CN102311328A - Method for preparing acetophenone - Google Patents
Method for preparing acetophenone Download PDFInfo
- Publication number
- CN102311328A CN102311328A CN2010102231445A CN201010223144A CN102311328A CN 102311328 A CN102311328 A CN 102311328A CN 2010102231445 A CN2010102231445 A CN 2010102231445A CN 201010223144 A CN201010223144 A CN 201010223144A CN 102311328 A CN102311328 A CN 102311328A
- Authority
- CN
- China
- Prior art keywords
- ethylbenzene
- catalyst
- dawson type
- bromide
- acetophenone
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- KWOLFJPFCHCOCG-UHFFFAOYSA-N Acetophenone Chemical compound CC(=O)C1=CC=CC=C1 KWOLFJPFCHCOCG-UHFFFAOYSA-N 0.000 title claims abstract description 32
- 238000000034 method Methods 0.000 title description 10
- YNQLUTRBYVCPMQ-UHFFFAOYSA-N Ethylbenzene Chemical compound CCC1=CC=CC=C1 YNQLUTRBYVCPMQ-UHFFFAOYSA-N 0.000 claims abstract description 32
- 238000006243 chemical reaction Methods 0.000 claims abstract description 16
- 239000003054 catalyst Substances 0.000 claims abstract description 13
- JUJWROOIHBZHMG-UHFFFAOYSA-N Pyridine Chemical compound C1=CC=NC=C1 JUJWROOIHBZHMG-UHFFFAOYSA-N 0.000 claims abstract description 12
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 claims abstract description 10
- 239000011964 heteropoly acid Substances 0.000 claims abstract description 10
- 239000001301 oxygen Substances 0.000 claims abstract description 10
- 229910052760 oxygen Inorganic materials 0.000 claims abstract description 10
- 239000010941 cobalt Substances 0.000 claims abstract description 7
- 229910017052 cobalt Inorganic materials 0.000 claims abstract description 7
- GUTLYIVDDKVIGB-UHFFFAOYSA-N cobalt atom Chemical compound [Co] GUTLYIVDDKVIGB-UHFFFAOYSA-N 0.000 claims abstract description 7
- CPELXLSAUQHCOX-UHFFFAOYSA-M Bromide Chemical compound [Br-] CPELXLSAUQHCOX-UHFFFAOYSA-M 0.000 claims abstract description 6
- 238000002360 preparation method Methods 0.000 claims abstract description 6
- UMJSCPRVCHMLSP-UHFFFAOYSA-N pyridine Natural products COC1=CC=CN=C1 UMJSCPRVCHMLSP-UHFFFAOYSA-N 0.000 claims abstract description 6
- 239000000376 reactant Substances 0.000 claims abstract description 3
- 230000035484 reaction time Effects 0.000 claims abstract description 3
- OTGFEQJKSRFOED-UHFFFAOYSA-N [P].[V].[Mo] Chemical compound [P].[V].[Mo] OTGFEQJKSRFOED-UHFFFAOYSA-N 0.000 claims 3
- LSXWFXONGKSEMY-UHFFFAOYSA-N di-tert-butyl peroxide Chemical compound CC(C)(C)OOC(C)(C)C LSXWFXONGKSEMY-UHFFFAOYSA-N 0.000 claims 2
- 150000002978 peroxides Chemical class 0.000 claims 2
- 229910052751 metal Inorganic materials 0.000 claims 1
- 239000002184 metal Substances 0.000 claims 1
- 150000002500 ions Chemical class 0.000 abstract description 2
- 239000013460 polyoxometalate Substances 0.000 abstract description 2
- RTZKZFJDLAIYFH-UHFFFAOYSA-N Diethyl ether Chemical compound CCOCC RTZKZFJDLAIYFH-UHFFFAOYSA-N 0.000 description 6
- MHAJPDPJQMAIIY-UHFFFAOYSA-N Hydrogen peroxide Chemical group OO MHAJPDPJQMAIIY-UHFFFAOYSA-N 0.000 description 6
- 239000000047 product Substances 0.000 description 5
- CIHOLLKRGTVIJN-UHFFFAOYSA-N tert‐butyl hydroperoxide Chemical compound CC(C)(C)OO CIHOLLKRGTVIJN-UHFFFAOYSA-N 0.000 description 4
- UHOVQNZJYSORNB-UHFFFAOYSA-N Benzene Chemical compound C1=CC=CC=C1 UHOVQNZJYSORNB-UHFFFAOYSA-N 0.000 description 3
- WUJISAYEUPRJOG-UHFFFAOYSA-N molybdenum vanadium Chemical compound [V].[Mo] WUJISAYEUPRJOG-UHFFFAOYSA-N 0.000 description 3
- 230000003647 oxidation Effects 0.000 description 3
- 238000007254 oxidation reaction Methods 0.000 description 3
- 239000000243 solution Substances 0.000 description 3
- DJIOGHZNVKFYHH-UHFFFAOYSA-N 2-hexadecylpyridine Chemical compound CCCCCCCCCCCCCCCCC1=CC=CC=N1 DJIOGHZNVKFYHH-UHFFFAOYSA-N 0.000 description 2
- QTBSBXVTEAMEQO-UHFFFAOYSA-N Acetic acid Chemical compound CC(O)=O QTBSBXVTEAMEQO-UHFFFAOYSA-N 0.000 description 2
- DHMQDGOQFOQNFH-UHFFFAOYSA-N Glycine Chemical compound NCC(O)=O DHMQDGOQFOQNFH-UHFFFAOYSA-N 0.000 description 2
- BEWZPBWLGIPWFP-UHFFFAOYSA-N [V].P(=O)(=O)[Mo] Chemical compound [V].P(=O)(=O)[Mo] BEWZPBWLGIPWFP-UHFFFAOYSA-N 0.000 description 2
- 239000003570 air Substances 0.000 description 2
- 230000003197 catalytic effect Effects 0.000 description 2
- DVBJBNKEBPCGSY-UHFFFAOYSA-M cetylpyridinium bromide Chemical compound [Br-].CCCCCCCCCCCCCCCC[N+]1=CC=CC=C1 DVBJBNKEBPCGSY-UHFFFAOYSA-M 0.000 description 2
- OBWXQDHWLMJOOD-UHFFFAOYSA-H cobalt(2+);dicarbonate;dihydroxide;hydrate Chemical compound O.[OH-].[OH-].[Co+2].[Co+2].[Co+2].[O-]C([O-])=O.[O-]C([O-])=O OBWXQDHWLMJOOD-UHFFFAOYSA-H 0.000 description 2
- 150000001875 compounds Chemical group 0.000 description 2
- FDPIMTJIUBPUKL-UHFFFAOYSA-N pentan-3-one Chemical compound CCC(=O)CC FDPIMTJIUBPUKL-UHFFFAOYSA-N 0.000 description 2
- 238000001394 phosphorus-31 nuclear magnetic resonance spectrum Methods 0.000 description 2
- 239000002244 precipitate Substances 0.000 description 2
- 239000002994 raw material Substances 0.000 description 2
- 238000001228 spectrum Methods 0.000 description 2
- 239000000126 substance Substances 0.000 description 2
- 229910052720 vanadium Inorganic materials 0.000 description 2
- LEONUFNNVUYDNQ-UHFFFAOYSA-N vanadium atom Chemical compound [V] LEONUFNNVUYDNQ-UHFFFAOYSA-N 0.000 description 2
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 2
- LFQSCWFLJHTTHZ-UHFFFAOYSA-N Ethanol Chemical compound CCO LFQSCWFLJHTTHZ-UHFFFAOYSA-N 0.000 description 1
- 239000004471 Glycine Substances 0.000 description 1
- GSZRIHWHBDBXSJ-UHFFFAOYSA-N [V].[P].[Mo].[Co] Chemical compound [V].[P].[Mo].[Co] GSZRIHWHBDBXSJ-UHFFFAOYSA-N 0.000 description 1
- 229960000583 acetic acid Drugs 0.000 description 1
- WETWJCDKMRHUPV-UHFFFAOYSA-N acetyl chloride Chemical compound CC(Cl)=O WETWJCDKMRHUPV-UHFFFAOYSA-N 0.000 description 1
- 239000012346 acetyl chloride Substances 0.000 description 1
- 239000002253 acid Substances 0.000 description 1
- VSCWAEJMTAWNJL-UHFFFAOYSA-K aluminium trichloride Chemical compound Cl[Al](Cl)Cl VSCWAEJMTAWNJL-UHFFFAOYSA-K 0.000 description 1
- 238000004458 analytical method Methods 0.000 description 1
- 239000007864 aqueous solution Substances 0.000 description 1
- 230000015572 biosynthetic process Effects 0.000 description 1
- 238000009835 boiling Methods 0.000 description 1
- 239000006227 byproduct Substances 0.000 description 1
- 150000001868 cobalt Chemical class 0.000 description 1
- LLESOAREQXNYOK-UHFFFAOYSA-N cobalt vanadium Chemical compound [V].[Co] LLESOAREQXNYOK-UHFFFAOYSA-N 0.000 description 1
- 238000005260 corrosion Methods 0.000 description 1
- 230000007797 corrosion Effects 0.000 description 1
- 238000003912 environmental pollution Methods 0.000 description 1
- 239000000706 filtrate Substances 0.000 description 1
- 239000003517 fume Substances 0.000 description 1
- 238000004817 gas chromatography Methods 0.000 description 1
- 239000012362 glacial acetic acid Substances 0.000 description 1
- 238000010813 internal standard method Methods 0.000 description 1
- 238000003760 magnetic stirring Methods 0.000 description 1
- 238000004519 manufacturing process Methods 0.000 description 1
- 239000000203 mixture Substances 0.000 description 1
- 239000007800 oxidant agent Substances 0.000 description 1
- JUJWROOIHBZHMG-UHFFFAOYSA-O pyridinium Chemical compound C1=CC=[NH+]C=C1 JUJWROOIHBZHMG-UHFFFAOYSA-O 0.000 description 1
- 238000004445 quantitative analysis Methods 0.000 description 1
- 239000011541 reaction mixture Substances 0.000 description 1
- 150000003839 salts Chemical class 0.000 description 1
- 230000003595 spectral effect Effects 0.000 description 1
- 238000004611 spectroscopical analysis Methods 0.000 description 1
- 238000010183 spectrum analysis Methods 0.000 description 1
- 238000003756 stirring Methods 0.000 description 1
- 238000013517 stratification Methods 0.000 description 1
- 238000001308 synthesis method Methods 0.000 description 1
- 238000003786 synthesis reaction Methods 0.000 description 1
Images
Landscapes
- Catalysts (AREA)
Abstract
苯乙酮的制备方法,采用钴和吡啶作为反荷离子的Dawson型磷钼钒多金属氧酸盐与溴化物为催化剂,在此催化剂中,钴与Dawson型磷钼钒杂多酸的摩尔比为1~5∶1,吡啶Cpyr=(C16H32C5H4N)+与Dawson型磷钼钒杂多酸的摩尔比1~10∶1;溴化物与前述主催化剂摩尔比0.1~2∶1;以乙苯与氧源作为反应物,每100ml乙苯中加入的催化剂用量为3~8g,反应温度为45~95℃,反应时间为4~11小时。
The preparation method of acetophenone adopts cobalt and pyridine as the Dawson type molybdomolybdovanadium polyoxometalate and bromide as counter ions as a catalyst, and in this catalyst, the mol ratio of cobalt to Dawson type molybdovanadium heteropolyacid is 1~5:1, the molar ratio of pyridine Cpyr=(C 16 H 32 C 5 H 4 N) + to Dawson type molybdovanadium heteropolyacid is 1~10:1; the molar ratio of bromide to the aforementioned main catalyst is 0.1~ 2:1; ethylbenzene and oxygen source are used as reactants, the amount of catalyst added per 100ml of ethylbenzene is 3-8g, the reaction temperature is 45-95°C, and the reaction time is 4-11 hours.
Description
技术领域 technical field
本发明涉及制备苯乙酮的方法。The present invention relates to a process for the preparation of acetophenone.
背景技术 Background technique
目前,工业上采用苯与乙酰氯在三氯化铝存在下合成苯乙酮时,反应后生成强酸,易造成对生产设备的腐蚀和环境的污染;采用乙苯空气直接氧化法制备苯乙酮时,该催化体系转化率不高,副产物多。At present, when benzene and acetyl chloride are used in industry to synthesize acetophenone in the presence of aluminum trichloride, strong acid will be generated after the reaction, which will easily cause corrosion of production equipment and environmental pollution; acetophenone is prepared by direct air oxidation of ethylbenzene When , the conversion rate of the catalytic system is not high and there are many by-products.
发明内容 Contents of the invention
本发明的目的是提供一种苯乙酮的制备方法。The purpose of this invention is to provide a kind of preparation method of acetophenone.
本发明是苯乙酮的制备方法,其特征在于采用钴和吡啶作为反荷离子的Dawson型磷钼钒多金属氧酸盐与溴化物为催化剂,在此催化剂中,钴与Dawson型磷钼钒杂多酸的摩尔比为1~5∶1,吡啶Cpyr=(C16H32C5H4N)+与Dawson型磷钼钒杂多酸的摩尔比1~10∶1;溴化物与前述主催化剂摩尔比0.1~2∶1;以乙苯与氧源作为反应物,每100ml乙苯中加入的催化剂用量为3~8g,反应温度为45~95℃,反应时间为4~11小时。The present invention is a preparation method of acetophenone, which is characterized in that cobalt and pyridine are used as the Dawson type molybdenum vanadium polyoxometalate and bromide as the counter ions as the catalyst, in this catalyst, cobalt and molybdenum vanadium of the Dawson type The mol ratio of heteropolyacid is 1~5: 1, and the mol ratio of pyridine Cpyr=(C 16 H 32 C 5 H 4 N) + and Dawson type phosphomolybdenum vanadium heteropolyacid is 1~10: 1; Bromide and aforementioned The molar ratio of the main catalyst is 0.1-2:1; ethylbenzene and oxygen source are used as reactants, the amount of catalyst added per 100ml of ethylbenzene is 3-8g, the reaction temperature is 45-95°C, and the reaction time is 4-11 hours.
本发明与传统的钴盐催化氧化法相比,具有如下几个优点:(1)反应一步完成,过程简单;(2)反应温度45-95℃,条件温和;(3)乙苯转化率高;(4)苯乙酮的的选择性高;(5)氧化剂为双氧水,双氧水,叔丁基过氧化氢,空气,氧气,价格相对低廉,对环境无污染;(6)催化剂可以与溶液分离,可再生重复使用。因而是一种经济、环境友好的合成方法。Compared with the traditional cobalt salt catalytic oxidation method, the present invention has the following advantages: (1) the reaction is completed in one step, and the process is simple; (2) the reaction temperature is 45-95°C, and the conditions are mild; (3) the conversion rate of ethylbenzene is high; (4) the selectivity of acetophenone is high; (5) oxidizing agent is hydrogen peroxide, hydrogen peroxide, tert-butyl hydroperoxide, air, oxygen, and the price is relatively cheap, and has no pollution to environment; (6) catalyst can be separated with solution, Renewable and reusable. Therefore, it is an economical and environmentally friendly synthesis method.
附图说明 Description of drawings
图1为(Cpyr)4Co2.5P2Mo15V3O62的XRD谱图,图2为(Cpyr)4Co2.5P2Mo15V3O62的31P NMR谱图。Figure 1 is the XRD spectrum of (Cpyr) 4 Co 2.5 P 2 Mo 15 V 3 O 62 , and Figure 2 is the 31 P NMR spectrum of (Cpyr) 4 Co 2.5 P 2 Mo 15 V 3 O 62 .
具体实施方法Specific implementation method
实施例1:Example 1:
催化剂:以十六烷基吡啶提供吡啶阳离子,以Dawson型磷钼钒杂多酸作为原料,其中十六烷基吡啶与H9P2Mo15V3O62的摩尔比是4∶1,合成步骤如下:将H9P2Mo15V3O62和溴代十六烷基吡啶分别溶于60℃及PH=2的热水中,在有磁力搅拌下将溴代十六烷基吡啶溶液,由滴液漏斗缓慢地滴加到H7P2Mo17VO62水溶液中,在滴加过程中会有大量的蛋黄色沉淀生成,滴毕,陈化反应混合物2~3h,抽滤,然后分别依次用沸水、无水乙醇、乙醚洗涤沉淀,然后置于通风橱中过夜,待乙醚挥发后在80℃的真空干燥箱中干燥,即得初步产品(Cpyr)4H5P2Mo15V3O62。Catalyst: Hexadecylpyridine is used to provide pyridinium cation, and Dawson type phosphomolybdovanadium heteropolyacid is used as raw material, wherein the molar ratio of hexadecylpyridine to H 9 P 2 Mo 15 V 3 O 62 is 4:1, synthesized The steps are as follows: Dissolve H 9 P 2 Mo 15 V 3 O 62 and cetylpyridine bromide in hot water at 60°C and PH=2, and dissolve the cetylpyridine bromide solution under magnetic stirring. , slowly drop it into the H 7 P 2 Mo 17 VO 62 aqueous solution from the dropping funnel, a large amount of egg yellow precipitates will be formed during the dropping process, after the drop is completed, age the reaction mixture for 2-3 hours, filter it with suction, and then Wash the precipitate with boiling water, absolute ethanol, and diethyl ether in sequence, and then place it in a fume hood overnight. After the diethyl ether evaporates, dry it in a vacuum oven at 80°C to obtain the preliminary product (Cpyr) 4 H 5 P 2 Mo 15 V 3 O 62 .
采用碱式碳酸钴(2CoCO3·3Co(OH)2·xH2O)提供钴源,以初步产品(Cpyr)4H5P2Mo15V3O62作为原料,其中(2CoCO3·3Co(OH)2·xH2O)与(Cpyr)4H5P2Mo15V3O62的摩尔比是0.5∶1。在装有冷凝管、温度计的100ml三口烧瓶中,加入0.025mol乙苯、10mL冰乙酸和一定量的催化剂,在电磁搅拌下,加热至一定温度下,逐滴加入一定量叔丁基过氧化氢,滴加时间约为50分钟,待反应结束后将反应液倒入分液漏斗中,静置分层,提取滤液进行产品分析,通过气相色谱检测氧化产物组成,并用内标法定量分析。乙苯转化率为81.55%,苯乙酮的选择性达到92.49%。Basic cobalt carbonate (2CoCO 3 3Co(OH) 2 xH 2 O) was used to provide the cobalt source, and the preliminary product (Cpyr) 4 H 5 P 2 Mo 15 V 3 O 62 was used as the raw material, where (2CoCO 3 3Co( The molar ratio of OH) 2 ·xH 2 O) to (Cpyr) 4 H 5 P 2 Mo 15 V 3 O 62 is 0.5:1. In a 100ml three-necked flask equipped with a condenser tube and a thermometer, add 0.025mol ethylbenzene, 10mL glacial acetic acid and a certain amount of catalyst, heat to a certain temperature under electromagnetic stirring, and add a certain amount of tert-butyl hydroperoxide drop by drop , the dropping time is about 50 minutes. After the reaction is finished, pour the reaction solution into the separatory funnel, let it stand for stratification, extract the filtrate for product analysis, detect the composition of the oxidation product by gas chromatography, and use the internal standard method for quantitative analysis. The conversion rate of ethylbenzene is 81.55%, and the selectivity of acetophenone reaches 92.49%.
实施例2~9:Embodiment 2~9:
按照实施例1的方法和步骤,改变十六烷基吡啶与H9P2Mo15V3O62的配比,其摩尔比分别为1∶1,2∶1,3∶1,5∶1,6∶1,7∶1,8∶1,9∶1,然后改变其初步产品与碱式碳酸钴(2CoCO3·3Co(OH)2·xH2O)的配比,其摩尔比对应的分别为:0.8∶1,0.7∶1,0.6∶1,0.4∶1,0.3∶1,0.2∶1,0.1∶1,结果都为乙苯转化率小于81.55%,苯乙酮的选择性小于92.49%。According to the method and steps of Example 1, the ratio of cetylpyridine to H 9 P 2 Mo 15 V 3 O 62 was changed, and the molar ratios were 1:1, 2:1, 3:1, and 5:1, respectively. , 6:1, 7:1, 8:1, 9:1, and then change the ratio of its initial product and basic cobalt carbonate (2CoCO 3 3Co(OH) 2 xH 2 O), the corresponding molar ratio Respectively: 0.8: 1, 0.7: 1, 0.6: 1, 0.4: 1, 0.3: 1, 0.2: 1, 0.1: 1, the result is that the conversion rate of ethylbenzene is less than 81.55%, and the selectivity of acetophenone is less than 92.49% %.
实施例10~12:
按照实施例1的方法和步骤,改变其中Dawson型磷钼钒杂多酸的钒含量,分别改变为H7P2Mo17VO62、H8P2Mo16V2O62、H10P2Mo14V4O62,结果分别为乙苯转化率63.24%,苯乙酮的选择性小于73.24%;乙苯转化率80.85%,苯乙酮的选择性94.12%;乙苯转化率为54.85%,苯乙酮的选择性为80.16%。According to the method and steps of Example 1, the vanadium content of the Dawson type molybdovanadium heteropolyacid was changed to H 7 P 2 Mo 17 VO 62 , H 8 P 2 Mo 16 V 2 O 62 , H 10 P 2 Mo 14 V 4 O 62 , the results are respectively 63.24% conversion of ethylbenzene and less than 73.24% selectivity of acetophenone; 80.85% conversion of ethylbenzene and 94.12% selectivity of acetophenone; 54.85% conversion of ethylbenzene , the selectivity of acetophenone is 80.16%.
实施例13~15:Embodiment 13~15:
按照实施例1的方法和步骤,改变氧源的种类,分别改变为双氧水、空气、氧气结果分别为乙苯转化率63.24%,苯乙酮的选择性84.26%;乙苯转化率80.85%,苯乙酮的选择性91.53%;乙苯转化率为85.99%苯乙酮的选择性88.28%。According to the method and steps of Example 1, the type of oxygen source was changed to hydrogen peroxide, air, and oxygen respectively. The selectivity of ethyl ketone is 91.53%; the conversion rate of ethylbenzene is 85.99% and the selectivity of acetophenone is 88.28%.
图1为(Cpyr)4Co2.5P2Mo15V3O62的XRD谱图,(Cpyr)4Co2.5P2Mo15V3O62的衍射峰主要集中在2θ=7°~9°,14°~20°,26°~30°,37°~39°这4个区间内,其中2θ=7°~9°的衍射峰强度最强,2θ=26°~30°的衍射峰强度次之,2θ=37°~39°的衍射峰强度最弱,这与文献(刘霞,赵军,冯长根等,三钒取代的Dawson型磷钼钒甘氨酸杂多化合物的合成及光谱研究,光谱学与光谱分析,2006,26(12),p2226~2228)所提供的Dawson结构磷钼钒杂多酸盐的化学位移相一致,说明所合成的磷钼钒钴盐(Cpyr)4Co2.5P2Mo15V3O62具有Dawson结构。图2为(Cpyr)4Co2.5P2Mo15V3O62的31P NMR谱图,这与文献(于剑锋,刘延,杨宇,吴通好等,Dawson型磷钼钒杂多化合物的性质[J],吉林大学自然科学学报,1996,2(1),p89~93.)所提供的Dawson结构磷钼钒杂多酸盐31PNMR化学位移相一致,再次说明所合成的磷钼钒钴盐(Cpyr)4Co2.5P2Mo15V3O62具有Dawson结构。Figure 1 is the XRD spectrum of (Cpyr) 4 Co 2.5 P 2 Mo 15 V 3 O 62 , the diffraction peaks of (Cpyr) 4 Co 2.5 P 2 Mo 15 V 3 O 62 are mainly concentrated at 2θ=7°~9°, In the four intervals of 14°~20°, 26°~30°, and 37°~39°, the intensity of the diffraction peak at 2θ=7°~9° is the strongest, and the intensity of the diffraction peak at 2θ=26°~30° is the second Among them, the intensity of the diffraction peak at 2θ=37°~39° is the weakest, which is consistent with the literature (Liu Xia, Zhao Jun, Feng Changgen, etc., Synthesis and Spectral Research of Dawson Type Phosphomolybdenum Vanadium Glycine Heteropoly Compounds Substituted by Three Vanadium, Spectroscopy It is consistent with the chemical shift of the Dawson structure molybdovanadium heteropolyacid salt provided by spectral analysis, 2006, 26(12), p2226~2228), indicating that the synthesized phosphoromolybdenum vanadium cobalt salt (Cpyr) 4 Co 2.5 P 2 Mo 15 V 3 O 62 has a Dawson structure. Figure 2 is the 31 P NMR spectrum of (Cpyr) 4 Co 2.5 P 2 Mo 15 V 3 O 62 , which is consistent with the literature (Yu Jianfeng, Liu Yan, Yang Yu, Wu Tonghao, etc., Dawson type molybdenum vanadium heteropoly The nature of the compound [J], Journal of Natural Sciences of Jilin University, 1996, 2 (1), p89 ~ 93.) The Dawson structure phosphomolybdovanadate heteropolyacid 31 PNMR chemical shifts provided are consistent, which again shows that the synthesized phosphorus Molybdenum vanadium cobalt salt (Cpyr) 4 Co 2.5 P 2 Mo 15 V 3 O 62 has a Dawson structure.
Claims (2)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN2010102231445A CN102311328A (en) | 2010-07-09 | 2010-07-09 | Method for preparing acetophenone |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN2010102231445A CN102311328A (en) | 2010-07-09 | 2010-07-09 | Method for preparing acetophenone |
Publications (1)
Publication Number | Publication Date |
---|---|
CN102311328A true CN102311328A (en) | 2012-01-11 |
Family
ID=45424935
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN2010102231445A Pending CN102311328A (en) | 2010-07-09 | 2010-07-09 | Method for preparing acetophenone |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN102311328A (en) |
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN105646220A (en) * | 2016-03-25 | 2016-06-08 | 董道青 | Synthesizing method of propiophenone compound |
CN105646223A (en) * | 2014-12-04 | 2016-06-08 | 中国科学院大连化学物理研究所 | Method used for preparing succinic acid diester via catalytic oxidation esterification of levulinic acid |
CN105669459A (en) * | 2016-03-25 | 2016-06-15 | 青岛农业大学 | Synthetic method of propiophenone compound |
CN110317131A (en) * | 2019-07-15 | 2019-10-11 | 内蒙古民族大学 | A kind of method that second benzene-like compounds prepare ketone compounds |
-
2010
- 2010-07-09 CN CN2010102231445A patent/CN102311328A/en active Pending
Non-Patent Citations (2)
Title |
---|
李家其 等: "乙苯催化氧化合成苯乙酮研究进展", 《精细化工中间体》 * |
李贵贤 等: "Keggin型磷钼钒杂多化合物催化氧化乙苯制苯乙酮", 《现代化工》 * |
Cited By (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN105646223A (en) * | 2014-12-04 | 2016-06-08 | 中国科学院大连化学物理研究所 | Method used for preparing succinic acid diester via catalytic oxidation esterification of levulinic acid |
CN105646223B (en) * | 2014-12-04 | 2017-12-26 | 中国科学院大连化学物理研究所 | A kind of method that levulic acid catalysis oxidation esterification prepares succinate |
CN105646220A (en) * | 2016-03-25 | 2016-06-08 | 董道青 | Synthesizing method of propiophenone compound |
CN105669459A (en) * | 2016-03-25 | 2016-06-15 | 青岛农业大学 | Synthetic method of propiophenone compound |
CN105669459B (en) * | 2016-03-25 | 2017-09-01 | 青岛农业大学 | A kind of synthetic method of propiophenone compound |
CN105646220B (en) * | 2016-03-25 | 2017-12-01 | 董道青 | Synthetic method of propiophenone compound |
CN110317131A (en) * | 2019-07-15 | 2019-10-11 | 内蒙古民族大学 | A kind of method that second benzene-like compounds prepare ketone compounds |
CN110317131B (en) * | 2019-07-15 | 2022-02-01 | 内蒙古民族大学 | Method for preparing ketone compound from ethylbenzene compound |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN101959840B (en) | Process for preparing alkyl 2-alkoxymethylene-4,4-difluoro-3-oxobutyrates | |
Aloisi et al. | Complexes of the tripodal phosphine ligands PhSi (XPPh 2) 3 (X= CH 2, O): synthesis, structure and catalytic activity in the hydroboration of CO 2 | |
JP2018508511A (en) | Method for producing formamide compound | |
CN109809970B (en) | Method for producing anisole by catalyzing phenol and methanol | |
CN102503797B (en) | Continuous synthesis method for acetylacetone metallic compound | |
CN102311328A (en) | Method for preparing acetophenone | |
Chutia et al. | Synthesis and characterization of Co (II) and Cu (II) supported complexes of 2-pyrazinecarboxylic acid for cyclohexene oxidation | |
CN101817733B (en) | Method for preparing cyclohexanone by oxidizing cyclohexane | |
CN107814939B (en) | Method for synthesizing poly (ethylene glycol methyl phosphonate) by metal oxide catalysis | |
JP2018500148A (en) | Catalyst for glycerol dehydration reaction, method for producing the same, and method for producing acrolein using the catalyst | |
CN101704723B (en) | Preparation method of hydroxymethyl substitutent o-alkyl biphenyl and intermediate thereof | |
CN107721845A (en) | A kind of method for synthesizing fluorine neoprene diacid | |
Patra et al. | Activation of ortho C–H bond by nickel (II) acetate or sodium tetrachloropalladate (II) in naphthyl imino derivatives of azobenzene | |
CN111333558B (en) | Visible light promoted alpha-selenone compound synthesis method | |
CN109053640B (en) | A kind of method for preparing γ-valerolactone from levulinic acid and its esters | |
CN102513148B (en) | Catalyst and process for coproduction of benzaldehyde and acyl chloride by benzal chloride acidolysis reaction | |
CN103709204B (en) | A kind of cobalt complex, preparation method and its usage | |
CN110003004A (en) | A kind of method of step insertion synthesizing propanediol ether acetate | |
Deshpande et al. | Liquid phase catalytic oxidation of alcohols over mixed metal oxides | |
CN102649743B (en) | Method for synthesizing glycollic acid ester | |
CN115745785A (en) | Synthesis method of difluoroacetic anhydride | |
CN102167661A (en) | Method for preparing mixture of 2-hydroxy-5-methyl-3-hexanone and 3-hydroxy-5-methyl-2-hexanone | |
CN107519939B (en) | Hydrotalcite-like compound doped copper catalyst for esterification reaction and oxidation reaction | |
CN102266763A (en) | Solid alkaline catalyst for synthesis of 1-methoxy-2-propanol, and preparation method thereof | |
WO2016099066A1 (en) | Catalyst for glycerin dehydration, preparation method therefor, and acrolein preparation method using catalyst |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
C06 | Publication | ||
PB01 | Publication | ||
C10 | Entry into substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
C02 | Deemed withdrawal of patent application after publication (patent law 2001) | ||
WD01 | Invention patent application deemed withdrawn after publication |
Application publication date: 20120111 |