CN102278411A - 自供电磁流变阻尼器及其减振系统 - Google Patents

自供电磁流变阻尼器及其减振系统 Download PDF

Info

Publication number
CN102278411A
CN102278411A CN2011101513311A CN201110151331A CN102278411A CN 102278411 A CN102278411 A CN 102278411A CN 2011101513311 A CN2011101513311 A CN 2011101513311A CN 201110151331 A CN201110151331 A CN 201110151331A CN 102278411 A CN102278411 A CN 102278411A
Authority
CN
China
Prior art keywords
self
damper
magnetic current
stator
piston
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN2011101513311A
Other languages
English (en)
Inventor
胡红生
蒋学争
王炅
王娟
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Jiaxing University
Original Assignee
Jiaxing University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Jiaxing University filed Critical Jiaxing University
Priority to CN2011101513311A priority Critical patent/CN102278411A/zh
Publication of CN102278411A publication Critical patent/CN102278411A/zh
Pending legal-status Critical Current

Links

Images

Abstract

自供电磁流变阻尼器及磁流变减振系统,其中,自供电磁流变阻尼器包括缸体、活塞杆、定子、连接杆和若干永磁体,缸体具有第一开口和第二开口的空腔结构,空腔内充满磁流变液;活塞杆连接有位于空腔内的设置有活塞线圈的活塞,且其第一端伸出第一开口,第二端伸出第二开口;定子包括具有伸缩口的容纳腔,容纳腔内壁上间隔设置有若干高导磁率材料的凸齿,每一凸齿的顶端分别沿轴线方向延伸形成侧齿,相邻的凸齿和侧齿形成容纳与活塞线圈电性连接的电磁线圈的凹槽;连接杆位于所述容纳腔内,具有从伸缩口伸出并与活塞杆的第二端连接的第一连接端;若干永磁体与连接杆连接,相邻的永磁体之间设置有磁极。本发明能够实现自供电,而且,电磁利用率高。

Description

自供电磁流变阻尼器及其减振系统
技术领域
本发明涉及半主动磁流变振动控制技术,尤其涉及自供电磁流变阻尼器。
背景技术
磁流变液是一种功能独特的智能材料,其流变特性可以在磁场条件下快速可逆的变化,利用磁流变液的性质,产生了磁流变阻尼器。磁流变阻尼器不仅具有主动控制的系统传输可调性,也具有被动控制的可靠性,因而,逐渐应用于航空航天、工程建筑、汽车工程等领域的振动控制。在这些领域中,磁流变阻尼器虽然能够极大地提高振动控制的能力,但是,磁流变阻尼器在工作时需要外加磁场来改变磁流变液的剪切屈服应力实现阻尼力的转变,而外加磁场基本采用向磁流变阻尼器活塞线圈中通入励磁电流的方式产生,这种方式使得磁流变阻尼器需要配置外部设备电源,可是,在实际应用过程中,特别是在建筑工程等需要大量磁流变阻尼器联合控制的场合,外部电源设备会使得整个系统变得复杂化,减低了磁流变阻尼器的可靠性,同时也会大大地增加应用成本。
为了解决磁流变减震系统需要设置外部电源的问题,中国专利申请第200710034309.2号公开一种自供电磁流变智能减振系统。该减振系统包括包括电磁调节式磁流变阻尼器、齿条齿轮加速器、永磁式直流发电机,电磁调节式磁流变阻尼器的活塞杆与所述齿条齿轮加速器的齿条固联,而该齿条齿轮加速器的末级小齿轮安装在所述永磁式直流发电机的轴上,所述永磁式直流发电机的输出端同所述电磁调节式磁流变阻尼器的电磁线圈接线端连接。该减振系统在使用时,所述电磁调节式磁流变阻尼器的活塞杆与齿条齿轮加速器的齿条的固联端同被控结构固联,当被控结构开始振动时,所述电磁调节式磁流变阻尼器的活塞杆随之产生相应的运动,而该阻尼器振动时带动齿条往复运动,通过所述齿条齿轮加速器带动所述永磁式直流发电机转子转动,从而产生一个直接正比于阻尼器速度的电动势,其正负极随阻尼器活塞运动方向而改变。该电动势经控制器按一定方式反馈到电磁调节式磁流变阻尼器的电磁铁线圈,实时改变阻尼器参数。
上述减振系统虽然能实现自供电,但是,需要设置齿条齿轮加速器、永磁式直流发电机等,整个减振系统的结构复杂,应用成本高。
发明内容
本发明解决的问题是现有技术的自供电磁流变减振系统结构复杂,应用成本高的问题。
为解决上述问题,本发明的自供电磁流变阻尼器包括缸体、活塞杆、定子、连接杆和若干永磁体,缸体具有第一开口和第二开口的空腔结构,该空腔内充满磁流变液;活塞杆穿过所述空腔,且其第一端伸出第一开口,第二端伸出第二开口,该活塞杆连接有位于所述空腔内的设置有活塞线圈的活塞;定子包括具有伸缩口的容纳腔,容纳腔内壁上间隔设置有若干凸齿,每一凸齿的顶端相对两侧分别沿容纳腔的轴线延伸形成侧齿,凸齿和侧齿由导磁材料构成且相邻的凸齿和侧齿形成容纳电磁线圈的凹槽,该电磁线圈与所述活塞线圈电性连接;连接杆位于所述定子的容纳腔内,具有从所述伸缩口伸出并与所述活塞杆的第二端连接的第一连接端;若干永磁体与所述连接杆连接,相邻的永磁体之间设置有磁极。
可选地,凸齿具有相对的凸齿面,侧齿具有相对的二延伸面、与延伸面连接且平行于凸齿面的第一连接面以及垂直于凸齿面且与所述第一连接面连接的第二连接面,所述二延伸面分别与相应的凸齿面连接且与凸齿面形成呈90度-160度角设置。
可选地,相邻两永磁体的磁极化方向相反。
可选地,所述连接杆由不导磁材料制成。
可选地,所述不导磁材料是铝合金。
可选地,所述定子和磁极由高导磁率材料构成。
可选地,所述缸体的一端插入定子的伸缩口内,具有贯穿其相对二表面的通孔,该通孔具有第一密封端和第二密封端,所述自供电阻尼器还包括分别位于第一密封端的具有第一穿孔的第一密封装置和位于第二密封端的具有第二穿孔的二密封装置,每一密封装置由不导磁材料制成且所述第一穿孔是所述第一开口,所述穿孔是第二开口。
可选地,所述第一密封装置包括第一密封塞和第一端盖,第一密封塞具有第一密封口,第一密封塞外表面与缸体的内表面接触且位于第一密封端内;第一端盖具有第一端孔,插入所述第一密封端且与第一密封塞接触;所述第一密封口和第一端孔构成所述第一密封装置的第一穿孔;所述第二密封装置包括第二密封塞和第二端盖,第二密封塞具有第二密封口,第二密封塞外表面与缸体的内表面接触且位于第二密封端内;第二端盖具有第二端孔,插入所述第二密封端且与第二密封塞接触;所述第二密封口和第二端孔构成所述第二密封装置的第二穿孔。
可选地,所述定子具有相对于伸缩口的端口,所述磁流变阻尼器还包括由不导磁材料构成的底端耳环,该底端耳环具有与定子端部接触的限位部,该底端耳环一端插入端口与连接杆连接。
本发明还提供一种磁流变减振系统,该磁流变减振系统包括振动源和磁流变阻尼器,该磁流变阻尼器包括缸体、活塞杆、定子、连接杆和若干永磁体,缸体具有第一开口和第二开口的空腔结构,该空腔内充满磁流变液;活塞杆穿过所述空腔,且其第一端伸出第一开口与所述振动源连接,第二端伸出第二开口,该活塞杆连接有位于所述空腔内的设置有活塞线圈的活塞;定子包括具有伸缩口的容纳腔,容纳腔内壁上间隔设置有若干凸齿,每一凸齿的顶端相对两侧分别沿容纳腔的轴线延伸形成侧齿,凸齿和侧齿由导磁材料构成且相邻的凸齿和侧齿形成容纳电磁线圈的凹槽,该电磁线圈与所述活塞线圈电性连接;连接杆位于所述定子的容纳腔内,具有从所述伸缩口伸出并与所述活塞杆的第二端连接的第一连接端;若干永磁体与所述连接杆连接,相邻的永磁体之间设置有磁极。
可选地,凸齿具有相对的凸齿面,侧齿具有相对的二延伸面、与延伸面连接且平行于凸齿面的第一连接面以及垂直于凸齿面且与所述第一连接面连接的第二连接面,所述二延伸面分别与相应的凸齿面连接且与凸齿面形成呈钝角。
可选地,相邻两永磁体的磁极化方向相反。
可选地,所述连接杆由不导磁材料制成。
可选地,所述不导磁材料是铝合金。
可选地,所述定子和磁极由高导磁率材料构成。
可选地,所述缸体的一端插入定子的伸缩口内,具有贯穿其相对二表面的通孔,该通孔具有第一密封端和第二密封端,所述自供电阻尼器还包括分别位于第一密封端的具有第一穿孔的第一密封装置和位于第二密封端的具有第二穿孔的二密封装置,每一密封装置由不导磁材料制成且所述第一穿孔是所述第一开口,所述穿孔是第二开口。
可选地,所述第一密封装置包括第一密封塞和第一端盖,第一密封塞具有第一密封口,第一密封塞外表面与缸体的内表面接触且位于第一密封端内;第一端盖具有第一端孔,插入所述第一密封端且与第一密封塞接触;所述第一密封口和第一端孔构成所述第一密封装置的第一穿孔;所述第二密封装置包括第二密封塞和第二端盖,第二密封塞具有第二密封口,第二密封塞外表面与缸体的内表面接触且位于第二密封端内;第二端盖具有第二端孔,插入所述第二密封端且与第二密封塞接触;所述第二密封口和第二端孔构成所述第二密封装置的第二穿孔。
可选地,所述定子具有相对于伸缩口的端口,所述磁流变阻尼器还包括由不导磁材料构成的底端耳环,该底端耳环具有与定子端部接触的限位部,该底端耳环一端插入端口与连接杆连接。
与现有技术相比,本发明具有以下优点:
1、由于本发明不需要额外配置电源输入设备,将变得更加简洁,因此特别适用于空间有限和供电不便的应用场所。同时由于省去了额外的电源输入设备,将大大地降低磁流变振动控制技术的应用成本;再者,由于空腔内壁上间隔设置有若干凸齿,每一凸齿的顶端相对两侧分别沿容纳腔轴线方向延伸形成侧齿,这样,侧齿和凸齿组成T形结构,这种结构使得更多的磁力线穿过空气气隙形成闭环回路,提高永磁体磁场利用率,增大感应电动势的值。
2、所述凸齿面和延伸面呈90度-160度角设置,这样,1)减小凸齿面和延伸面之间的应力集中,提高结构强度;2)实际加工比较容易实现;3)可以最大化地穿过永磁体磁力线,提高发电率。
3、由于相邻永磁体的磁极化方向相反且相邻永磁体之间设置有磁极,所以,磁力线因同极相斥,而被密集压缩并正交垂直地穿过空气气隙,这就可以减小磁力线实际穿过的空气隙厚度,从而可以增强发电磁场强度,提高感应电动势的值。
4、所述连接杆由不导磁材料制成,所以,可以杜绝磁力线通过连接杆形成闭合回路,减小了磁力线的泄漏,也可以增加感应电动势的值。
5、所述定子和磁极由导磁率构成,特别是高导磁材料构成,可以使得更多的磁力线通过定子形成回路,从而,增加感应电动势。
6、所述密封装置由不导磁材料构成,这样,进行了隔磁化处理,减小了电磁兼容性(EMI)永磁体对磁流变阻尼器的影响。
附图说明
图1是本发明磁流变阻尼器的结构示意图;
图2是图1中A部分的局部放大图;
图3是本发明磁场仿真的示意图。
具体实施方式
为了使得本发明的目的、功效及技术方案浅显易懂,下面特例举实施例并配合附图说明。
请参阅图1,本发明的自供电磁流变阻尼器包括缸体1、活塞杆2、定子3、连接杆4、若干永磁体5和磁极6。
请继续参阅图1,缸体1呈圆柱形,具有贯穿其相对二表面的通孔11,该通孔11具有第一密封端111和第二密封端112。通孔11呈圆柱形。第一密封端111和第二密封端112呈圆形。
请继续参阅图1,所述磁流变阻尼器还包括位于第一密封端111的具有第一穿孔1131的第一密封装置113和位于第二密封端112的具有第二穿孔1141的第二密封装置114。具体的,第一密封装置113包括第一密封塞1132和第一端盖1133。第一密封塞1132的外表面与缸体1的内表面接触,确切地是与缸体1的第一密封端111处的内表面接触。所述第一端盖1133具有贯穿该第一端盖1133的第一端孔,插入所述第一密封端111内且与第一密封塞1132接触,这样,第一密封塞1132被密封于第一密封端111内。第一密封塞1132的第一密封口和第一端盖1133的第一端口构成所述第一密封装置113的第一穿孔1131。第二密封装置114包括第二密封塞1142和第二端盖1143。第二密封塞1142的外表面与缸体1的内表面接触,确切地是与缸体1的第二密封端112处的内表面接触。所述第二端盖1143具有贯穿第二端盖1143的第二端孔,插入所述第二密封端112内且与第二密封塞1142接触,这样,第二密封塞1142被密封于第二密封端112内。第二密封塞1142的第二密封口和第二端盖1143的第二端口构成所述第二密封装置114的第一穿孔1141。
请继续参阅图1,在本实施例中,第一密封装置113和第二密封装置114结构相同,且均由不导磁材料构成,比如,锡青铜ZQSn6-6-3制成,这样,减小电磁干扰(EMI或者Electro Magnetic Interference)对磁流变阻尼器的影响。第一密封装置113和第二密封装置114将磁流变液密封于所述通孔11内。作为第一密封装置113、第二密封装置114和缸体1的变化,所述第一密封装置113、第二密封装置114与缸体1可以是一体成型的结构,此种情况下,所述缸体1就是由第一开口、第二开口、空腔构成的腔体结构,所述第一密封装置113的第一穿孔1131是第一开口,第二密封装置114的第二穿孔1141是第二开口。所述通孔是腔体结构的圆柱形空腔。
请继续参阅图1,活塞杆2具有第一端21和第二端22,连接有位于所述通孔11内的设置有活塞线圈的活塞23,第一端21穿过所述通孔11,且第一端21从第一密封装置113的第一穿孔1131伸出。第二端22从第二密封装置114的第二穿孔1141伸出。具体的,在本实施例中,所述活塞杆2包括外活塞杆24和内活塞杆25,所述活塞23的两端分别连接外活塞杆24和内活塞杆25,所述第二端22是外活塞杆24的一端。内活塞杆25的一端是所述第一端21。
请继续参阅图1,定子3在本实施例中是由高导磁率材料构成的圆柱形结构,比如,电磁纯铁DT4E。具有相对的第一表面和第二表面,容纳腔31从第一表面贯穿第二表面,所述伸缩口32为所述容纳腔31贯穿第二表面形成。形成伸缩口32后,所述缸体1的一端插入该伸缩口32使得缸体1的外表面与伸缩口32的内表面紧密接触,所述内活塞杆25部分伸入容纳腔31。容纳腔31呈圆柱形,其内壁上间隔设置有若干高导磁率材料的凸齿33,具体的,每一凸齿33以容纳腔31的轴线B为轴线而绕容纳腔31的内壁一周。凸齿33的顶端分别沿轴线方向延伸形成侧齿34,这样,凸齿33和侧齿34形成T形结构。
请参阅图2,凸齿33具有相对的凸齿面331,侧齿34具有相对的二延伸面341、与延伸面341连接且平行于凸齿面331的第一连接面342以及垂直于凸齿面331且与所述第一连接面342连接的第二连接面343。所述凸齿面331与侧齿34的延伸面341呈的角度范围为90度-160度之间,比如,135度角,这样减小凸齿面331和延伸面341之间的应力集中,提高结构强度,也可以加工比较容易实现,还可以最大化地穿过永磁体磁力线,提高发电率。相邻的凸齿33和侧齿34形成容纳电磁线圈7的凹槽35,比如,图2中凸齿33A、侧齿34A、凸齿33B、侧齿34B就形成一容纳电磁线圈7的凹槽35,此处中,凸齿33A、侧齿34A、凸齿33B、侧齿34B仅仅是为了方面说明而采用如此标记,实际指相同结构且位于不同位置的凸齿33和侧齿34。该电磁线圈7与所述活塞线圈电性连接,此处的电性连接是指通过连接能够使得电磁线圈7产生的电流传输至活塞线圈,比如,可以通过导线C将电磁线圈7和活塞线圈电性连接。
请继续参阅图1,连接杆4由不导磁材料制成,比如,铝合金。该连接杆4具有从所述伸缩口32伸出并与所述活塞杆连接2的第一端21连接的第一连接端41,具体的是与内活塞杆25的一端连接。
请继续参阅图1并结合图2,若干永磁体5与连接杆4连接,相邻永磁体5之间设置有磁极6,这样,磁极6的相对两表面分别与相邻的永磁体5的表面接触。相邻两永磁体5的极化方向相反,比如,图1中,永磁体5A的极化方向和永磁体5B的极化方向相反,永磁体5B和永磁体5C的极化方向相反。磁极6由高导磁率材料构成。此处永磁体5A、永磁体5B、永磁体5C均用以表示相同材料构成且位于不同位置的永磁体5,仅仅是为说明便利而标记为永磁体5A、永磁体5B和永磁体5C。
请继续参阅图1,所述定子3具有相对于伸缩口32的端口35,所述磁流变阻尼器还包括由不导磁材料构成的底端耳环36,该底端耳环36具有与定子3端部接触的限位部361,该底端耳环36一端插入端口35,底端耳36是一个连接接口,用来将自供电磁流变阻尼器连接到工作环境中去。
请参阅图3并结合图1,图3为采用凸齿33和侧齿34构成的T形齿的实际磁力线回路仿真图,因为实际运用过程中,永磁体5产生的磁力线要穿过空气隙、定子3和电磁线圈7形成磁力线回路,而电磁线圈7的磁导率和空气一样低,属于不导磁材料,因此大部分磁力线无法穿过电磁线圈7,采用凸齿33和侧齿34构成的T形结构后,由于其由高磁导率材料制成,因此可以“引导”绝大部分的磁力线穿过定子3形成磁力线回路,增大了磁力线与定子3的接触面积而可以使永磁体5产生的磁力线大部分通过侧齿34和凸齿33,只有少部分通过电磁线圈7,从而很好的利用了永磁体5磁场,杜绝了磁漏,可以有效地提高永磁体5磁场的利用率,增加了感应电动势,提高发电量。同时由于连接永磁体5的连接杆4采用不导磁的铝杆,从而“逼迫”永磁体5产生的磁力线穿过空气隙和电磁线圈7形成回路,最大化地利用永磁体5磁场,提高发电量和发电效率,进一步提高了永磁体5的磁场利用率,增加了感应电动势,提高了发电量。
请继续参阅图1,本发明的磁流变阻尼器在使用时,外界的振动使得外活塞杆24来回运动,外活塞杆24的运动使得内活塞杆25往复运动,由于内活塞杆25与连接杆4往复运动,连接杆4上的永磁体5始终位于容纳腔31内并使得永磁体5也就在容纳腔31内往复运动,从而,位于凸齿33和侧齿34构成的凹槽内的电磁线圈7切割永磁体5产生的磁力线而产生电能,由于电磁线圈7与活塞线圈231电性连接,所以,电能能够传输至活塞线圈231上产生磁场来激活磁流变液而使得磁流变液的粘度发生变化,磁流变液的粘度发生变化使得外活塞杆24的运动发生变化,如此,达到变阻尼的目的。
从上述使用过程还可以看出,本发明还提供一种磁流变减振系统,该减振系统包括振动源和磁流变阻尼器,该磁流变阻尼器是上述实施例所述的自供电磁流变阻尼器,该自供电磁流变阻尼器的活塞杆2的第一端21与所述振动源连接,该振动源是能够使得活塞杆2运动的动力源的总称,比如,可以是建筑工程中的振动、汽车工程中的振动等等。

Claims (10)

1.一种自供电磁流变阻尼器,其特征在于,包括缸体、活塞杆、定子、连接杆和若干永磁体,
缸体具有第一开口和第二开口的空腔结构,该空腔内充满磁流变液;
活塞杆穿过所述空腔,且其第一端伸出第一开口,第二端伸出第二开口,该活塞杆连接有位于所述空腔内的设置有活塞线圈的活塞;
定子包括具有伸缩口的容纳腔,容纳腔内壁上间隔设置有若干凸齿,每一凸齿的顶端相对两侧分别沿容纳腔的轴线延伸形成侧齿,凸齿和侧齿由导磁材料构成且相邻的凸齿和侧齿形成容纳电磁线圈的凹槽,该电磁线圈与所述活塞线圈电性连接;
连接杆位于所述定子的容纳腔内,具有从所述伸缩口伸出并与所述活塞杆的第二端连接的第一连接端;
若干永磁体与所述连接杆连接,相邻的永磁体之间设置有磁极。
2.如权利要求1所述的永磁直线发电机,其特征在于,凸齿具有相对的凸齿面,侧齿具有相对的二延伸面、与延伸面连接且平行于凸齿面的第一连接面以及垂直于凸齿面且与所述第一连接面连接的第二连接面,所述二延伸面分别与相应的凸齿面连接且与凸齿面形成呈90度-160度角设置。
3.如权利要求1所述的自供电磁流变阻尼器,其特征在于,相邻两永磁体的磁极化方向相反。
4.如权利要求1所述的自供电磁流变阻尼器,其特征在于,所述连接杆由不导磁材料制成。
5.如权利要求4所述的自供电磁流变阻尼器,其特征在于,所述不导磁材料是铝合金。
6.如权利要求1所述的自供电磁流变阻尼器,其特征在于,所述定子和磁极由高导磁率材料构成。
7.如权利要求1所述的自供电磁流变阻尼器,其特征在于,所述缸体的一端插入定子的伸缩口内,具有贯穿其相对二表面的通孔,该通孔具有第一密封端和第二密封端,所述自供电阻尼器还包括分别位于第一密封端的具有第一穿孔的第一密封装置和位于第二密封端的具有第二穿孔的二密封装置,每一密封装置由不导磁材料制成且所述第一穿孔是所述第一开口,所述穿孔是第二开口。
8.如权利要求7所述的自供电磁流变阻尼器,其特征在于,所述第一密封装置包括:
第一密封塞,具有第一密封口,第一密封塞外表面与缸体的内表面接触且位于第一密封端内;
第一端盖,具有第一端孔,插入所述第一密封端且与第一密封塞接触;
所述第一密封口和第一端孔构成所述第一密封装置的第一穿孔;
所述第二密封装置包括:
第二密封塞,具有第二密封口,第二密封塞外表面与缸体的内表面接触且位于第二密封端内;
第二端盖,具有第二端孔,插入所述第二密封端且与第二密封塞接触;
所述第二密封口和第二端孔构成所述第二密封装置的第二穿孔。
9.如权利要求1所述的自供电磁流变阻尼器,其特征在于,所述定子具有相对于伸缩口的端口,所述磁流变阻尼器还包括由不导磁材料构成的底端耳环,该底端耳环具有与定子端部接触的限位部,该底端耳环一端插入端口与连接杆连接。
10.一种磁流变减振系统,包括振动源和磁流变阻尼器,其特征在于,所述磁流变阻尼器是权利要求1至9中任何一项所述的自供电磁流变阻尼器,该自供电磁流变阻尼器的活塞杆的第一端与所述振动源连接。
CN2011101513311A 2011-06-03 2011-06-03 自供电磁流变阻尼器及其减振系统 Pending CN102278411A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN2011101513311A CN102278411A (zh) 2011-06-03 2011-06-03 自供电磁流变阻尼器及其减振系统

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN2011101513311A CN102278411A (zh) 2011-06-03 2011-06-03 自供电磁流变阻尼器及其减振系统

Publications (1)

Publication Number Publication Date
CN102278411A true CN102278411A (zh) 2011-12-14

Family

ID=45104046

Family Applications (1)

Application Number Title Priority Date Filing Date
CN2011101513311A Pending CN102278411A (zh) 2011-06-03 2011-06-03 自供电磁流变阻尼器及其减振系统

Country Status (1)

Country Link
CN (1) CN102278411A (zh)

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102654167A (zh) * 2012-05-09 2012-09-05 杭州电子科技大学 一种能防止磁流变液沉淀的磁流变阻尼器
CN103192673A (zh) * 2013-03-29 2013-07-10 江苏大学 一种混合动力车辆半主动悬架馈能器
CN103486188A (zh) * 2013-10-10 2014-01-01 重庆大学 自供电磁流变阻尼器
CN104776152A (zh) * 2015-04-08 2015-07-15 重庆大学 高效能低功耗磁流变半主动与主动一体化减振装置
CN108167371A (zh) * 2018-02-02 2018-06-15 山东科技大学 一种新型永磁体式磁流变阻尼器
CN108644288A (zh) * 2018-06-06 2018-10-12 河海大学 一种阻尼自动调节的粘滞流体阻尼器
CN111788409A (zh) * 2018-02-23 2020-10-16 天纳克汽车经营有限公司 具有电磁致动器的阻尼器
CN113007261A (zh) * 2021-02-06 2021-06-22 广西科技大学 一种齿形磁流变阻尼器
CN114791026A (zh) * 2021-10-11 2022-07-26 广西科技大学 一种混合型阀式磁流变阻尼器

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20030029683A1 (en) * 2001-08-13 2003-02-13 Delphi Technologies, Inc. Magnetorheological strut piston with compression bypass
CN1871447A (zh) * 2003-10-22 2006-11-29 通用汽车公司 磁流变流体阻尼器
CN2906124Y (zh) * 2006-04-26 2007-05-30 刘宗锋 套筒绕线式电磁发电阻尼器
CN101832355A (zh) * 2010-03-30 2010-09-15 谭和平 双出杆自适应双控磁流变阻尼器
CN101944821A (zh) * 2010-09-26 2011-01-12 浙江大学 一种永磁阻尼直线发电装置
CN201714899U (zh) * 2010-03-30 2011-01-19 谭晓婧 自适应双控磁流变阻尼器

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20030029683A1 (en) * 2001-08-13 2003-02-13 Delphi Technologies, Inc. Magnetorheological strut piston with compression bypass
CN1871447A (zh) * 2003-10-22 2006-11-29 通用汽车公司 磁流变流体阻尼器
CN2906124Y (zh) * 2006-04-26 2007-05-30 刘宗锋 套筒绕线式电磁发电阻尼器
CN101832355A (zh) * 2010-03-30 2010-09-15 谭和平 双出杆自适应双控磁流变阻尼器
CN201714899U (zh) * 2010-03-30 2011-01-19 谭晓婧 自适应双控磁流变阻尼器
CN101944821A (zh) * 2010-09-26 2011-01-12 浙江大学 一种永磁阻尼直线发电装置

Cited By (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102654167A (zh) * 2012-05-09 2012-09-05 杭州电子科技大学 一种能防止磁流变液沉淀的磁流变阻尼器
CN103192673A (zh) * 2013-03-29 2013-07-10 江苏大学 一种混合动力车辆半主动悬架馈能器
CN103486188A (zh) * 2013-10-10 2014-01-01 重庆大学 自供电磁流变阻尼器
CN103486188B (zh) * 2013-10-10 2015-03-18 重庆大学 自供电磁流变阻尼器
CN104776152A (zh) * 2015-04-08 2015-07-15 重庆大学 高效能低功耗磁流变半主动与主动一体化减振装置
CN108167371A (zh) * 2018-02-02 2018-06-15 山东科技大学 一种新型永磁体式磁流变阻尼器
CN111788409B (zh) * 2018-02-23 2022-04-26 天纳克汽车经营有限公司 具有电磁致动器的阻尼器
CN111788409A (zh) * 2018-02-23 2020-10-16 天纳克汽车经营有限公司 具有电磁致动器的阻尼器
CN108644288A (zh) * 2018-06-06 2018-10-12 河海大学 一种阻尼自动调节的粘滞流体阻尼器
CN108644288B (zh) * 2018-06-06 2023-06-20 河海大学 一种阻尼自动调节的粘滞流体阻尼器
CN113007261B (zh) * 2021-02-06 2022-02-25 广西科技大学 一种齿形磁流变阻尼器
CN113007261A (zh) * 2021-02-06 2021-06-22 广西科技大学 一种齿形磁流变阻尼器
CN114791026A (zh) * 2021-10-11 2022-07-26 广西科技大学 一种混合型阀式磁流变阻尼器
CN114791026B (zh) * 2021-10-11 2023-05-05 广西科技大学 一种混合型阀式磁流变阻尼器

Similar Documents

Publication Publication Date Title
CN102278411A (zh) 自供电磁流变阻尼器及其减振系统
CN102287474A (zh) 自供电自感应磁流变阻尼器
CN205244233U (zh) 自供能量式车辆磁流变阻尼装置
CN104702078B (zh) 永磁直线振荡电机及电动设备
US10052926B2 (en) Regenerative hydraulic shock-absorber for vehicle suspension
CN102374255A (zh) 自供电、自传感的磁流变体阻尼器
CN103486188B (zh) 自供电磁流变阻尼器
CN201627871U (zh) 双出杆自适应双控磁流变阻尼器
CN207454650U (zh) 一种复合式磁流变减震器
CN107676419A (zh) 一种磁流变液阻尼器自感应自供电的方法及阻尼器
CN201714899U (zh) 自适应双控磁流变阻尼器
CN106015437B (zh) 一种阶变电磁流变阻尼器
CN202228587U (zh) 具有多电磁线圈结构的磁流变阻尼器
CN201062645Y (zh) 自调磁减振器
CN204852153U (zh) 一种具有高抗拉伸性能的磁流变液减振器
CN102223049A (zh) 永磁直线发电机、磁流变阻尼器及其磁流变减振系统
CN101832355A (zh) 双出杆自适应双控磁流变阻尼器
CN207381204U (zh) 一种电磁铁
CN108900046A (zh) 一种圆筒型Halbach永磁阵列的安装方法
CN205260716U (zh) 一种具有两级阻尼力输出控制的磁流变阻尼器
CN109578668A (zh) 一种用于液压阀的电磁驱动机构
CN101832356B (zh) 自适应双控磁流变阻尼器
CN108547908B (zh) 一种多缸筒联动的内绕式磁流变阻尼器
CN107623426A (zh) 一种线性驱动装置及线性电机
CN104037025A (zh) 磁控延时装置

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C02 Deemed withdrawal of patent application after publication (patent law 2001)
WD01 Invention patent application deemed withdrawn after publication

Application publication date: 20111214