CN102324960A - Interference suppression merging method and receiver - Google Patents

Interference suppression merging method and receiver Download PDF

Info

Publication number
CN102324960A
CN102324960A CN 201110123686 CN201110123686A CN102324960A CN 102324960 A CN102324960 A CN 102324960A CN 201110123686 CN201110123686 CN 201110123686 CN 201110123686 A CN201110123686 A CN 201110123686A CN 102324960 A CN102324960 A CN 102324960A
Authority
CN
Grant status
Application
Patent type
Prior art keywords
users
interference
local
module
information
Prior art date
Application number
CN 201110123686
Other languages
Chinese (zh)
Inventor
魏巍
Original Assignee
中兴通讯股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date

Links

Abstract

The invention discloses an interference suppression merging method and a receiver. The method is applied in a multi-user system, and comprises the steps of: obtaining the signal channel state information of local users; acquiring the quantized precoding vectors of the local users and interference users; and forming a linear weight vector gi according to the signal channel state information, the quantized precoding vectors of the local users and the interference users. The receiver comprises an estimation module, a coding module and a weighting module, wherein the estimation module is used for estimating the signal channel state information of the local users; the coding module is used for obtaining the quantized precoding vectors of the local users and the interference users; and the weighting module is used for forming the linear weight vector gi according to the signal channel state information, the quantized precoding vectors of the local users and the interference users. The signaling information which is sent to the users by a base station does not only contain the purchase management index (PMI) of the local users, a user side can obtain the accurate interference information, direct calculation is carried out, and the interference and noise correlation matrix are obtained, so the multi-user interference is effectively eliminated.

Description

一种干扰抑制合并方法和接收机 An interference suppression method and a receiver combined

技术领域 FIELD

[0001] 本发明涉及无线通信领域,具体涉及一种干扰抑制合并方法和干扰抑制合并接收机。 [0001] The present invention relates to wireless communication field, and particularly relates to a method of interference rejection combining and interference rejection combining receiver.

背景技术 Background technique

[0002] 在下一代的宽带无线通信网络中,解决无线通信网络中如何在当前的无线通信系统中的带宽下支持更大的带宽成为提高小区间用户终端吞吐量及用户终端平均吞吐量的一个关键因素并面临严峻的挑战。 [0002] In the next generation broadband wireless communication network, a wireless communication network to solve how to support greater bandwidth in the current wireless communication system as a user terminal at a certain bandwidth of the user terminal and the average throughput to improve inter-cell the key factors and severe challenges.

[0003] 在多用户系统中,对于ZF-BFaero-forceing beam forming,迫零波束成型)预编码方案,随着信噪比的增加,用户吞吐量会达到一个性能限。 [0003] In the multi-user system, for the ZF-BFaero-forceing beam forming, zero-forcing beamforming) a precoding scheme, the SNR increases, the user throughput performance will reach a limit. 这是因为反馈比特(bit)数目的有限性,造成信道信息的不精确性,其无法完全消除多用户间干扰。 This is due to the limited nature of feedback bits (bit) number, resulting in inaccuracies channel information, it can not completely eliminate interference between multiple users. 在高信噪比条件下, 多用户间干扰成为影响用户性能的主要因素。 At high SNR, multi-user interference among the main factors affecting user performance. 因此如何消除用户间干扰,对系统性能提升有很大的帮助。 So how to eliminate interference between users, a great help to enhance system performance.

[0004] 干扰抑制合并(Interference Reject Combine, IRC)算法可以在接收端利用接收分集有效的消除用户间的干扰。 [0004] The interference rejection combining (Interference Reject Combine, IRC) algorithm in the receiving end can receive diversity using the effective elimination of interference between users. 传统的分集合并方法,例如最大比合并(MRC),由于只考虑信道本身特性,多用户间干扰成为影响系统的主要因素。 Diversity combining conventional methods, such as maximum ratio combining (the MRC), since the channel only consider their own characteristics, among the main factors affecting the system become multi-user interference. 最小均方误差(Minimum Mean Square Error,MMSE)接收合并算法,也只考虑了噪声项的影响。 MMSE (Minimum Mean Square Error, MMSE) receiver merging algorithm, only considering the effect of noise terms. IRC算法与上述算法的不同之处在于,在接收端利用接收分集对干扰和噪声项均进行了处理,实现了对有色噪声(干扰加噪声)的抑制作用。 IRC algorithm differs from the algorithm above, the receiving side using the received noise and interference diversity term treatment were carried out, to achieve the inhibitory effect of colored noise (interference plus noise). 使用IRC算法来抑制干扰的关键是获得干扰和噪声的相关矩阵以获得加权向量。 The key used to suppress interference IRC algorithm is to obtain the correlation matrix of interference and noise to obtain the weight vector. 精确的获得干扰与噪声的相关特性对IRC算法的性能有很大的影响。 Obtain accurate interference and noise correlation properties have a great impact on the performance of IRC algorithms.

[0005] 目前,在第三代合作伙伴计划的长期演进(Long Term Evolution, LTE)中提出两种计算干扰和噪声相关矩阵的方法:一种是采用接收信号的自相关矩阵近似估计干扰与噪声的协方差矩阵,并进行时域与频域上的平均;另外一种方法是直接采用干扰与噪声来计算其协方差矩阵,也进行时域与频域上的平均(这里可以采用发送信号,也可以采用导频信号)。 [0005] Currently, in the long term evolution of the Third Generation Partnership Project (Long Term Evolution, LTE) proposed two methods of calculating interference and noise correlation matrix: one is the use of auto-correlation matrix of the received signal and noise interference approximated covariance matrix, and averaging in the frequency domain and the time domain; another method is to use direct interference and noise covariance matrix thereof is calculated, also the average on time and frequency domains (here, the transmission signal may be employed, pilot signal may be used). 其中方法一的优点是计算起来较为简单,复杂度相对较低,缺点是直接利用接收信号导致有一定的误差;方法二的优点是利用真正的干扰与噪声估计其协方差矩阵,理论上说性能会好一些。 Wherein the method has the advantage that computationally simple, relatively low complexity, a disadvantage of using the received signal directly lead to some errors; advantage of the method is to use two real estimated interference and noise covariance matrix, in theory performance It will be better. 但缺点是复杂度较高,首先要对发送信号做一个初步估计,而且求逆复杂度也相对较高。 But the disadvantage is the higher complexity, we must first make a preliminary estimate of the transmitted signal, and inversion complexity is relatively high.

发明内容 SUMMARY

[0006] 本发明提供一种干扰抑制合并方法和装置,解决现有的干扰抑制合并方法不能有效的消除用户间的干扰,应用于异构网络不够灵活的问题。 [0006] The present invention provides a method and apparatus combined interference suppression, interference rejection combining to solve the conventional method can not effectively eliminate the interference between users, is applied to a heterogeneous network is not flexible enough problems.

[0007] 为了解决上述问题,本发明提出一种干扰抑制合并方法,所述干扰抑制合并方法包括: [0007] In order to solve the above problems, the present invention provides a combined method of interference suppression, interference rejection combining the method comprising:

[0008] 获得本地用户的信道状态信息; [0008] obtain local channel state information of a user;

[0009] 获得本地用户和干扰用户量化后的预编码向量;[0010] 根据信道状态信息、本地用户和干扰用户量化后的预编码向量,构造线性加权向 [0009] obtaining the local user and the interfering user precoding vector quantization; [0010] After the precoding vector information, quantization local and interfering users, configured to linearly weighted according to channel state

量gi° Amount gi °

[0011] 进一步地,所述方法还包括: [0011] Preferably, the method further comprising:

[0012] 获得本地用户的噪声向量ni ;在构造线性加权向量gi时,将本地用户的噪声ni 计算在内。 [0012] The noise vector obtained local user ni; linear configuration when the weighting vector gi, computing the noise ni local user account.

[0013] 进一步地,本地用户为线性接收时,线性加权向量&为 [0013] Further, when receiving the local user is linear, the linear weighting vector is &

[0014] ^ = =KR~ff\ [0014] ^ = = KR ~ ff \

[0015] 其中,hei表示本地用户的等效信道状态信息向量,hei = Hi - Wi ; [0015] wherein, hei an equivalent vector channel state information of the local user, hei = Hi - Wi;

J*' J * '

[0016] fi表示干扰用户信道信息向量,f; =H Σ w;; [0016] fi represents the channel interfering user information vector, f; = H Σ w ;;

[0017] Rff = E{ffH}为干扰的相关矩阵,f为干扰信道信息矩阵,Hi为信道状态信息,Wi 为本地用户量化后的预编码向量,Wj为干扰用户量化后的预编码向量;其中1 < i,j < N, N为用户总数。 [0017] Rff = E {ffH} is the correlation matrix of interference, f is the interference channel information matrix, Hi is the channel state information, Wi is the precoding vector after local user quantization, Wj is the precoding vector after the interference user quantization; wherein 1 <i, j <N, N is the total number of users.

[0018] 进一步地,本地用户为线性接收时,线性加权向量&为: [_] ':! [0018] Further, upon receiving the local user is linear, the linear weighting vector as &: [_] ':! ^五—力广或者'=^、 ^ Five - wide force or '= ^,

[0020] 其中,hei表示本地用户的等效信道状态信息向量,hei = Hi - Wi ; [0020] wherein, hei an equivalent vector channel state information of the local user, hei = Hi - Wi;

J*' J * '

[0021] Ui = & · Si+ni; &表示干扰用户信道信息向量,f; =H Y4 w; . Si表示基站发 [0021] Ui = & · Si + ni; & interfering user channel information represents a vector, f; = H Y4 w;. Si represents a base station made

1<J<N 1 <J <N

送给本地用户的数据矩阵; To the user's local data matrix;

[0022] Ruu = E{uuh}为干扰和噪声的协方差矩阵,u为干扰加噪声信息矩阵,Hi为信道状态信息,Wi为本地用户量化后的预编码向量,Wj为干扰用户量化后的预编码向量;其中1 ( i,j彡N,N为用户总数。 [0022] Ruu = E {uuh} is the covariance of the interference and noise matrix, u is the interference plus noise information matrix, Hi is the channel state information, precoding vector after Wi quantized local users, of Wj interference user quantized precoding vector; where 1 (i, j San N, N being the total number of users.

[0023] 进一步地,本地用户为线性接收时,线性加权向量&为: [0023] Further, upon receiving the local user is linear, the linear weighting vector as &:

[_ gf =K (hX +ι)-1 或者gf =Y^Xhx [_ Gf = K (hX + ι) -1 or gf = Y ^ Xhx

[0025] 其中,hei表示本地用户的等效信道状态信息向量,hei = Hi - Wi ; [0025] wherein, hei an equivalent vector channel state information of the local user, hei = Hi - Wi;

[0026] Ruu = E{UUh}为干扰和噪声的协方差矩阵,U为干扰加噪声信息矩阵,Ui = [0026] Ruu = E {UUh} is the covariance matrix of interference and noise, U is a matrix of interference plus noise information, Ui =

J*' J * '

fi Mjr^fi表示干扰用户信道信息向量,f; =H;_· Y4 w; ; Si表示基站发送给本地用户的 fi Mjr ^ fi represents the channel interfering user information vector, f; = H; _ · Y4 w;; Si represents a base station to the local user

1<J<N 1 <J <N

数据矩阵; Data matrix;

[0027] Hi为信道状态信息,Wi为本地用户量化后的预编码向量,Wj为干扰用户量化后的预编码向量;其中1彡i,j彡N,N为用户总数。 [0027] Hi is the channel state information, Wi is the precoding vector quantization after the local user, Wj is the precoding vector quantization interfering user; San 1 wherein i, j San N, N being the total number of users.

[0028] 进一步地,所述方法还包括:设置自适应系数α, [0028] Preferably, the method further comprising: setting an adaptive coefficient [alpha],

[0029] 根据信道状态信息、本地用户和干扰用户量化后的预编码向量,构造线性加权向量gi前还包括: [0029] The channel state information after precoding vector, and interfering users local quantization, weighting vector gi linear configuration before further comprises:

[0030] 判断干扰值Z彡α σ 2时,则根据如下方式构造线性加权向量& :gf = h^ ; When [0030] the interference determination value Z San α σ 2, the configuration of the linear weighting vector according to the following mode &: gf = h ^;

[0031] 判断干扰值Z > α σ 2时,才根据信道状态信息、本地用户和干扰用户量化后的预编码向量,构造线性加权向量^。 [0031] Analyzing the interference value Z> α σ 2, only after the precoding vector information, local and interfering users quantization, linear configuration according to channel state weighting vector ^.

[0032] 其中Z = I |f| I2, hei表示本地用户的等效信道状态信息向量,hei = Hi . Wi ; [0032] where Z = I | f | I2, hei an equivalent vector channel state information of the local user, hei = Hi Wi;

[0033] Hi为信道状态信息,Wi为本地用户量化后的预编码向量,Wj为干扰用户量化后的预编码向量;其中1彡i,j彡N,N为用户总数,ο 2为噪声方差。 [0033] Hi is the channel state information, precoding vector after Wi quantized local users, of Wj precoding vectors after the interference user quantization; wherein 1 San i, j San N, N being the total number of users, ο 2 is the noise variance .

[0034] 进一步地,所述根据信道状态信息、本地用户和干扰用户量化后的预编码向量,构造线性加权向量&时: [0034] Further, the precoding vector according to the channel state information, the local and interfering users quantization, the linear weighting vector & configured when:

[0035] 由本地用户计算获得线性加权向量gi ; [0035] The weight vector calculated to obtain a linear GI by the local user;

[0036] 或由基站计算获得所述用户的线性加权向量gi,并将所述线性加权向量^发送给所述用户。 [0036] obtained by a base station or the user's computing linear weighting vector gi, and the linear weighting vector ^ sent to the user.

[0037] 为了解决上述问题,本发明还提出一种干扰抑制合并接收机,所述接收机包括:估计模块、编码模块和加权模块,其中: [0037] In order to solve the above problems, the present invention also provides a combined interference suppression receiver, said receiver comprising: estimating module, the weighting module, and the encoding module, wherein:

[0038] 所述估计模块用于估计获得本地用户的信道状态信息; [0038] The estimation module is configured to obtain channel state information estimation local user;

[0039] 所述编码模块用于获得本地用户和干扰用户量化后的预编码向量; [0039] The encoding means for obtaining a precoding vector after the local and interfering users quantization;

[0040] 所述加权模块用于根据信道状态信息、本地用户和干扰用户量化后的预编码向量,构造线性加权向量&。 [0040] The means for weighting the channel state information after precoding vector, and interfering users local quantization, the linear weighting vector & configured.

[0041] 进一步地,所述接收机还包括噪声模块,所述噪声模块用于获得本地用户的噪声向量rii ; [0041] Further, the receiver module further includes a noise, the noise means for obtaining a user's local noise vector RII;

[0042] 所述加权模块在构造线性加权向量^时,将噪声模块获得的本地用户的噪声Iii计算在内。 Iii calculated noise of the local user [0042] In constructing the linear weighting module weighting vector ^, the inner module obtains noise.

[0043] 进一步地所述加权模块构造线性加权向量&时: When [0043] Further, the linear weighting vector weighting module configured &:

[0044] 本地用户为线性接收时,线性加权向量^为 When the [0044] receiving the local user is linear, the linear weighting vector for the ^

[0045] g,H = K {Em,H)y^H = KR-;-, [0045] g, H = K {Em, H) y ^ H = KR -; -,

[0046]或 [0046] or

_7] ':! [7] ':! ! ::诈—力广或者'=^、 :: fraud - wide force or '= ^,

[0048]或 [0048] or

[_ gf =K (hX +ι)-1 或者gf =Y^Xhx [_ Gf = K (hX + ι) -1 or gf = Y ^ Xhx

[0050] 其中,hei表示本地用户的等效信道状态信息向量,hei = Hi - Wi ; [0050] wherein, hei an equivalent vector channel state information of the local user, hei = Hi - Wi;

[0051] Rff = E{ffH}为干扰的相关矩阵,f为干扰信道信息矩阵,Ruu = Eiuu11I为干扰和噪声的协方差矩阵,u为干扰加噪声信息矩阵,Ui = f, - Si+ni; f,表示干扰用户信道信息向 [0051] Rff = E {ffH} is the correlation matrix of interference, f is the interference channel information matrix, Ruu = Eiuu11I interference and noise covariance matrix, u is the interference plus noise information matrix, Ui = f, - Si + ni ; f, represents the interference channel information to the user

J*' J * '

量,f; =H Σ w; ; Si表示基站发送给本地用户的数据矩阵汛为信道状态信息,Wi为本 The amount, f; = H Σ w;; Si represents a base station transmits user data to the local matrix for the channel state information flood, Wi-oriented

地用户量化后的预编码向量,Wj为干扰用户量化后的预编码向量;其中1 < i,j < N,N为用户总数。 After the precoding vector quantization user, Wj is the precoding vector quantization interfering user; wherein 1 <i, j <N, N is the total number of users.

[0052] 进一步地,所述接收机还包括自适应模块,所述自适应模块用于设置自适应系数α , [0052] Further, the receiver further comprises an adaptive module, means for setting the adaptive adaptive coefficient [alpha],

[0053] 所述加权模块构造线性加权向量&前还包括:[0054] 判断干扰值Z彡α σ 2时,则根据如下方式构造线性加权向量& :gf = hHei ; [0053] The linear weighting vector weighting module configured before & further comprising: when [0054] the interference determination value Z San α σ 2, the configuration of the linear weighting vector according to the following mode &: gf = hHei;

[0055] 判断干扰值Z > α σ 2时,才根据信道状态信息、本地用户和干扰用户量化后的预编码向量,构造线性加权向量^。 [0055] Analyzing the interference value Z> α σ 2, only after the precoding vector information, local and interfering users quantization, linear configuration according to channel state weighting vector ^.

[0056] 其中Z = I |f| I2, hei表示本地用户的等效信道状态信息向量,hei = Hi . Wi ; . [0056] where Z = I | f | I2, hei an equivalent vector channel state information of the local user, hei = Hi Wi;

[0057] Hi为信道状态信息,Wi为本地用户量化后的预编码向量,Wj为干扰用户量化后的预编码向量;其中1彡i,j彡N,N为用户总数,ο 2为噪声方差。 [0057] Hi is the channel state information, precoding vector after Wi quantized local users, of Wj precoding vectors after the interference user quantization; wherein 1 San i, j San N, N being the total number of users, ο 2 is the noise variance .

[0058] 本发明通过基站对干扰用户预编码指示(Procoding Matrix Index, PMI)的增强通知来进行干扰抑制合并以达到干扰消除的目的。 Enhanced notification [0058] The present invention is by interfering base station-user precoding indication (Procoding Matrix Index, PMI) to perform interference rejection combining for the purpose of interference cancellation. 本发明中,基站对用户发送的信令信息不只包括本地用户的PMI,同时包括干扰用户的PMI,本地用户的PMI和干扰用户的PMI组成预编码矩阵W。 In the present invention, the signaling information sent by the user station comprises a local user only a PMI, a PMI includes both interfering users, the user's local and interfering PMI user PMI precoding matrix W. composition 这样用户端就能得到精确的干扰信息,并直接计算得到干扰和噪声相关矩阵,用于消除多用户间干扰。 Thus the UE can get accurate interference information, and calculate direct correlation matrix of interference and noise, for eliminating interference between multiple users. 在此基础上本发明提出了一种基于干扰状况的自适应IRC接收机:发送端和接收端分别估计噪声项与干扰项的大小,当干扰相对噪声较大时,采用本发明的干扰抑制合并方法;当干扰相对噪声较小时,可以直接采用传统的MRC方法,在性能未明显下降的情况下复杂度大大降低。 On this basis, the present invention proposes an adaptive interference condition based on IRC receiver: the sender and the receiver ends are estimated size of the interference term and a noise term, and noise when the interference is relatively large, the present invention using the interference rejection combining method; noise when the interference is relatively small, can be directly used in the conventional MRC approach greatly reduces the complexity in the case where the performance is not decreased.

附图说明 BRIEF DESCRIPTION

[0059] 图1为本发明的小区内场景图; [0059] FIG. 1 is a cell of the present invention within a scene graph;

[0060] 图2为本发明不同实现方法的速率性能比较图; FIG rate performance comparison [0060] FIG 2 is a different implementation of the method of the invention;

[0061] 图3为本发明不同实现方法的误码率(BER,Bit Error Rate)性能比较图; [0061] Figure 3 is a different method for implementing a bit error rate (BER, Bit Error Rate) performance comparison chart invention;

[0062] 图4为本发明在不同α参数值下IRC-adaptive方法与IRC-SINR方法的吞吐量性能曲线图; [0062] FIG. 4 is a graph showing the performance of the invention in a certain manner IRC-adaptive method of IRC-SINR at different α parameter values;

[0063] 图5为本发明在不同α参数值下IRC-adaptive方法与IRC-SINR方法的误码率性能曲线图; [0063] FIG. 5 of the present invention in a graph of BER performance IRC-adaptive manner IRC-SINR method under different α parameter values;

[0064] 图6为本发明的方法流程图。 Method [0064] FIG 6 is a flowchart of the present invention. 具体实施方式 detailed description

[0065] 为使本发明的目的、技术方案和优点更加清楚明白,下文中将结合附图对本发明的实施例进行详细说明。 [0065] To make the objectives, technical solutions, and advantages of the present invention will become apparent from, the accompanying drawings hereinafter in conjunction with embodiments of the present invention will be described in detail. 需要说明的是,在不冲突的情况下,本申请中的实施例及实施例中的特征可以相互任意组合。 Incidentally, in the case of no conflict, embodiments and features of the embodiments of the present application may be arbitrarily combined with each other.

[0066] 对于含有N个用户的多用户系统而言,本发明的干扰抑制合并方法如下: [0066] For multi-user system comprising N users, the interference rejection combining method of the present invention is as follows:

[0067] 用户i通过估计基站,获得用户i的信道状态信息氏,其中1彡i彡N,N为用户总数; [0067] The estimation of user i by a base station, to obtain user i's channel state information, wherein i San San 1 N, N being the total number of users;

[0068] 采用预编码方案分别获得用户i和干扰用户j量化后的预编码向量Wi和Wj ; [0068] The precoding scheme are obtained user i and user j interfering precoding vector Wi and Wj quantized;

[0069] 所述用户i和干扰用户j量化后的预编码向量Wi和Wj可以为采用迫零波束成型预编码方案获得的。 [0069] Wi and Wj precoding vector after the interference of the user i and user j quantization can be obtained for zero forcing Beamforming precoding scheme.

[0070] 根据所述用户i的信道状态信息Hi和用户i量化后的预编码向量Wi,计算获得包含各个用户的信道状态信息的等效信道状态信息矩阵〜;[0071] 等效信道状态信息矩阵表示为:he = [0070] The precoding vector Wi after channel status information Hi and a user of the user i i quantization, is calculated to obtain equivalent channel state information matrix - the channel state information comprising the respective user; [0071] The equivalent channel state information matrix is ​​expressed as: he =

态信息向量,hei = Hi ' WiO State information vector, hei = Hi 'WiO

h h

el el

h h

h h

eN eN

其中表示用户i的等效信道状 Wherein an equivalent-shaped channel of user i

[0072] 根据所述用户i的信道状态信息Hi和干扰用户j量化后的预编码向量%,计算获得干扰信道信息矩阵f,其中j兴i,1 < j < N ; [0072] After the precoding vector information and the interfering user j Hi quantized%, calculated to obtain f interference channel information matrix according to a channel state of the user i, where j Xing i, 1 <j <N;

[0073] 干扰信道信息矩阵f表示为:f = [0073] f interference channel information matrix is ​​expressed as: f =

f f

A 一 A a

其中A表示用户i的干扰信道信息向量, Wherein A represents a vector of interference channel information of user i,

j*· j * ·

=H Σ = H Σ

w w

[0074] 获得接收端的噪声矩阵η [0074] The obtained receiving end noise matrix η

[0075] 接收端的噪声矩阵η表示为:n = [0075] The receiving end noise matrix η is expressed as: n =

Ii1 Ii1

nv nv

η η

N N

其中Iii表示用户i接收端的噪声, Iii where i represents the user of the receiving end noise,

Iii e CN(O, σ 2)。 Iii e CN (O, σ 2).

[0076] 利用各个用户接收到的信号矩阵Y、等效信道状态信息矩阵、、干扰信道信息矩阵f和接收端的噪声矩阵n,构造线性加权矩阵g,还原发送端给用户的数据矩阵s ; [0076] The use of each user received signal matrix Y, the equivalent channel state information matrix ,, interference channel information matrix f and the receiving end noise matrix n, configured linear weighting matrix g, reducing transmitting end user data matrix S;

[0077] 各个用户接收到的信号矩阵Y表示为:Y = he · s+f · s+n,即 [0077] each user to the received signal matrix Y is expressed as: Y = he · s + f · s + n, i.e.,

Yi =h^I+fI" Σ 〜+ηι Yi = h ^ I + fI "Σ ~ + ηι

2<J<N 2 <J <N

[0078]公式- [0078] Formula -

j*· j * ·

y = Ii s +f V s +n y = Ii s + f V s + n

J ι ei ι ι / ι j ι J ι ei ι ι / ι j ι

^J^N ) ^ J ^ N)

=Κν^Ν+{Ν· Σ s;+n^ = Κν ^ Ν + {Ν · Σ s; + n ^

ι</<λα-Ι ι </ <λα-Ι

[0079] 接收端为线性接收,线性加权向量为g,检测到的信号矩阵r表示为 [0079] The receiving end is a linear receivers, as the linear weighting vector g, the detected signal matrix expressed as r

[0080] r = gH (he · s+f · s+n),即 [0080] r = gH (he · s + f · s + n), i.e.,

9[0081]公式: 9 [0081] Formula:

Figure CN102324960AD00101

[0082] 构造线性加权矩阵 [0082] configured linear weighting matrix

Figure CN102324960AD00102

以消除干扰和噪声,使得检测到的信号矩阵r还原 To eliminate interference and noise, so that the detected signal matrix reduction r

发送端给用户的数据矩阵s,其中^表示用户i加权向量,上标H表示共轭转置。 Transmitting end user data matrix to s, where ^ represents the weight vector for user i, the superscript H denotes a conjugate transpose.

[0083] 构造线性加权矩阵/向量g的方法一=IRC-ZF方法: [0083] configured linear weighting matrix / vector g = IRC-ZF method of Method:

[0084] 在公式一的各式两端乘以对应的干扰项的零空间null (f\),得到消除干扰项后的信号矩阵Y'; [0084] multiplied by the interference terms corresponding to the formula in a variety of both ends of the null space of null (f \), to obtain cancellation signal after the interference term matrix Y ';

[0085] 在信号矩阵Y'各式两端再乘以对应用户i的等效信道状态信息向量的共轭null汍)、,得到具有最大化本地信噪比的信号矩阵Y", [0085] In the signal matrix Y 'ends multiplied by a variety of user i corresponding to the equivalent channel state information vector conjugate null Wan) ,, matrix to obtain a signal Y "having maximize local SNR,

[0086] 基站计算获得线性加权向量&,表示为 [0086] The base station calculates a weight vector to obtain a linear & expressed as

Figure CN102324960AD00103

[0091] 其中,Rff = E{ffH}为干扰的相关矩阵。 [0091] wherein, Rff = E {ffH} is the interference correlation matrix.

[0092] 构造线性加权矩阵/向量g的方法二=IRC-SINR方法: [0092] The configuration of the linear weighting matrix / vector g = IRC-SINR method of two methods:

[0093] 将各个用户接收到的信号矩阵Y表示为:Y = he · s+u,其中u = f · s+n表示干扰项与噪声的和矩阵; [0093] The respective users received signal matrix Y is expressed as: Y = he · s + u, where u = f · s + n represents noise and interference terms with matrix;

[0094] 使得接收端SINR最大的,目标函数表示为: [0094] receiving end such that the maximum SINR, the objective function is expressed as:

[0095] [0095]

Figure CN102324960AD00104

[0096]其中Ruu = E{uuh}为干扰和噪声的协方差矩阵, [0096] wherein Ruu = E {uuh} is the covariance matrix of interference and noise,

[0097] 由广义瑞利商理论得到使得线性加权矩阵g,表示为 [0097] the generalized Rayleigh quotient obtained by the weighting matrix such that the linear theory g, expressed as

[0098] [0098]

Figure CN102324960AD00105

[0099]构造线性加权矩阵/向量g的方法三=IRC-MMSE方法[0100] 将各个用户接收到的信号矩阵Y表示为:Y = he · s+u,其中u = f · s+n表示干扰项与噪声的和矩阵; [0099] configured linear weighting matrix / vector g Method Three = IRC-MMSE Method [0100] The respective users received signal matrix Y is expressed as: Y = he · s + u, where u = f · s + n represents noise and interference terms in a matrix;

[0101] 基于最小均方误差的目标准则,目标函数表示为: [0101] Based on the target minimum mean square error criterion, the objective function is expressed as:

[0102] min五(g^yx | [0102] min five (g ^ yx |

[0103] 得到线性加权矩阵g为: [0103] g is obtained linear weighting matrix:

[0104] [0104]

Figure CN102324960AD00111

[0105] 其中Ruu = Elirn11}为干扰和噪声的协方差矩阵。 [0105] wherein Ruu = Elirn11} is the covariance matrix of interference and noise.

[0106] 构造线性加权矩阵/向量g的方法四:IRC-adaptiVe方法: [0106] configured linear weighting matrix / vector g Method Four: IRC-adaptiVe Method:

[0107] 基站设置自适应系数α, [0107] The base station is provided adaptive coefficient α,

[0108] [0108]

Figure CN102324960AD00112

[0109] 其中Z为干扰值,Z= |f| I2, η, e CN(0, σ2), σ 2为噪声方差。 [0109] wherein Z is a disturbance value, Z = | f | I2, η, e CN (0, σ2), σ 2 is the noise variance.

[0110] 计算线性加权向量&时可以由本地用户计算获得线性加权向量& ;或由基站计算获得所述用户的线性加权向量^,并将所述线性加权向量^发送给所述用户。 [0110] can be obtained when calculating the linear weighting vector is calculated by the local user & linearly weighted & vector; or calculated by the base station to obtain a linear weighting vector ^ of the user, and the linear weighting vector ^ sent to the user.

[0111] 本发明以CoMP(Coordinated Multi Point Transmission/Rec印tion,协作多点发送/接收)中的小区内antral-cell)为研究背景。 [0111] In the present invention CoMP (Coordinated Multi Point Transmission / Rec printing tion, coordinated multipoint transmission / reception) within the cell antral-cell) for the background. Intral-cell场景如图1所示,本实施例以两个基站和两个用户为例,两个基站由一个中心控制器连接。 Intral-cell scenario shown in Figure 1, in the present embodiment, two base stations and two users, for example, two base stations are connected by a central controller. 每个用户都可以估计基站得到本地的信道状态信息,分别用Hl和H2表示。 Each user can get local base station estimated channel state information, it is represented by Hl and H2.

[0112] 用户接收到的信号表示为: [0112] the received user signal is represented as:

[0113] [0113]

Figure CN102324960AD00113

[0115] 其中%为发送端发送给用户k的数据符号,Hk表示发送端到用户k的信道状态信息,nke CN(0,σ 2)为用户k接收端的噪声。 [0115] where% is the sender sends the data symbols of user k, Hk denotes a transmission end user k channel state information, nke CN (0, σ 2) the end user k is the received noise. 这里采用ZF-BF预编码方案,Wk为用户k量化后的预编码向量。 Used here ZF-BF precoding scheme, Wk is the precoding vector quantization user k. Hkwk%为接收到的有效数据,因为存在一定的量化误差,因此干扰项H1W^2 和H2W1S1不为0。 Hkwk% received valid data, since there is a certain quantization error, thus interfering with H1W ^ 2 term is not 0 and H2W1S1.

[0116] 令hek = Hk ·%,将信道状态信息与本地预编码向量的乘积作为等效信道状态信息, 令fk = Hk ·%,将信道状态信息与干扰用户预编码向量的乘积作为干扰信道状态信息,这里k = l,2,n = 1,2。 [0116] Order hek = Hk ·%, the product of the channel state information of the local precoding vector as an equivalent channel state information, so that fk = Hk ·%, the channel state information and the interfering user pre-product coding vector as an interference channel state information, where k = l, 2, n = 1,2. 式(三)可以简化为: Of formula (III) can be simplified to:

[0117] Y1 = KelS^f1S2+]!! [0117] Y1 = KelS ^ f1S2 +] !!

[0118] y2 = he2s2+f2Sl+n2 (四) [0118] y2 = he2s2 + f2Sl + n2 (IV)

[0119] 接收端为线性检测,检测到的信号定义为: [0119] receiving end is a linear detector, the detected signal is defined as:

[0120] [0120]

Figure CN102324960AD00114

[0122] 构造线性加权矩阵/向量 [0122] configured linear weighting matrix / vector

Figure CN102324960AD00121

,以消除干扰和噪声,使得检测到的信号矩阵 To eliminate interference and noise so that the signal detected by the matrix

rk还原发送端给用户的数据矩阵sk,其中&表示用户k加权向量,上标H表示共轭转置。 rk reducing transmitting end user data matrix to SK, which represents user k & weighting vector, the superscript H denotes a conjugate transpose.

[0123] 构造线性加权矩阵/向量g的方法一=IRC-ZF方法: [0123] configured linear weighting matrix / vector g = IRC-ZF method of Method:

[0124] 在式(四)的两端乘以对应的干扰项的零空间null (fk),以消除干扰项; Ends [0124] In formula (IV) is multiplied by the interference term corresponding to the null space of null (fk), in order to eliminate the interference term;

[0125] 再乘以对应的等效信道状态信息的共轭null (fk)hek,得到具有最大化本地信噪比,目的是保证接收信号能量最大; [0125] multiplied by the equivalent channel state information corresponding to the conjugated null (fk) hek, obtain a local signal to noise ratio maximized, designed to ensure the maximum signal energy received;

[0126] 基站计算获得线性加权向量gk,表示为: [0126] The base station calculates a weight vector to obtain a linear gk, expressed as:

Figure CN102324960AD00122

[0131] 其中,Rff = E{ffH}为干扰的相关矩阵。 [0131] wherein, Rff = E {ffH} is the interference correlation matrix.

[0132] 上两式中的f•不需要加下标k吗? [0132] two equations on the f • subscript k do not need to add? 干扰的相关矩阵具体如何计算? Correlation matrix interferences specifically how to calculate? (Rff = E (ffH),当前面乘以h/ 后,hekHE (ffH) = hekHE (fkfkH)) (Rff = E (ffH), multiplied by the current face h / rear, hekHE (ffH) = hekHE (fkfkH))

[0133] 当采用上式作为加权向量吋,多用户干扰可以完全消除,所以在高信噪比场景下(干扰受限)性能会有很大的提高。 [0133] When employed as the formula weight vector inch, multiuser interference can be completely eliminated, so that (interference-limited) performance will be greatly improved at high SNR scenarios.

[0134] 构造线性加权矩阵/向量g的方法ニ=IRC-SINR方法: [0134] configured linear weighting matrix / vector g ni = IRC-SINR method of Method:

[0135] 将式(四)改写接收到的信号表示为: [0135] The formula (IV) can be rewritten as represented by the received signal:

[0136] Y1 = h^Si+Ui [0136] Y1 = h ^ Si + Ui

[0137] y2 = he2s2+u2 (六) [0137] y2 = he2s2 + u2 (VI)

[0138] 其中Uk表示干扰项与噪声的和; [0138] where Uk denotes noise and interference terms;

[0139] 为了使得接收端SINR最大,目标函数表示为: [0139] In order to make the maximum SINR receiving end, the objective function is expressed as:

[0140] [0140]

Figure CN102324960AD00123

[0141] 其中Ruu = E{uuh}为干扰和噪声的协方差矩阵。 [0141] wherein Ruu = E {uuh} is the covariance matrix of interference and noise.

[0142] 由广义瑞利商理论得到线性加权矩阵/向量g,表示为: [0142] to give a linear weighting matrix / vector g by the generalized Rayleigh quotient theory, expressed as:

[0143] [0143]

Figure CN102324960AD00124

[0144] 其中Ruu = E{uuh}为干扰和噪声的协方差矩阵。 [0144] wherein Ruu = E {uuh} is the covariance matrix of interference and noise.

[0145] 构造线性加权矩阵/向量g的方法三=IRC-MMSE方法: [0145] configured linear weighting matrix / vector g = IRC-MMSE method of three methods:

[0146] 接收到的信号如式(六)表示,与方法ニ不用的是本方法是基于最小均方误差(MMSE)的目标准则,目标函数表示为: [0146] indicates that the received signal of formula (VI), and the method is not ni based on certain criteria of the present method is a minimum mean square error (MMSE), the objective function is expressed as:

[0147] [0147]

Figure CN102324960AD00125

[0148] 得到线性加权矩阵/向量g为:[0149] =hf (hehf +^u)"1 = 1 hfi?-1 [0150] 其中Ruu = Elirn11}为干扰和噪声的协方差矩阵。 [0148] to give a linear weighting matrix / vector g as:? [0149] = hf (hehf + ^ u) "1 = 1 hfi -1 [0150] where Ruu = Elirn11} is the covariance matrix of interference and noise.

[0151] 本方法与传统的MMSE接收方法的区别是考虑了干扰项,将其加入到噪声当中。 [0151] The present method differs from the conventional method is MMSE receiver considering interference term, which noise is added to them. 值得注意的是,方法二和方法三得到的线性加权矩阵/向量g只差一个系数,IRC-MMSE方法与IRC-SINR方法是等效的。 Notably, the linear weighting matrix method II and the resulting three methods /'re just one coefficient vector g, IRC-MMSE method IRC-SINR are equivalent.

[0152] 构造线性加权矩阵/向量g的方法四:IRC-adaptiVe方法: [0152] configured linear weighting matrix / vector g Method Four: IRC-adaptiVe Method:

[0153] 基站设置自适应系数α, [0153] The base station is provided adaptive coefficient α,

H ihf Ζ< ασ2 H ihf Ζ <ασ2

[0154] g =\ % , 7, [0154] g = \%, 7,

IhfC ζ > ασ2 , IhfC ζ> ασ2,

[0155] 其中Z为干扰值,Z= |f| I2, n, e CN(0, O2), σ 2为噪声方差。 [0155] wherein Z is a disturbance value, Z = | f | I2, n, e CN (0, O2), σ 2 is the noise variance.

[0156] 本方法设置一个常数α,当Z彡α ο 2时,直接采用传统MRC接收方法;当Z > α σ 2时,采用IRC-SINR接收方法或者IRC-ZF接收方法或者IRC-MMSE接收方法。 [0156] The present method sets a constant α, when Z San α ο 2, the direct use of the conventional MRC reception method; when Z> α σ 2, using IRC-SINR receiving method or IRC-ZF reception method or IRC-MMSE receiver method.

[0157] 这里IRC-adaptive接收方法关键参数为α,其参数设定希望在性能不出现下降的情况下尽可能的减少接收复杂度。 [0157] Here IRC-adaptive method for receiving a key parameter α, the parameter set which is desirable to reduce the complexity of the receiver as in the case of no decline in performance. 当α选择的过小的话,会导致干扰很低的情况下仍然选择IRC接收方法,这样IRC-adaptive接收方法相对IRC-SINR接收方法的复杂度减小不明显。 In the case where it is too small, a very low α cause interference still choose the selected IRC reception method, a reception method such IRC-adaptive IRC-SINR received relatively reduced complexity method is not obvious. 而当α选择过大的话,会导致干扰很大的情况下,仍然选择MRC接收方法,系统性能有所下降。 When α selected is too large, it can cause a lot of interference under, still choose to receive MRC method, system performance degradation.

[0158] 计算干扰和噪声的协方差矩阵Ruu时,用户可以获得干扰用户的ΡΜΙ,容易获得精确的干扰信道信息f,计算可得到干扰的相关矩阵为Rff = E{fTH},干扰和噪声的协方差矩阵为Ruu = E{uuH}。 [0158] When calculating interference and noise covariance matrix Ruu, the user can obtain the interference user ΡΜΙ, readily obtain accurate interference channel information f, is calculated to obtain the interference correlation matrix Rff = E {fTH}, interference and noise covariance matrix Ruu = E {uuH}. 噪声为高斯白噪声,与干扰是不相关的。 Noise is Gaussian white noise, interference is irrelevant. 容易得到下式: Easily obtained by the following formula:

[0159] Ruu = E {ffH} + O2I= Rff+ σ 2I [0159] Ruu = E {ffH} + O2I = Rff + σ 2I

[0160] 这样就可以计算出Ruu,相应的线性加权矩阵/向量g也就容易得到。 [0160] This can be calculated Ruu, the corresponding linear weighting matrix / vector g is also readily available.

[0161] 线性加权矩阵/向量是由基站计算还是用户计算? [0161] linear weighting matrix / vector is calculated from a base station or a user of computing?

[0162] 传统的接收方法与本发明的各个接收方法的比较如表1所示。 [0162] Compared with the conventional receiving method for receiving the respective methods of the present invention as shown in Table 1.

[0163] 表1 [0163] TABLE 1

[0164] [0164]

接收方法 加权矩阵 特点 性能MRC 廷opt ~ 最大比合并(不考虑干扰) 高信噪比下性能受限MMSE g»»/)-1 MSE最小化(不考虑干扰) 高信噪比下性能受限IRC-ZF 干扰最小化,不考虑噪声 干扰受限下性能提升噪声受限下性能下降IRC-SINR 容opt 尺 SINR最大化(考虑干扰项与噪声项) 干扰受限下性能提升噪声受限下性能接近IRC-MMSE C = K{KK+RuJ1 MSE最小化(考虑干扰项与噪声项) 与IRC-SINR等效IRC-adaptive η Jhf Ζ<ασΊ ^― IhfCZW 根据干扰状况自适应选择MRC或IRC方法 与IRC-SINR性能接近[0165] 本发明用于多用户异构网络中,本发明是基于基站对干扰项的增强通知,结合IRC 接收方法来进行多用户间的干扰消除的。 The method features receiving weight matrix opt ~ ting with MRC Maximum Ratio Combining (without regard to interference) noise ratio performance is limited MMSE g »» /) - 1 MSE minimization (irrespective interference) properties under high SNR restricted IRC-ZF minimize interference, noise is not considered limited by the noise limited performance degradation under IRC-SINR maximizing the receiving SINR opt feet (considering interference term and a noise term) performance under interference-limited noise limited performance at close IRC-MMSE C = K {KK + RuJ1 MSE minimization (considering interference term and a noise term) is equivalent to IRC-SINR IRC-adaptive η Jhf Ζ <ασΊ ^ - IhfCZW adaptively selecting IRC or MRC method with the interference condition IRC-SINR performance close to the [0165] present invention is used for multi-user in a heterogeneous network, the present invention is a base station notification enhancement of the interference term, binding IRC reception method for eliminating interference between multiple users based. 用户不只获得本地用户的PMI,同时获得干扰用户的PMI,基站测量邻小区干扰即可获得干扰用户的PMI。 The user only get local user PMI, user interference while obtaining PMI, the base station can obtain neighbor cell interference measurement interfering users PMI. 另外,基站可以通过协作基站(小区)间的信令交互获得干扰用户的PMI。 Further, the base station may obtain an interference PMI user through signaling interaction between the cooperating base station (cell). 理论结合仿真证明了IRC方法在低信噪比场景下(噪声受限),与MRC方法性能接近;在高信噪比情况下(干扰受限),对系统性能有很大的提升。 Theoretical simulation shows IRC binding method at low SNR scenario (noise limited), and performance close to the MRC method; at high SNR (interference limited), has greatly improved the system performance. 本发明提出的IRC-ZF方法,其理论上可以完全消除干扰项。 IRC-ZF method proposed by the present invention, it is theoretically possible to eliminate interference term. IRC方法相对于传统的方法其复杂度有一定的较高,因此提出了根据干扰状况进行MRC与IRC-SINR自适应选择的一种接收方法,即本发明中的IRC-adaptive方法。 IRC method with respect to the conventional methods which have a higher complexity, thus proposed for MRC and IRC-SINR A receiving method adaptively selected according to the interference conditions, i.e. IRC-adaptive method according to the present invention. 自适应接收可以平衡系统性能和接收算法的复杂度。 Adaptive reception can balance system performance and complexity of the reception algorithm.

[0166] 结合图2至图5分析本发明的几种方法的吞吐量性能和误码率性能:首先对其各种接收方法的性能进行仿真验证,然后给出了不同α参数设置下的系统性能曲线,从中选取合适的α参数值。 [0166] Figures 2 to 5 in conjunction with the throughput performance analysis and BER performance of several methods of the present invention: firstly its performance simulation of various reception methods, and gives the system under different parameters α performance curve, which select the appropriate parameters α.

[0167] 为了简单起见,假定htral-cell系统包括2个基站和2个用户,且基站端和用户端都有2根天线,发送端等效为4根发送天线。 [0167] For simplicity, it is assumed htral-cell system includes two base stations and two users, and a user terminal and the base station side has two antennas, the transmitting side is equivalent to four transmitting antennas. 预编码采用ZF-BF预编码方案。 ZF-BF precoding using the precoding scheme. 发送端和接收端含有相同的随机码本,对得到的迫零预编码进行6bit的矢量量化。 Sending and receiving ends comprising the same random codebook, a zero-forcing precoding was subjected to vector quantization 6bit. 此处接收端可以得到本地的信道信息,而且知道本地预编码矢量和干扰预编码矢量。 Here the local receiver can obtain channel information, and know the local interference and precoding vector precoding vector. 那么接收端可以进行相应的检测。 The receiving end may perform the corresponding detection. 对系统平均吞吐量和误码率分别进行仿真。 The average throughput of the system are simulated and bit error rate.

[0168] 从图2系统吞吐量的仿真结果可以看出,IRC方法在高信噪比下(干扰受限) 对性能有很大的提升。 [0168] From the simulation results of the throughput of the system FIG. 2, IRC method at high signal to noise (interference limited) has greatly improved performance. 随着信噪比的提高,IRC-ZF方法与IRC-SINR方法性能接近,其中IRC-SINR方法(与IRC-MMSE方法一致)性能相对最好。 With the improvement of signal to noise ratio, IRC-ZF method with IRC-SINR performance close to a method, wherein (in accordance with IRC-MMSE method) IRC-SINR method is relatively better performance. 在低信噪比情况下(噪声受限), IRC-SINR方法(IRC-MMSE方法)相对MRC方法没有明显的性能提升,而IRC-ZF方法性能有明显下降。 In low SNR (noise limited), IRC-SINR method (IRC-MMSE method) relative MRC method is not significant performance gains, and IRC-ZF method significantly decrease performance. 这是因为IRC-ZF方法虽然理论上完全消除了干扰,但此时干扰不是影响系统性能的主要原因,相对于MRC方法其相应的降低了接收信号的能量,因此性能有损失。 This is because IRC-ZF method, although theoretically completely eliminate the interference, but this time is not the disturbance factors affecting system performance, with respect to its corresponding MRC method reduces the energy of the received signal, so the loss of performance.

[0169] 从图3系统误码率性能仿真结果可以得到相似的结论,即IRC-SINR方法(IRC-MMSE方法)在高信噪比下(干扰受限)相对于其他接收算法性能有明显的提升。 [0169] Similar results can be obtained from the BER performance simulation results of FIG. 3, i.e., IRC-SINR method (IRC-MMSE method) at high signal to noise (interference limited) reception algorithm with respect to other properties significantly upgrade.

[0170] 图4和图5分别给出了不同α参数值下IRC-adaptive接收方法的吞吐量和BER 性能曲线,并与IRC-SINR接收方法的性能进行了比较。 [0170] Figures 4 and 5 are given the BER and throughput performance curves IRC-adaptive receiving method different α parameter values, and compared with the properties of IRC-SINR receiving method. 从图中容易发现IRC-adaptive性能曲线在已给出的不同的α参数设置下,性能均未出现明显的下降,能够在保证系统性能的情况下,减少发送和接收复杂度。 Easily found from FIG IRC-adaptive performance curves at different α parameter settings are given, no significant decline performance can be guaranteed in the case of system performance, reduce the complexity of the transmission and reception. 当信噪比很高时,IRC-adaptive方法自适应选择IRC方法,因此与IRC-SINR的性能一致;当信噪比很低时,IRC-adaptive方法自适应选择MRC方法,因为此时为噪声受限,所以性能与IRC-SINR方法也很接近。 When the SNR is high, IRC-adaptive method of adaptively selecting IRC method, therefore consistent with the properties of IRC-SINR; and when the SNR is very low, IRC-adaptive method of adaptively selecting MRC method, since in this case the noise it is limited, so the method of IRC-SINR performance is also very close. 当干扰与噪声可比时(同一数量级),IRC-adaptive方法相对IRC-SINR方法性能有所下降,α参数设定越大,性能损失越大。 When the interference and noise comparable (same order of magnitude), IRC-adaptive method is relatively IRC-SINR method of performance degradation, the greater the α parameter is set, the greater the loss of performance. 当α设定为1时,性能接近,基本没有损失;当α设定为5时,性能损失大约有ldB。 When α is set to 1, performance close, substantially no loss; when α is set to 5, the performance loss of approximately ldB. 在实际应用过程中,可以根据需要设置α参数值。 In actual application, the value of the parameter α can be set as desired. 在此处,我们可以将α设置为1, 这样在减少了复杂度的同时保证了系统性能。 Here, we can set α 1, so that reduces complexity while maintaining the system performance.

[0171] 本领域普通技术人员可以理解上述方法中的全部或部分步骤可通过程序来指令相关硬件完成,上述程序可以存储于计算机可读存储介质中,如只读存形式实现。 [0171] Those of ordinary skill in the art will be appreciated that the above-described method may be all or part of the steps by a program instructing relevant hardware is completed, the program may be stored in a computer-readable storage medium, such as read only memory forms. 本发明不限制于任何特定形式的硬件和软件的结合。 The present invention is not limited to any specific combination of hardware and software form.

[0172] 以上实施例仅用以说明本发明的技术方案而非限制,仅仅参照较佳实施例对本发明进行了详细说明。 [0172] Example embodiments above are intended to illustrate and not limit the present invention only with reference to the preferred embodiments of the present invention has been described in detail. 本领域的普通技术人员应当理解,可以对本发明的技术方案进行修改或者等同替换,而不脱离本发明技术方案的精神和范围,均应涵盖在本发明的权利要求范围当中。 Those skilled in the art will appreciate that modifications may be made to the technical solutions of the present invention, or equivalent replacements without departing from the spirit and scope of the technical solutions of the present invention shall be encompassed in the scope of the present invention accompanying claims.

Claims (11)

  1. 1. 一种干扰抑制合并方法,应用于多用户系统中,包括: 获得本地用户的信道状态信息;获得本地用户和干扰用户量化后的预编码向量;根据信道状态信息、本地用户和干扰用户量化后的预编码向量,构造线性加权向量^。 An interference rejection combining method applied to a multi-user system, comprising: obtaining channel state information of the local user; precoding vector is obtained after the local and interfering users quantization; quantizing channel state information, the local and interfering users after precoding vector, a weight vector ^ linear configuration.
  2. 2.如权利要求1所述的干扰抑制合并方法,其特征在于:所述方法还包括:获得本地用户的噪声向量Iii ;在构造线性加权向量^时,将本地用户的噪声Ili计算在内。 In constructing the linear weighting vector ^, the local user account is calculated noise Ili; a noise vector obtained local user Iii: 2. as claimed in claim 1, the interference rejection combining, characterized in that: said method further comprises.
  3. 3.如权利要求1所述的干扰抑制合并方法,其特征在于: 本地用户为线性接收时,线性加权向量&为 3. the interference rejection combining method of claim 1, wherein: when receiving the local user is linear, the linear weighting vector is &
    Figure CN102324960AC00021
    其中,表示本地用户的等效信道状态信息向量,hei = Hi . Wi ; 4表示干扰用户信道信息向量, Wherein the equivalent channel state information represents a vector of a local user, hei = Hi Wi;. 4 represents the channel interfering user information vector,
    Figure CN102324960AC00022
    Rff = E{ffH}为干扰的相关矩阵,f为干扰信道信息矩阵,Hi为信道状态信息,Wi为本地用户量化后的预编码向量,Wj为干扰用户量化后的预编码向量;其中1 < i,j < N,N为用户总数。 Rff = E {ffH} is the correlation matrix of interference, f is the interference channel information matrix, Hi is the channel state information, Wi is the precoding vector after local user quantization, Wj is the precoding vector after the interference user quantization; wherein 1 < i, j <N, N is the total number of users.
  4. 4.如权利要求2所述的干扰抑制合并方法,其特征在于: 本地用户为线性接收时,线性加权向量&为: 4. the interference rejection combining method of claim 2, wherein: when receiving the local user is linear, the linear weighting vector as &:
    Figure CN102324960AC00023
    其中,表示本地用户的等效信道状态信息向量,hei = Hi - Wi ; Ui = fi · Si+ni; &表示干扰用户信道信息向量 Wherein the equivalent channel state information represents a vector of a local user, hei = Hi - Wi; Ui = fi · Si + ni; & interfering user channel information represents a vector
    Figure CN102324960AC00024
    Si表示基站发送给本地用户的数据矩阵;Ruu = Eiuu11I为干扰和噪声的协方差矩阵,u为干扰加噪声信息矩阵,Hi为信道状态信息,Wi为本地用户量化后的预编码向量,Wj为干扰用户量化后的预编码向量;其中1 ( i, j彡N,N为用户总数。 Si represents the base station to the local user data matrix; Ruu = Eiuu11I interference and noise covariance matrix, u is the interference plus noise information matrix, Hi is the channel state information, Wi is the precoding vector after local user quantization, Wj is after precoding vector quantization user interference; where 1 (i, j San N, N being the total number of users.
  5. 5.如权利要求2所述的干扰抑制合并方法,其特征在于: 本地用户为线性接收时,线性加权向量&为: 5. The interference rejection combining to claim 2, characterized in that: the local user receives a linear, a linear weighting vector as &:
    Figure CN102324960AC00025
    其中,表示本地用户的等效信道状态信息向量,hei = Hi . Wi ;Ruu = Eiuu11I为干扰和噪声的协方差矩阵,u为干扰加噪声信息矩阵, Wherein the equivalent channel state information represents a vector of a local user, hei = Hi Wi;. Ruu = Eiuu11I interference and noise covariance matrix, u is the interference plus noise information matrix,
    Figure CN102324960AC00026
    表示干扰用户信道信息向量 It represents channel interfering user information vector
    Figure CN102324960AC00027
    ; ; Si表示基站发送给本地用户的数据矩阵; Hi为信道状态信息,Wi为本地用户量化后的预编码向量,Wj为干扰用户量化后的预编码向量;其中1彡i,j彡N,N为用户总数。 ;; Si represents a base station to the local user data matrix; the Hi is the channel state information, precoding vector after Wi quantized local users, of Wj precoding vectors after the interference user quantization; wherein 1 San i, j San N, N is the total number of users.
  6. 6.如权利要求1至5任一所述的干扰抑制合并方法,其特征在于:所述方法还包括:设置自适应系数α,根据信道状态信息、本地用户和干扰用户量化后的预编码向量,构造线性加权向量^ 前还包括:判断干扰值Z彡α σ 2时,则根据如下方式构造线性加权向量& :gf 判断干扰值Z > α σ2时,才根据信道状态信息、本地用户和干扰用户量化后的预编码向量,构造线性加权向量&,其中Z = f I |2,hei表示本地用户的等效信道状态信息向量,hei = Hi - Wi ; Hi为信道状态信息,Wi为本地用户量化后的预编码向量,Wj为干扰用户量化后的预编码向量;其中1彡i,j彡N,N为用户总数,ο 2为噪声方差。 6. The interference according to any of claims 1 to 5, combined suppression method, wherein: said method further comprises: setting an adaptive coefficient [alpha], the precoding vector information, local and interfering users quantized channel state configured linear weighting vector ^ former further comprising: when determining the interference value Z San α σ 2, the configuration of the linear weighting vector according to the following mode &: gf Analyzing the interference value Z> σ2, the only information local users and interference [alpha] according to channel state precoding vector user after quantization, configured linear weighted vector &, where Z = f I | 2, hei represents the equivalent channel state information vector of a local user, hei = Hi - Wi; Hi is the channel state information, Wi local user precoding vector quantized, Wj is the precoding vector quantization interfering user; San 1 wherein i, j San N, N being the total number of users, ο 2 is the noise variance.
  7. 7.如权利要求1或2所述的干扰抑制合并方法,其特征在于:所述根据信道状态信息、本地用户和干扰用户量化后的预编码向量,构造线性加权向量&时:由本地用户计算获得线性加权向量^;或由基站计算获得所述用户的线性加权向量^,并将所述线性加权向量^发送给所述用户。 7. The interference of claim 1 or claim 2 inhibiting combined method, characterized in that: after the precoding vector information, quantization local and interfering users, when the linear weighting vector & configured according to channel state: calculated by the local user to obtain a linear weighting vector ^; or calculated by the base station to obtain a linear weighting vector ^ of the user, and the linear weighting vector ^ sent to the user.
  8. 8. 一种干扰抑制合并接收机,其特征在于:所述接收机包括估计模块、编码模块和加权模块,其中:所述估计模块用于估计获得本地用户的信道状态信息; 所述编码模块用于获得本地用户和干扰用户量化后的预编码向量; 所述加权模块用于根据信道状态信息、本地用户和干扰用户量化后的预编码向量,构造线性加权向量&。 An interference rejection combining receiver, wherein: the receiver comprises estimating module, the weighting module, and the encoding module, wherein: the estimation means for obtaining estimates of the channel state information of the local user; the coding module precoding vector quantized to obtain local and interfering users; the weighting module is configured according to channel state information after precoding vector, and interfering users local quantization, the linear weighting vector & configured.
  9. 9.如权利要求8所述的接收机,其特征在于:所述接收机还包括噪声模块,所述噪声模块用于获得本地用户的噪声向量Ili ;所述加权模块在构造线性加权向量^时,将噪声模块获得的本地用户的噪声Ili计算在内。 When the weighting module is configured linear weighting vector ^; the receiver module further includes a noise, the noise means for obtaining a user's local noise vector Ili: 9. The receiver according to claim 8, characterized in that the means for obtaining the local user noise noise Ili counted.
  10. 10.如权利要求9所述的接收机,其特征在于: 所述加权模块构造线性加权向量^时:本地用户为线性接收时,线性加权向量&为g,H = K {Em,H)y^H = KR-;-,或或gf =《Μχ)_1 或者gf = i+hix 产其中,表示本地用户的等效信道状态信息向量,hei = Hi . Wi ; Rff = E{ffH}为干扰的相关矩阵,f为干扰信道信息矩阵,Ruu = E{uuH}为干扰和噪声的协方差矩阵,u为干扰加噪声信息矩阵,Ui = f, - Si+ni; f,表示干扰用户信道信息向量,f =Η; · Σ w; ; Si表示基站发送给本地用户的数据矩阵汛为信道状态信息,Wi为本地用户量化后的预编码向量,Wj为干扰用户量化后的预编码向量;其中1 < i,j < N,N为用户总数。 10. The receiver according to claim 9, wherein: said linear weighting vector weighting module configured ^: receiving the local user is linear, the linear weighting vector is & g, H = K {Em, H) y ^ H = KR -; -, or or gf = "Μχ) _1 or gf = i + hix produced where the local user equivalent channel state information vector, hei = Hi Wi; Rff = E {ffH} interference. correlation matrix, f is the interference channel information matrix, Ruu = E {uuH} is the covariance matrix of interference and noise, u is the interference plus noise information matrix, Ui = f, - Si + ni; f, represents interfering user channel information vector, f = Η; · Σ w;; Si represents a base station to the local user data matrix flood channel state information, Wi is the precoding vector after local user quantization, Wj is the precoding vector after the interference user quantization; wherein 1 <i, j <N, N is the total number of users.
  11. 11.如权利要求8至10任一所述的接收机,其特征在于:所述接收机还包括自适应模块,所述自适应模块用于设置自适应系数α,所述加权模块构造线性加权向量&前还包括: 判断干扰值Z彡α σ 2时,则根据如下方式构造线性加权向量& :gf 判断干扰值Z > α σ2时,才根据信道状态信息、本地用户和干扰用户量化后的预编码向量,构造线性加权向量&,其中Z = f I |2,hei表示本地用户的等效信道状态信息向量,hei = Hi - Wi ; Hi为信道状态信息,Wi为本地用户量化后的预编码向量,Wj为干扰用户量化后的预编码向量;其中1彡i,j彡N,N为用户总数,ο 2为噪声方差。 11. The receiver according to any of claims 8 to 10, characterized in that: said receiver further comprises an adaptive module, means for setting the adaptive adaptive coefficient [alpha], the linear weighting weighting module is configured before vector & further comprising: determining an interference value Z San α σ 2, the configuration of the linear weighting vector according to the following mode &: GF determining interference value Z> when α σ2, only channel state information, the local and interfering users quantized precoding vector construct linear weighted vector &, where Z = f I | 2, hei represents the equivalent channel state information vector of a local user, hei = Hi - Wi; after Hi information, Wi quantized local user channel state pre coding vectors, Wj is the precoding vector quantization interfering user; San 1 wherein i, j San N, N being the total number of users, ο 2 is the noise variance.
CN 201110123686 2011-05-13 2011-05-13 Interference suppression merging method and receiver CN102324960A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN 201110123686 CN102324960A (en) 2011-05-13 2011-05-13 Interference suppression merging method and receiver

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN 201110123686 CN102324960A (en) 2011-05-13 2011-05-13 Interference suppression merging method and receiver

Publications (1)

Publication Number Publication Date
CN102324960A true true CN102324960A (en) 2012-01-18

Family

ID=45452636

Family Applications (1)

Application Number Title Priority Date Filing Date
CN 201110123686 CN102324960A (en) 2011-05-13 2011-05-13 Interference suppression merging method and receiver

Country Status (1)

Country Link
CN (1) CN102324960A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102647387A (en) * 2012-04-09 2012-08-22 华为技术有限公司 Same frequency interference elimination method and device
CN103384226A (en) * 2012-05-02 2013-11-06 电信科学技术研究院 Method and device for frequency domain equalization detection

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1263653A (en) * 1997-05-21 2000-08-16 艾利森电话股份有限公司 Selective diversity combining
CN101330358A (en) * 2007-06-22 2008-12-24 中兴通讯股份有限公司 Method and system for restraining interference and combining diversity
US20110085627A1 (en) * 2008-07-14 2011-04-14 Telefonaktiebolaget Lm Ericsson (Publ) Interference rejection combining for multi-user mimo telecommunications system

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1263653A (en) * 1997-05-21 2000-08-16 艾利森电话股份有限公司 Selective diversity combining
CN101330358A (en) * 2007-06-22 2008-12-24 中兴通讯股份有限公司 Method and system for restraining interference and combining diversity
US20110085627A1 (en) * 2008-07-14 2011-04-14 Telefonaktiebolaget Lm Ericsson (Publ) Interference rejection combining for multi-user mimo telecommunications system

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102647387A (en) * 2012-04-09 2012-08-22 华为技术有限公司 Same frequency interference elimination method and device
CN102647387B (en) * 2012-04-09 2015-09-09 华为技术有限公司 Method and apparatus for the same frequency interference cancellation
CN103384226A (en) * 2012-05-02 2013-11-06 电信科学技术研究院 Method and device for frequency domain equalization detection
CN103384226B (en) * 2012-05-02 2016-06-08 电信科学技术研究院 A method and apparatus for detecting a frequency domain equalization

Similar Documents

Publication Publication Date Title
US7961807B2 (en) Reference signaling scheme using compressed feedforward codebooks for multi-user, multiple input, multiple output (MU-MIMO) systems
US20070211813A1 (en) MIMO precoding in the presence of co-channel interference
US20100322351A1 (en) Channel State Information Feedback for Coordinated Multiple Points Transmission
US20070155336A1 (en) Apparatus and method for eliminating multi-user interference
US20110237282A1 (en) Scalable channel feedback for wireless communication
US20090066577A1 (en) Method and System for Beamforming in a Multiple User Multiple Input Multiple Output (MIMO) Communication System Using a Codebook
US20140078919A1 (en) Methods and Arrangements for CSI Reporting
US20100254325A1 (en) Channel selection and interference suppression
US20130201912A1 (en) Method and apparatus for compressing channel state information based on path location information
US20120087435A1 (en) Enhanced channel feedback for multi-user mimo
US20100054212A1 (en) System and Method for Wireless Communications
CN101222267A (en) User matching method in MIMO transmission and method for confirming match factor
US20130107849A1 (en) Method, terminal, and base station for transmitting and receiving channel information
US20130237212A1 (en) Precoding with partially stale feedback
CN101170386A (en) Self-adapted multi-antenna receiving and transmission method based on mean and covariance
CN101370240A (en) Scheduling method and apparatus based on user feedback in multi-user MIMO communication system
WO2009084905A2 (en) Method for reducing inter-cell interference
JP2006005791A (en) Estimation of communication path and data detection method
CN101626264A (en) Method for realizing open-loop precoding in wireless communication system
Serbetli et al. MMSE transmitter design for correlated MIMO systems with imperfect channel estimates: Power allocation trade-offs
US20150131751A1 (en) Joint transmission using interference alignment
WO2011132727A1 (en) Feedback information transmission method, mobile station device and base station device
Björnson et al. Hardware impairments in large-scale MISO systems: Energy efficiency, estimation, and capacity limits
CN102271026A (en) Advanced closed loop adaptive transmission method for an uplink of the LTE system
US20130279425A1 (en) Radio Communications System and Method Performed Therein

Legal Events

Date Code Title Description
C06 Publication
C10 Entry into substantive examination
C02 Deemed withdrawal of patent application after publication (patent law 2001)