic structure of a network apparatus according to forth embodiment of the present invention, FIG.

具体实施方式 Detailed ways

[0015] 如背景技术所述,TD-SCDMA移动通信系统室外场景经常采用智能天线,业务赋形是智能天线的典型特征;业务赋形能带来赋形增益并降低波束宽度外用户间的干扰,但传统赋形技术由于智能天线阵列口径的限制导致对波束宽度外用户的影响仍然较强。 [0015] As described in the background, TD-SCDMA mobile communication system, smart antenna often used for outdoor scenes, traffic shaping is typical smart antenna; traffic shaping can bring shaping gain and reduce interference between users outside the beamwidth but conventional forming technology due to limitations of the smart antenna array aperture width of the outer lead impact on the user is still strong beam.

[0016] 为了克服这样的缺陷,本发明实施例提出了一种业务赋形方法,通过空间加窗处理,稍稍增大用户下行的波束宽度,但降低了波束宽带外的电平值,总体上将大大减小用户间的干扰水平。 [0016] In order to overcome such drawbacks, embodiments of the present invention proposes a traffic shaping method, by spatial windowing, user downlink beam width is increased slightly, but reduces the level values ​​outside the broadband beam, generally It will greatly reduce the level of interference between users.

[0017] 如图2所示,为本发明实施例所提出的一种业务赋形方法的流程示意图,该方法具体包括以下步骤: [0017] As shown in FIG. 2, a schematic flowchart of a service-oriented forming method according to the proposed embodiment of the invention, the method includes the following steps:

步骤S201、网络设备根据终端设备的上行信道信息,确定所述终端设备所对应的各天线的赋形系数。 Step S201, the network device according to uplink channel information of the terminal device, determines coefficients shaping the antenna terminal apparatus corresponds. [0018] 在具体的处理场景中,本步骤的处理过程,具体包括: [0018] In a particular process the scene, this process step, comprises:

所述网络设备通过所述终端设备的训练序列确定所述终端设备的上行信道估计结 The network device determines that the terminal device through an uplink channel estimation result of the training sequence of the terminal device

果; fruit;

所述网络设备通过所述上行信道估计结果,确定所述终端设备的互相关矩阵; 所述网络设备对所述互相关矩阵进行波束扫描或特征向量分解,确定所述终端设备所对应的各天线的赋形系数。 The network device via said uplink channel estimation results, the cross-correlation matrix of the terminal device; said network device to said beam scanning cross-correlation matrix decomposition or eigenvector is determined each antenna corresponding to the terminal device excipients coefficient.

[0019] 以上的处理过程与现有处理过程的处理程序相类似,因此,对于此部分处理所对应的装置和流程设置,可以保持现状,不作调整。 [0019] The above process is similar to the conventional processing procedure of processing procedures, and therefore, for this part of the process corresponding to the flow setting device and can maintain the status quo, no adjustment.

[0020] 步骤S202、所述网络设备对所述各天线的赋形系数进行空间加窗赋形处理,得到所述终端设备所对应的各天线的空间加窗赋形系数。 [0020] step S202, the network device for shaping coefficient of each antenna is shaped spatial windowing processing, each antenna to obtain a space corresponding to the terminal device shaped windowing coefficients.

[0021] 在具体的处理场景中,本步骤的处理过程至少包括以下的处理方式: [0021] In a specific scenario process, the present process comprises the step of processing at least the following ways:

所述网络设备分别将所述各天线的赋形系数乘以各天线所对应的空间加窗参数,得到所述终端设备所对应的各天线的空间加窗赋形系数。 The network device, respectively, the coefficients shaping the antenna multiplied by the spatial windowing parameters corresponding to each antenna, each antenna to obtain a space corresponding to the terminal device shaped windowing coefficients.

[0022] 具体的,当所述各天线的赋形系数具体为^^[ai,a2,a3,……,aN],所述各天线所对应的空间加窗参数具体为:rin=[Wl,W2, W3,……,wN]时,所述网络设备所确定的所述终端设备所对应的各天线的空间加窗赋形系数具体为^^„=[1^,b2,b3,……,bN]。 [0022] Specifically, when the shaping coefficient of each antenna is specifically ^^ [ai, a2, a3, ......, aN], corresponding to the respective antenna spatial windowing parameters specifically: rin = [Wl , W2, W3, ......, wN], the space of each antenna device of the network determined by the terminal device corresponding to the specific windowing coefficient is shaped ^^ "= [1 ^, b2, b3, ... ..., bN].

[0023] 其中,1^,Χ〜,ί=1,2,3,……,N ;ai表示第i个天线的赋形系数,Wi表示第i个天线的空间加窗参数,h表示第i个天线的空间加窗赋形系数。 [0023] wherein, 1 ^, Χ~, ί = 1,2,3, ......, N; ai represents the i-th coefficient shaped antenna, Wi represents the i-th antenna spatial windowing parameters, h represents i space antennas shaped windowed coefficients.

[0024] 步骤S203、所述网络设备根据所述各天线的空间加窗赋形系数,确定所述终端设备所对应的下行波束赋形系数。 [0024] In step S203, the network device the shaped windowing coefficient, determined by the terminal device corresponding to the downlink beamforming coefficients in accordance with said each antenna space.

[0025] 在具体的处理场景中,本步骤的处理过程至少包括以下的处理方式: [0025] In a specific scenario process, the present process comprises the step of processing at least the following ways:

所述网络设备对所述各天线的空间加窗赋形系数进行幅度归一化处理,确定所述终端设备所对应的下行波束赋形系数。 The network device shaped windowing coefficient of the spatial amplitude of each antenna is normalized, determining the downlink beamforming coefficients corresponding to the terminal device.

[0026] 具体的,参照步骤S202中的处理结果,本步骤中的处理结果具体如下: [0026] Specifically, with reference to the processing result in step S202, the processing result of this step is as follows:

当所述各天线的空间加窗赋形系数具体为b2,b3,……,bN]时,所述网络设备所确定的所述终端设备所对应的下行波束赋形系数具体为: When the space of each antenna is shaped windowing coefficient specifically b2, b3, ......, bN], the network device identified by the terminal device corresponding to a downlink beamforming coefficient is specifically:

Figure CN102325328AD00061

[0027] 步骤S204、所述网络设备根据所述下行波束赋形系数对所述终端设备所对应的下行数据进行处理,并将处理后的下行数据发送给所述终端设备。 [0027] step S204, the network device for processing downlink data to the terminal device corresponding according to the downlink beamforming coefficients, and transmits the processed downlink data to the terminal device.

[0028] 与现有技术相比,本发明实施例所提出的技术方案具有以下优点: [0028] Compared with the prior art, the technical solutions proposed embodiment of the present embodiment has the following advantages:

通过应用本发明实施例的技术方案,根据对终端设备所对应的各天线的赋形系数进行空间加窗赋形处理所得到各天线的空间加窗赋形系数,确定终端设备所对应的下行波束赋形系数,并根据该下行波束赋形系数对该终端设备的下行数据进行赋形处理,从而,在少量增加波束宽度的情况下,减小副瓣电平,并降低当前终端设备的业务数据传输对自身波束宽度外的其他终端设备的干扰。 Technical solutions by the application of the present invention, according to shaping coefficients for each of the antennas of the terminal apparatus corresponding spatial windowing shaping process space of each antenna of the resulting windowed shaping coefficients, determines that the terminal device corresponding downlink beams shaping factor, and shaping the downlink data processing terminal device according to the downlink beamforming coefficient, whereby a small increase in the case where the width of the beam, sidelobe level is reduced, and reduction of the current traffic data terminal equipment transmission interference to other terminal devices outside the beam width itself.

[0029] 下面,结合具体的应用场景,对本发明实施例所提出的技术方案进行说明。 [0029] Next, with reference to specific application scenario, the proposed technical solutions of the present invention will be described.

[0030] 本发明实施例所提出的技术方案中,相比于现有的处理方案,最大的区别在于对于赋形参数进行空间加窗赋形处理,具体的,采用空间加窗赋形技术就是在现有获得的每个天线上的赋形参数的基础上乘以一个加窗赋形系数,乘上这个加窗赋形系数的目的是降低波束宽度外的电平值,从而减小当前终端设备的数据传输对其它终端设备的干扰。 [0030] The embodiment of the present invention, the technical solutions proposed, as compared to the conventional processing scheme, the biggest difference is spatially shaped windowing processing parameters for shaping, particularly, spatial windowing forming technology is superior shaped object parameter based on each antenna prior to obtained a shaped windowing coefficient, multiplied by the windowing coefficients is shaped to reduce the level value of the outer beam width, thereby reducing the current terminal equipment interference to other data transmission terminal apparatus.

[0031] 如图3所示,为本发明实施例所提出的一种具体应用场景下的业务赋形方法的流程示意图,该方法具体包括以下步骤: [0031] FIG. 3, a schematic flow chart of the traffic shaping of a specific application scenario according to the proposed embodiment of the method of the invention, the method includes the following steps:

步骤S30 1、通过用户的训练序列计算其上行信道估计。 Step S30 1, which is calculated by the uplink channel estimation training sequence user.

[0032] 步骤S302、通过信道估计的结果,计算其本用户的互相关矩阵Rxx。 [0032] Step S302, the result of the channel estimation by calculating cross-correlation matrix Rxx its present users.

[0033] 步骤S303、对本用户的互相关矩阵Rxx进行处理,得到赋形系数。 [0033] Step S303, the cross-correlation matrix Rxx for the present user, to give the shaped coefficient.

[0034] 具体的,所得到的赋形系数为#=[〜,〜,〜,……,aN]; 其中,〜(i=l,2,3,……,N)标识第i个天线的系数。 [0034] Specifically, the resulting shaped coefficient # = [~, ~, ~, ......, aN]; wherein, ~ (i = l, 2,3, ......, N) identifies the i-th antenna coefficients.

[0035] 在具体的处理场景中,得到上述系数的具体算法包括波束扫描法,即GOB算法,或者特征向量法,即EBB算法。 [0035] In a specific scenario process to obtain the above specific algorithm coefficients comprises a beam scanning method, i.e. GOB algorithm, or eigenvector method, i.e. EBB algorithm.

[0036] 具体采用哪个算法可以根据实际需要进行设定,这样的变化并不影响本发明的保护范围。 [0036] The specific algorithm employed which can be set according to actual needs, this change does not affect the scope of the present invention.

[0037] 步骤S304、对赋形系数进行空间加窗处理,得到空间加窗赋形系数。 [0037] step S304, the shaping of spatial windowing coefficients, to obtain shaped spatial windowing coefficients.

[0038] 为了实现本步骤,首先需要设置各天线的空间加窗参数如下: Fin=Lw1, w2, W3, ......,wN]。 [0038] In order to achieve this step, first set the various antennas windowed space parameters are as follows: Fin = Lw1, w2, W3, ......, wN].

[0039] 其中,Wi表示第i个天线的空间加窗参数,i=l,2,3,……,N。 [0039] where, Wi represents the i-th antenna spatial windowing parameters, i = l, 2,3, ......, N.

[0040] 然后,将步骤S303中所得到的赋形系数^^=[〜,〜,〜,……,aN]进行加窗赋形处理,即分别将各天线的赋形系数%分别乘以各天线的空间加窗参数Wi,得到各天线的空间加窗赋形系数: [0040] Then, in step S303 shaping coefficients obtained ^^ = [~, ~, ~, ......, aN] windowed shaping treatment, i.e. the shaping coefficients are multiplied by the respective antennas% each antenna spatial windowing parameters Wi, to give space for each antenna shaped windowing coefficients:

AFm=Ibl, b2, b3, ......,bN]; AFm = Ibl, b2, b3, ......, bN];

其中,h表示第i个天线的空间加窗赋形系数。 Wherein, h represents the i-th spatial windowing shaped antenna coefficients.

[0041] b^WiXaj, 1=1,2,3, ......,N。 [0041] b ^ WiXaj, 1 = 1,2,3, ......, N.

[0042] 步骤S305、对空间加窗赋形系数进行幅度归一化,得到本用户的下行波束赋形系数。 [0042] In step S305, the spatial windowing coefficients shaped amplitude normalized to present the user downlink beamforming coefficients.

[0043] 具体的,根据上述结果,所得到的本用户的下行波束赋形系数为: [0043] Specifically, the above results, the downlink beamforming coefficients obtained according to the user:

Figure CN102325328AD00071

[0044] 步骤S306、在向本用户进行下行数据发送的过程中,通过本用户的下行波束赋形系数对相应的下行数据进行赋形处理,并将处理后的下行数据发送给该用户。 [0044] step S306, the process is performed in the downlink user data transmitted to this, the shaping process for the corresponding downlink data present user downlink beamforming coefficients, and transmits the processed downlink data to the user.

[0045] 进一步的,本发明实施例所提出的空间加窗赋形技术也同样适用于第四代移动通信TD-LTE (Time Division- Long Term Evolution,时分的长期演进)的赋形,这同样属于本发明的保护范围。 [0045] Further, the space of the embodiment of the present invention proposed windowing forming technology is also applicable to the fourth generation mobile communication TD-LTE (Time Division- Long Term Evolution, long term evolution time division) excipients, which also It falls within the scope of the present invention.

[0046] 与现有技术相比,本发明实施例所提出的技术方案具有以下优点: [0046] Compared with the prior art, the technical solutions proposed embodiment of the present embodiment has the following advantages:

通过应用本发明实施例的技术方案,根据对终端设备所对应的各天线的赋形系数进行空间加窗赋形处理所得到各天线的空间加窗赋形系数,确定终端设备所对应的下行波束赋形系数,并根据该下行波束赋形系数对该终端设备的下行数据进行赋形处理,从而,在少量增加波束宽度的情况下,减小副瓣电平,并降低当前终端设备的业务数据传输对自身波束宽度外的其他终端设备的干扰。 Technical solutions by the application of the present invention, according to shaping coefficients for each of the antennas of the terminal apparatus corresponding spatial windowing shaping process space of each antenna of the resulting windowed shaping coefficients, determines that the terminal device corresponding downlink beams shaping factor, and shaping the downlink data processing terminal device according to the downlink beamforming coefficient, whereby a small increase in the case where the width of the beam, sidelobe level is reduced, and reduction of the current traffic data terminal equipment transmission interference to other terminal devices outside the beam width itself.

[0047] 为了实现本发明实施例的技术方案,本发明实施例还提供了一种基站,其结构示意图如图4所示,至少包括: [0047] To achieve the technical solution of the embodiment of the present invention, embodiments of the present invention further provides a base station, a schematic view of the structure shown in Figure 4, comprising at least:

第一确定模块41,用于根据终端设备的上行信道信息,确定所述终端设备所对应的各天线的赋形系数; A first determining module 41, according to uplink channel information of the terminal device, determines coefficients shaping the antenna of each terminal device corresponding to;

处理模块42,用于对所述第一确定模块41所确定的各天线的赋形系数进行空间加窗赋形处理,得到所述终端设备所对应的各天线的空间加窗赋形系数; Processing module 42, for each antenna of the first excipient coefficient determination module 41 determines the spatial windowing shaped to give each antenna a space corresponding to the terminal device shaped windowing coefficient;

第二确定模块43,用于根据所述处理模块42所得到的各天线的空间加窗赋形系数,确定所述终端设备所对应的下行波束赋形系数; Second determining module 43, for shaping the windowing coefficient of each antenna module according to the space 42 of the processing obtained, determines that the terminal device corresponding to a downlink beamforming coefficients;

赋形模块44,用于根据所述第二确定模块43所确定的下行波束赋形系数对所述终端设备所对应的下行数据进行处理,并将处理后的下行数据发送给所述终端设备。 Shaping module 44, for processing downlink data to the corresponding terminal apparatus based on the second determination module 43 determines a downlink beamforming coefficients, and transmits the processed downlink data to the terminal device.

[0048] 其中,所述第一确定模块41,具体包括: [0048] wherein the first determining module 41, comprises:

估算子模块411,用于通过所述终端设备的训练序列确定所述终端设备的上行信道估计结果; Estimation sub-module 411, the terminal device for determining a training sequence of the terminal device through an uplink channel estimation result;

矩阵确定子模块412,用于通过所述估算子模块411所确定的上行信道估计结果,确定所述终端设备的互相关矩阵; Matrix determining sub-module 412 for estimating uplink channel estimation results of the sub-channel determination module 411 determines the cross-correlation matrix of the terminal device;

系数确定子模块413,用于对所述矩阵确定子模块412所确定的互相关矩阵进行波束扫描或特征向量分解,确定所述终端设备所对应的各天线的赋形系数。 Coefficient determination sub-module 413, a matrix determining the cross-correlation matrix of the determined sub-module 412 performs beam scanning decomposition or eigenvector, determining the coefficients shaping the antenna terminal apparatus corresponds.

[0049] 需要指出的是,上述的三个子模块所进行的处理与现有的处理方案相类似,因此, 上述的三个子模块的部署可以遵照现有技术方案来实现,具体名称或者表现形式的差异并不会影响本发明的保护范围。 [0049] It should be noted that the processing with the above-described conventional processing scheme for the three sub-modules is similar, therefore, three sub-modules may be deployed in accordance with the above-described prior art solution to achieve the specific name or manifestations the difference does not affect the scope of the present invention.

[0050] 另一方面,所述处理模块42,具体用于分别将所述第一确定模块41所确定的各天线的赋形系数乘以各天线所对应的空间加窗参数,得到所述终端设备所对应的各天线的空间加窗赋形系数。 [0050] On the other hand, the processing module 42, particularly for respectively each of said first antenna determination module 41 determines the spatial shaping coefficients are multiplied by the windowing parameters corresponding to each antenna to obtain the terminal each antenna device space corresponding shaped windowing coefficients.

[0051] 进一步的,所述第二确定模块43,具体用于对所述处理模块42所得到的各天线的空间加窗赋形系数进行幅度归一化处理,确定所述终端设备所对应的下行波束赋形系数。 [0051] Further, the second determining module 43, particularly for spatial processing for each of the antenna module 42 is obtained by windowing coefficients shaped amplitude normalized, determining the corresponding terminal device downlink beamforming coefficients.

[0052] 与现有技术相比,本发明实施例所提出的技术方案具有以下优点: [0052] Compared with the prior art, the technical solutions proposed embodiment of the present embodiment has the following advantages:

通过应用本发明实施例的技术方案,根据对终端设备所对应的各天线的赋形系数进行空间加窗赋形处理所得到各天线的空间加窗赋形系数,确定终端设备所对应的下行波束赋形系数,并根据该下行波束赋形系数对该终端设备的下行数据进行赋形处理,从而,在少量增加波束宽度的情况下,减小副瓣电平,并降低当前终端设备的业务数据传输对自身波束宽度外的其他终端设备的干扰。 Technical solutions by the application of the present invention, according to shaping coefficients for each of the antennas of the terminal apparatus corresponding spatial windowing shaping process space of each antenna of the resulting windowed shaping coefficients, determines that the terminal device corresponding downlink beams shaping factor, and shaping the downlink data processing terminal device according to the downlink beamforming coefficient, whereby a small increase in the case where the width of the beam, sidelobe level is reduced, and reduction of the current traffic data terminal equipment transmission interference to other terminal devices outside the beam width itself.

[0053] 通过以上的实施方式的描述,本领域的技术人员可以清楚地了解到本发明实施例可以通过硬件实现,也可以借助软件加必要的通用硬件平台的方式来实现。 [0053] By the above described embodiments, those skilled in the art may clearly understand that embodiments of the present invention may be implemented by hardware, may also be implemented by software plus a necessary universal hardware platform. 基于这样的理解,本发明实施例的技术方案可以以软件产品的形式体现出来,该软件产品可以存储在一个非易失性存储介质(可以是⑶-ROM,U盘,移动硬盘等)中,包括若干指令用以使得一台计算机设备(可以是个人计算机,服务器,或网络侧设备等)执行本发明实施例各个实施场景所述的方法。 Based on such understanding, the technical solutions of the present invention embodiments may be embodied in a software product out, the software product may be stored in a nonvolatile storage medium (which may be ⑶-ROM, U disk, mobile hard disk), and it includes several instructions that enable a computer device (may be a personal computer, a server, or network device) to execute the methods according to embodiments of the present invention scenario. [0054] 本领域技术人员可以理解附图只是一个优选实施场景的示意图,附图中的模块或流程并不一定是实施本发明实施例所必须的。 [0054] Those skilled in the art will be appreciated diagram is merely a preferred embodiment scene accompanying drawings, the modules or processes are not necessarily embodiments of the present invention must embodiment.

[0055] 本领域技术人员可以理解实施场景中的装置中的模块可以按照实施场景描述进行分布于实施场景的装置中,也可以进行相应变化位于不同于本实施场景的一个或多个装置中。 [0055] Those skilled in the art can understand the scene apparatus embodiment that the modules can be located in the apparatus according to embodiments scene scene embodiment, corresponding changes can also be located in one or more devices according to the present embodiment is different from the scene. 上述实施场景的模块可以合并为一个模块,也可以进一步拆分成多个子模块。 The above-described embodiments of the scene module can be combined into one module, or split into multiple submodules.

[0056] 上述本发明实施例序号仅仅为了描述,不代表实施场景的优劣。 Example No. [0056] of the present invention is merely for description and do not represent embodiments of the merits of the scene.

[0057] 以上公开的仅为本发明实施例的几个具体实施场景,但是,本发明实施例并非局限于此,任何本领域的技术人员能思之的变化都应落入本发明实施例的业务限制范围。 [0057] The above is merely an embodiment of the present invention, several specific embodiments disclosed scenarios, however, embodiments of the present invention is not limited thereto, anyone skilled in the art can think of variations shall fall within the present embodiment of the invention business limits.

Claims (10)

  1. 1. 一种业务赋形方法,其特征在于,至少包括以下步骤:网络设备根据终端设备的上行信道信息,确定所述终端设备所对应的各天线的赋形系数;所述网络设备对所述各天线的赋形系数进行空间加窗赋形处理,得到所述终端设备所对应的各天线的空间加窗赋形系数;所述网络设备根据所述各天线的空间加窗赋形系数,确定所述终端设备所对应的下行波束赋形系数;所述网络设备根据所述下行波束赋形系数对所述终端设备所对应的下行数据进行处理,并将处理后的下行数据发送给所述终端设备。 A traffic shaping method, characterized in that, at least comprising the steps of: a network device according to uplink channel information of the terminal device, determining the coefficients shaping the antenna terminal apparatus corresponding to; the network device the shaped antenna coefficients spatially shaped windowing processing, each antenna to obtain a space corresponding to the terminal device shaped windowing coefficient; the network device according to each of the antenna space shaped windowing coefficient, determined the terminal device corresponding to a downlink beamforming coefficients; the network device for processing downlink data to the terminal device corresponding according to the downlink beamforming coefficients, and transmits the processed downlink data to the terminal device.
  2. 2.如权利要求1所述的方法,其特征在于,所述网络设备根据终端设备的上行信道信息,确定所述终端设备所对应的各天线的赋形系数,具体包括:所述网络设备通过所述终端设备的训练序列确定所述终端设备的上行信道估计结果;所述网络设备通过所述上行信道估计结果,确定所述终端设备的互相关矩阵; 所述网络设备对所述互相关矩阵进行波束扫描或特征向量分解,确定所述终端设备所对应的各天线的赋形系数。 2. The method according to claim 1, wherein the network device according to uplink channel information of the terminal device, determines coefficients shaping the antenna corresponding to the terminal, and comprises: the network device training sequence of the terminal device that the terminal device channel uplink channel estimation result; the network device through the uplink channel estimation result, determines the cross-correlation matrix of the terminal device; said network device to said cross-correlation matrix for beam scanning decomposition or eigenvector, determining the coefficients shaping the antenna terminal apparatus corresponds.
  3. 3.如权利要求1所述的方法,其特征在于,所述网络设备对所述各天线的赋形系数进行空间加窗赋形处理,得到所述终端设备所对应的各天线的空间加窗赋形系数,具体包括:所述网络设备分别将所述各天线的赋形系数乘以各天线所对应的空间加窗参数,得到所述终端设备所对应的各天线的空间加窗赋形系数。 3. The method according to claim 1, wherein said network device of said each antenna coefficients shaped spatially shaped windowing processing, each antenna to obtain the space corresponding to the terminal windowing shaping coefficients, comprises: the network device to each said shaping coefficient of each antenna is multiplied by each of the antennas corresponding to the spatial windowing parameters, each antenna to obtain the space corresponding to the terminal shaped windowing coefficients .
  4. 4.如权利要求3所述的方法,其特征在于,当所述各天线的赋形系数具体为:AF=[al,a2, a3,……,aN],所述各天线所对应的空间加窗参数具体为:Win=[Wl,W2,W3,……,wN]时,所述网络设备所确定的所述终端设备所对应的各天线的空间加窗赋形系数具体为AFWin=[bl,b2,b3,……,bN]; 其中,bi=wiXai, i=l,2,3,......,N。 Each of said antennas corresponding spatial AF = [al, a2, a3, ......, aN],: 4. A method as claimed in claim 3, wherein, when shaping coefficients specific to each of the antenna windowing parameters specifically: Win = [Wl, W2, W3, ......, wN], the space of each antenna device of the network determined by the terminal device corresponding to the specific windowing coefficient is shaped AFWin = [ bl, b2, b3, ......, bN]; wherein, bi = wiXai, i = l, 2,3, ......, N.
  5. 5.如权利要求1所述的方法,其特征在于,所述网络设备根据所述各天线的空间加窗赋形系数,确定所述终端设备所对应的下行波束赋形系数,具体包括:所述网络设备对所述各天线的空间加窗赋形系数进行幅度归一化处理,确定所述终端设备所对应的下行波束赋形系数。 5. The method according to claim 1, wherein the network device according to each of the antenna space shaped windowing coefficient, determined by the terminal device corresponding to the downlink beamforming coefficients, comprises: the said network device of said each antenna spatial windowing coefficients shaped amplitude normalized, determining the terminal device corresponding to a downlink beamforming coefficients.
  6. 6.如权利要求5所述的方法,其特征在于,当所述各天线的空间加窗赋形系数具体为AFWin=[bl,b2,b3,……,bN]时,所述网络AF ■βρ _ WHt设备所确定的所述终端设备所对应的下行波束赋形系数具体为:-£|bj。 6. The method according to claim 5, wherein, when said each antenna spatial windowing coefficient specifically shaped AFWin = [bl, b2, b3, ......, bN], the AF ■ network βρ _ WHt apparatus determined by the terminal device corresponding to the downlink beamforming coefficient specifically: - £ | bj. Ic-I Ic-I
  7. 7. 一种网络设备,其特征在于,至少包括:第一确定模块,用于根据终端设备的上行信道信息,确定所述终端设备所对应的各天线的赋形系数;处理模块,用于对所述第一确定模块所确定的各天线的赋形系数进行空间加窗赋形处理,得到所述终端设备所对应的各天线的空间加窗赋形系数;第二确定模块,用于根据所述处理模块所得到的各天线的空间加窗赋形系数,确定所述终端设备所对应的下行波束赋形系数;赋形模块,用于根据所述第二确定模块所确定的下行波束赋形系数对所述终端设备所对应的下行数据进行处理,并将处理后的下行数据发送给所述终端设备。 A network device, characterized in that, at least comprising: a first determining module, according to uplink channel information of the terminal device, determines coefficients shaping the antenna corresponding to the terminal; and a processing module configured to determining each of the first antenna module of the determined coefficients shaped space shaped windowing processing, each antenna to obtain a space corresponding to the terminal device shaped windowing coefficient; a second determining module configured in accordance with the space of each of said antenna processing module obtained shaped windowing coefficient, determined by the terminal device corresponding to the downlink beamforming coefficients; shaping means for shaping the determined downlink beam based on the second determination module the coefficient of downlink data corresponding to the terminal for processing, and transmits the processed downlink data to the terminal device.
  8. 8.如权利要求7所述的网络设备,其特征在于,所述第一确定模块,具体包括:估算子模块,用于通过所述终端设备的训练序列确定所述终端设备的上行信道估计结果;矩阵确定子模块,用于通过所述估算子模块所确定的上行信道估计结果,确定所述终端设备的互相关矩阵;系数确定子模块,用于对所述矩阵确定子模块所确定的互相关矩阵进行波束扫描或特征向量分解,确定所述终端设备所对应的各天线的赋形系数。 8. The network apparatus according to claim 7, wherein said first determination module comprises: estimation sub-module, for determining the terminal device by the terminal device training sequence uplink channel estimation result ; sub-matrix determining module, for estimating the estimated results of the determined sub-module uplink channel, to determine cross-correlation matrix of the terminal device; coefficient determination sub-module, for determining the matrix of the determined mutual submodule beam scanning correlation matrix decomposition or eigenvector, determining the coefficients shaping the antenna terminal apparatus corresponds.
  9. 9.如权利要求7所述的网络设备,其特征在于,所述处理模块,具体用于:分别将所述第一确定模块所确定的各天线的赋形系数乘以各天线所对应的空间加窗参数,得到所述终端设备所对应的各天线的空间加窗赋形系数。 9. The network apparatus according to claim 7, wherein the processing module is configured to: respectively shaped antenna coefficients determined by the first determining module is multiplied by the corresponding spaces of the antenna windowing parameter space of each antenna to obtain the corresponding terminal shaped windowing coefficients.
  10. 10.如权利要求7所述的网络设备,其特征在于,所述第二确定模块,具体用于:对所述处理模块所得到的各天线的空间加窗赋形系数进行幅度归一化处理,确定所述终端设备所对应的下行波束赋形系数。 10. The network apparatus according to claim 7, wherein the second determining module is configured to: the space of each antenna processing module obtained by windowing coefficients shaped amplitude normalized determining by the terminal device corresponding to a downlink beamforming coefficients.
CN 201110329111 2011-10-26 2011-10-26 Service beamforming method and equipment CN102325328A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN 201110329111 CN102325328A (en) 2011-10-26 2011-10-26 Service beamforming method and equipment

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN 201110329111 CN102325328A (en) 2011-10-26 2011-10-26 Service beamforming method and equipment

Publications (1)

Publication Number Publication Date
CN102325328A true true CN102325328A (en) 2012-01-18

Family

ID=45452984

Family Applications (1)

Application Number Title Priority Date Filing Date
CN 201110329111 CN102325328A (en) 2011-10-26 2011-10-26 Service beamforming method and equipment

Country Status (1)

Country Link
CN (1) CN102325328A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104917554A (en) * 2014-03-10 2015-09-16 华为技术有限公司 Base station and beam forming method

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1404665A (en) * 2000-03-01 2003-03-19 诺基亚公司 Method including a radio transmitter for improving radio link operation
CN101321008A (en) * 2007-06-07 2008-12-10 中兴通讯股份有限公司 Descending beam forming emission method and device
CN101355380A (en) * 2007-07-27 2009-01-28 鼎桥通信技术有限公司 Beam size enlargement method, system, user equipment and base station for multi-carrier system
US20110170521A1 (en) * 2010-01-14 2011-07-14 Cisco Technology, Inc. Dynamic Downlink Beamforming Weight Estimation for Beamforming-Space Time Code Transmissions

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1404665A (en) * 2000-03-01 2003-03-19 诺基亚公司 Method including a radio transmitter for improving radio link operation
CN101321008A (en) * 2007-06-07 2008-12-10 中兴通讯股份有限公司 Descending beam forming emission method and device
CN101355380A (en) * 2007-07-27 2009-01-28 鼎桥通信技术有限公司 Beam size enlargement method, system, user equipment and base station for multi-carrier system
US20110170521A1 (en) * 2010-01-14 2011-07-14 Cisco Technology, Inc. Dynamic Downlink Beamforming Weight Estimation for Beamforming-Space Time Code Transmissions

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104917554A (en) * 2014-03-10 2015-09-16 华为技术有限公司 Base station and beam forming method

Similar Documents

Publication Publication Date Title
US20130107798A1 (en) ABS-based Method for Inter Cell Interference Coordination in LTE-Advanced Networks
CN101192868A (en) Multi-service wave bundle shaping device for wireless communication system
US20080309554A1 (en) Suppressing interference using beamforming of uplink signals received at multiple base stations
CN101335970A (en) SDMA communication system resource distribution implementing method and apparatus
CN1882156A (en) Downlink beam shaping method for multicast service system
US20080194204A1 (en) Enhanced Connection Acquisition Using an Array Antenna
US20120142345A1 (en) Cooperative communication methods and a device for a target terminal and a cooperative terminal
US20140004898A1 (en) Method and apparatus for beamforming
US20120002636A1 (en) Method, apparatus and system for allocating downlink power
CN101815301A (en) Interference coordination method, system and apparatus
CN101453255A (en) Beam forming method, system and apparatus
Li et al. Dynamic beamforming for three-dimensional MIMO technique in LTE-advanced networks
CN101345975A (en) Method and apparatus for space division multiple access resource scheduling, and radio communication system
US20120034925A1 (en) Communication method of macro base station and micro base station for interference control
CN103974369A (en) Channel selection method and system based on WLAN wireless channel grading mechanism
US20140269370A1 (en) Dynamic Beamforming Configuration Based on Network Conditions
CN101848021A (en) Method and device for generating broadcast beam weight of intelligent antenna array
CN1585298A (en) Wireless apparatus for improving cover of wireless station and capacity signal processing method thereof
US20160183232A1 (en) System and Method for Interference Coordination in Cellular Millimeter Wave Communications Systems
JP2010263414A (en) Wireless communication system, wireless device, and wireless communication method
Giuliano et al. Smart cell sectorization for third generation CDMA systems
US20160127920A1 (en) Methods and Apparatus for Antenna Elevation Design
CN101908915A (en) Signal transmission method, device and base station
CN104285385A (en) Scheme for performing beamforming in communication system
CN101547448A (en) Fixed null-steering beamforming method

Legal Events

Date Code Title Description
C06 Publication
C10 Entry into substantive examination
C12 Rejection of a patent application after its publication