CN102269700B - 一种毛细管光纤折射率传感器 - Google Patents

一种毛细管光纤折射率传感器 Download PDF

Info

Publication number
CN102269700B
CN102269700B CN201110115073.1A CN201110115073A CN102269700B CN 102269700 B CN102269700 B CN 102269700B CN 201110115073 A CN201110115073 A CN 201110115073A CN 102269700 B CN102269700 B CN 102269700B
Authority
CN
China
Prior art keywords
fiber
capillary
refractive index
grating
bragg
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
CN201110115073.1A
Other languages
English (en)
Other versions
CN102269700A (zh
Inventor
彭石军
张安娜
张建中
苑立波
孙伟民
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Harbin Engineering University
Original Assignee
Harbin Engineering University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Harbin Engineering University filed Critical Harbin Engineering University
Priority to CN201110115073.1A priority Critical patent/CN102269700B/zh
Publication of CN102269700A publication Critical patent/CN102269700A/zh
Application granted granted Critical
Publication of CN102269700B publication Critical patent/CN102269700B/zh
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Abstract

本发明属于液体温度、折射率测量领域,具体为一种能够同时测量液体温度和折射率的毛细管光纤折射率传感器。本发明为一种毛细管光纤折射率传感器由光源连接输入光纤,输入光纤连接传感头部分,传感头部分连接输出光纤,输出光纤连接波长解调仪,其特征是:传感头部分由写有Bragg光纤光栅的单模光纤连接波导层写有Bragg光纤光栅的毛细管光纤组成。毛细管光纤采用单包层毛细管光纤或双包层毛细管光纤。输入光纤和输出光纤为单模光纤。入射光源为宽谱光源。该发明结构简单、紧凑、测量方便、灵敏度高。

Description

一种毛细管光纤折射率传感器
技术领域
本发明属于液体温度、折射率测量领域,具体为一种能够同时测量液体温度和折射率的毛细管光纤折射率传感器。
背景技术
折射率是流体介质重要的物理参数。流体介质诸多性质,如液体浓度、混合物成份、比重以及pH值等都可以在其折射率上得到反映。因此,人们通过测量液体的折射率就可以了解其物理和化学性质。所以折射率的测量是分析和研究液体的各种性质的一种有效手段,同时也是工业生产中各种反应过程检测和控制的重要方法。折射率测量的方法有多种,常用的折射率测量仪器为阿贝测量仪。这种方法需要提取一定量的被测物质放入仪器中进行测量,由操作人员读取测量值,无法实现在线检测和测量自动化。随着光纤传感技术的快速发展,基于光纤技术的折射率测量方法、技术及传感器受到关注。尤其是光纤光栅的产生及其优越的性能,使光纤光栅成为传感领域的佼佼者。它不仅具有抗电磁干扰、高灵敏度、响应速度快、动态范围宽、重量轻、结构紧凑、使用灵活、适用于腐蚀性或危险性环境等优点,同时还具有波长编码,便于复用构成光纤传感网络等优点。基于光纤光栅的折射率传感在生物化学传感器或生物探针等方面,具有很大的应用前途。
光纤光栅是利用光纤材料的光敏特性,在光纤纤芯或波导层形成周期性结构,其工作原理是在满足相位匹配条件的波长处发生模间共振耦合。当光纤光栅所处环境的温度、折射率等物理量发生改变时,通常该变化会引起光栅的周期或有效折射率发生改变,从而使得光栅的共振波长发生变化,就可以通过测量共振波长的变化,来获得待测物理量的变化情况。
布拉格光纤光栅的Bragg波长λB可由下式决定:
λB=2neffΛ
式中,neff是纤芯有效折射率,Λ为光栅周期。FBG的周期一般为几百纳米,它是对传输于纤芯的基模的反向耦合。因此可以作为应力,温度等的反射式传感器。但是传统的FBG对于环境折射率不敏感,不能用于制作生化传感器或生物探针。
为了提高光纤光栅传感器的性能,人们提出了各种不同的基于布拉格光纤光栅的传感器结构。常用的布拉格光纤光栅传感器装置是将Bragg光纤光栅的一端与光源连接,另一端接上光谱分析仪,通过观察光谱的的变化来检测环境的变化。李恩邦在申请号200610129439.x的专利《同时测量液体温度和折射率的光纤传感装置》提出利用光纤光栅和无芯光纤实现同时测量液体温度和折射率;Hyun Soo Jang等人在Opt.Express 2009年17期发表的文章Sensitive DNA biosensor based on a long-period grating formed on the side-polished fiber surface中提出了侧面抛光的长周期光纤光栅生物传感器;同年,Qing Wu等人在Appl.Opt第48期发表的Use of a single-multiple-single-mode fiber filter for interrogating fiber Bragg grating strainsensors with dynamic temperature compensation阐述了利用FBG和SMS结构实现了温度补偿的压力传感器。
但是由于介质的折射率随温度的不同而发生变化,这些传感器只有在一定温度下测得的折射率才有意义,因此我们在进行液体折射率测量时有必要进行温度补偿,以提高折射率测量的精度。
发明内容
本发明的目的是提出一种结构更简单、灵敏度更高、具有温度补偿的毛细管光纤折射率传感器。
本发明的目的是这样实现的:
本发明为一种毛细管光纤折射率传感器由光源连接输入光纤,输入光纤连接传感头部分,传感头部分连接输出光纤,输出光纤连接波长解调仪,其特征是:传感头部分由写有Bragg光纤光栅的单模光纤连接波导层写有Bragg光纤光栅的毛细管光纤组成。毛细管光纤采用单包层毛细管光纤或双包层毛细管光纤。输入光纤和输出光纤为单模光纤。入射光源为宽谱光源。
本发明的有益效果在于:本发明提供的一种基于毛细管光纤折射率传感器,通过FBG单模光纤段对温度的测量,从而实现温度补偿,使折射率测量的精度有了更大的提高,简化了传感器的结构缩小了传感器体积,液体测量种类得到扩大,反射谱的光谱峰值各自独立避免了干涉的影响。
附图说明
图1单包层毛细管光纤结构示意图;
图2双包层毛细管光纤结构示意图;
图3毛细管光纤折射率传感器传感头结构示意图;
图4经封装的毛细管光纤折射率传感器传感头结构示意图。
具体实施方式
下面对本发明的技术方案作进一步说明:
这种同时测量液体温度和折射的毛细管光纤传感器传感头部分由写有Bragg光纤光栅9的单模光纤8和写有Bragg光纤光栅10的毛细管光纤11熔融焊接而成,单模光纤段用来测温度,毛细管光纤段用来测温度和折射率。其中毛细管光纤11主要分为单包层毛细管光纤(如图1)和双包层毛细管光纤(如图2)两种。
上述方案中,所述的单模光纤和毛细管光纤直径相同,均为125μm;熔接时,两者的轴心在同一直线上;熔接后的长度在10cm内最合适。所述的毛细管光纤,都有一层很薄的波导层,Bragg光纤光栅就是写在该薄波导层上。考虑到弯曲会给传感器带来较大的影响,传感头必须经过封装才可用。封装过程是:取一直径为1mm、长15cm的毛细玻璃管,将传感头插入其中,并且保证毛细管光纤末端面与毛细管末端面平行,再用AB胶将自然伸直的传感头两端固定在毛细管内壁上。由输入单模光纤通过一2×2耦合器分别与宽谱光源和波长解调仪相连接,从而实现系统的调制与解调。
本发明对液体实现温度和折射率同时测量的原理和过程是:由输入单模光纤传来的基模光经过单模光纤Bragg光纤光栅时,满足相位匹配条件λB=2neffΛ的光被反射回去,其中neff为单模光纤纤芯有效折射率,Λ为光栅周期。此处的Bragg谐振波长λB只随温度变化而改变,因此单模光纤段Bragg光纤光栅用来检测环境温度。没有被反射回去的光继续沿单模光纤向前传播,到达毛细管光纤时,将在毛细管光纤的波导层内形成多个高阶模式,而纤芯模式被散射掉。单模光纤基模向这些高阶导模的耦合系数由单模光纤的基模模场与这些高阶导模模场的重叠积分决定。这些高阶导模沿着毛细管光纤向前传播,每个高阶导模对应一个纵向传播常数βii=k0neffi),k0n2<βi<k0n1,对于单包层毛细管光纤,n1,n2分别为波导层折射率和被测液体折射率;而对于双包层毛细管光纤,n1,n2分别为波导层折射率和内包层有效折射率。当这些高阶导模经过Bragg光纤光栅时,满足相位匹配条件λBi=2neffiΛ的光被反射回去。一旦外界的温度或被测液体的折射率发生改变,有效折射率neffi发生改变,则Bragg谐振波长λBi也会随之改变。因此通过检测Bragg谐振波长λBi的漂移,就可以获得需要检测的温度和折射率的动态变化信息。
由于波长解调器同时测量两光纤光栅的谐振波长变化,且每个谐振波长相互独立,因此上述的对液体温度测量和折射率测量是可以同时进行的。
本发明提供的一种毛细管光纤折射率传感器,由于毛细管光纤中无纤芯导模的传播,因而两个布拉格光纤光栅反射回来的模式不会发生干涉,其反射谱的光谱峰值各自独立;传感器的主体是毛细管光纤,采用写有光纤光栅的单包层毛细管光纤,可以检测折射率小于波导层的液体的折射率,如葡萄糖、酒精等;采用写有光纤光栅的双包层毛细管光纤,则可以检测折射率大于波导层的液体的折射率,比如石油、苯类有机物等;通过FBG单模光纤段对温度的测量,从而实现温度补偿,不仅使折射率测量的精度有了更大的提高,还简化了传感器的体积。
实施例:
如图1所示,图1为本发明毛细管光纤的折射率传感器中无内包层的毛细管光纤结构示意图。该毛细管光纤包括薄波导层1,布拉格光纤光栅就是写在此薄波导层1上;空气孔芯2,不同折射率样品可通过毛细现象进入空气孔芯2中;以及包层3,这种毛细管光纤只适合折射率比波导层折射率小的样品测试,有较高的灵敏度。
如图2所示,图2为本发明毛细管光纤的折射率传感器中有内包层的毛细管光纤结构示意图。该毛细管光纤包括薄波导层7,布拉格光纤光栅写在此薄波导层7上;内包层5和外包层4,起着束缚薄波导层7中传输光的作用,因此可以用来检测高折射率的样品,而对低折射率样品溶液,灵敏度相对较低;空气孔芯6,液体通过毛细现象进入其中。
如图3所示,图3为本发明毛细管光纤的折射率传感器传感头结构示意图。该传感头主要由写有Bragg光栅10的毛细管光纤11和写有Bragg光栅9的单模光纤8熔接而成,Bragg光栅是利用位相掩模技术写入的,单模光纤8和毛细管光纤11有相同的外包层直径,且两者轴心在同一直线上。单模光纤9采用标准单模光纤(G652),其纤芯直径为8.2μm,包层直径125μm,数值孔径0.14。首先将其去涂覆层,然后使用光纤切割刀切割端面,使其端面与光纤轴线垂直。毛细管光纤11的外径为125μm,使用光纤切割刀切割其端面,使其端面也与其轴线垂直。接着将端面处理后的单模光纤9和毛细管光纤11放入光纤焊接机中将两光纤熔接,并保证两光纤轴心在同一直线上。毛细管光纤11根据需要只保留5cm左右的长度,并除去涂覆层。然后,以紫外光入射,利用相位模板技术在单模光纤9和毛细管光纤11写上Bragg光纤光栅。两Bragg光纤光栅的周期Λ稍有差别,以保证它们的温度响应灵敏度尽量相同,从而实现温度补偿的目的。这样折射率传感器传感头制作完成,整个传感头部分长度在10cm以内。
如图4所示,图4为经封装后的毛细管光纤的折射率传感器传感头示意图。用直径约1mm、长约10cm的毛细玻璃管12套住光纤光栅传感头13,在毛细玻璃管12和传感头13末端平齐,且传感头13自然伸直状态下用AB胶将传感头13固定在毛细玻璃管12的内壁14上,从而保证传感头不受弯曲和应力的影响。图中的尾纤15用于信号的传输。
宽带光源出射的光通过输入单模光纤进入光环形器的第一个端口,经过光环形器从第二个端口出来,进入到写有Bragg光纤光栅的单模光纤上,在传播过程中遇到Bragg光纤光栅后,符合共振波长匹配的光被反射回去。除了共振波长区域的其它光继续沿着光纤纤芯传播,遇到毛细管光纤后,纤芯模被散射掉,而在熔接点处激励起的高阶模。这些高阶模进入毛细管光纤波导层继续传播,当遇到波导层内的Bragg光纤光栅时,符合共振波长匹配的那部分光被反射回去。两次被反射回去的共振波长区域的那部分光沿着光纤重新进入光环形器的第二个端口,经过光环形器后从第三个端口出来,通过光纤连接进入到光谱分析仪。由Bragg光纤光栅共振波长式子λBi=2neffΛ可知,当作用于光栅的环境因素发生改变而引起光栅周围的折射率产生变化时,可以引起光纤纤芯和包层模式有效折射率发生相应的改变,最终会引起共振波长的变化。通过检测光栅共振波长的漂移,就可以获得需要检测的温度和折射率的动态变化信息。

Claims (5)

1.一种毛细管光纤折射率传感器,由光源连接输入光纤,输入光纤连接传感头部分,传感头部分连接输出光纤,输出光纤连接波长解调仪,其特征是:传感头部分由写有Bragg光纤光栅的单模光纤连接波导层写有Bragg光纤光栅的毛细管光纤组成。
2.根据权利要求1所述的毛细管光纤折射率传感器,其特征是:所述的毛细管光纤采用单包层毛细管光纤或双包层毛细管光纤。
3.根据权利要求1或2所述的毛细管光纤折射率传感器,其特征是:所述的输入光纤和输出光纤为单模光纤。
4.根据权利要求1或2所述的毛细管光纤折射率传感器,其特征是:入射光源为宽谱光源。
5.根据权利要求3所述的毛细管光纤折射率传感器,其特征是:入射光源为宽谱光源。
CN201110115073.1A 2011-05-05 2011-05-05 一种毛细管光纤折射率传感器 Expired - Fee Related CN102269700B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201110115073.1A CN102269700B (zh) 2011-05-05 2011-05-05 一种毛细管光纤折射率传感器

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201110115073.1A CN102269700B (zh) 2011-05-05 2011-05-05 一种毛细管光纤折射率传感器

Publications (2)

Publication Number Publication Date
CN102269700A CN102269700A (zh) 2011-12-07
CN102269700B true CN102269700B (zh) 2013-06-05

Family

ID=45052062

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201110115073.1A Expired - Fee Related CN102269700B (zh) 2011-05-05 2011-05-05 一种毛细管光纤折射率传感器

Country Status (1)

Country Link
CN (1) CN102269700B (zh)

Families Citing this family (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103364370B (zh) * 2013-07-03 2015-06-17 哈尔滨工程大学 基于环形腔衰落的环形芯光纤传感器
CN104880435B (zh) * 2015-05-25 2018-07-31 重庆理工大学 用于测量tnt类爆炸物的传感装置
CN105841840B (zh) * 2016-03-30 2018-10-26 东北大学 一种能同时测量氢气浓度和温度的光纤传感器
CN106482808A (zh) * 2016-09-12 2017-03-08 武汉工程大学 一种基于石英毛细玻璃管的液位传感器及制备方法
CN106645029A (zh) * 2016-12-07 2017-05-10 大连理工大学 一种熔接式的开腔光纤efpi折射率传感器
CN107044969B (zh) * 2017-04-21 2023-10-10 天津工业大学 差分强度调制测量液体折射率的光纤传感装置及测量方法
CN107687907B (zh) * 2017-07-17 2020-03-24 东北大学 一种基于液体填充空芯环状光纤光栅的温度传感方法
CN108760142B (zh) * 2018-09-06 2024-04-02 安徽省幸福工场医疗设备有限公司 测压内窥镜、压力检测系统、压力控制方法
CN109799572B (zh) * 2018-12-12 2020-12-04 桂林电子科技大学 一种纤维集成的高斯-环形模场适配器
CN113608294A (zh) * 2021-07-05 2021-11-05 哈尔滨工程大学 一种材料填充型中空光纤光栅及其制备方法
CN115509020A (zh) * 2022-09-23 2022-12-23 哈尔滨工程大学 一种温控类贝塞尔光束生成器件及其制备方法

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101010607A (zh) * 2004-08-25 2007-08-01 科赫拉斯公司 微结构光纤中产生折射率结构的方法、微结构光纤和物品
CN101105452A (zh) * 2007-08-06 2008-01-16 哈尔滨工业大学 聚合物基复合材料成型过程温度固化度实时同步监测装置
CN101281274A (zh) * 2008-05-13 2008-10-08 北京理工大学 一种光纤包层光栅
CN101339275A (zh) * 2008-08-13 2009-01-07 哈尔滨工程大学 毛细管光纤与标准光纤的连接方法
CN101363940A (zh) * 2008-10-07 2009-02-11 哈尔滨工程大学 具有环形波导层的毛细管光纤及其制造方法
CN101614662A (zh) * 2009-07-24 2009-12-30 重庆大学 全光纤环型反射面结构的微型f-p折射率传感器
WO2010001132A1 (en) * 2008-07-04 2010-01-07 University Of Bath Hollow core photonic crystal fibre comprising a fibre grating in the cladding and its applications
WO2010043876A2 (en) * 2008-10-16 2010-04-22 University Of Strathclyde Fibre optic sensor system
CN102226725A (zh) * 2011-03-29 2011-10-26 哈尔滨工程大学 一种壁中波导长周期光纤光栅传感器
CN202041465U (zh) * 2011-05-05 2011-11-16 哈尔滨工程大学 一种毛细管光纤折射率传感器

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7668419B2 (en) * 2006-10-23 2010-02-23 Weatherford/Lamb, Inc. Evanescent sensor using a hollow-core ring mode waveguide

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101010607A (zh) * 2004-08-25 2007-08-01 科赫拉斯公司 微结构光纤中产生折射率结构的方法、微结构光纤和物品
CN101105452A (zh) * 2007-08-06 2008-01-16 哈尔滨工业大学 聚合物基复合材料成型过程温度固化度实时同步监测装置
CN101281274A (zh) * 2008-05-13 2008-10-08 北京理工大学 一种光纤包层光栅
WO2010001132A1 (en) * 2008-07-04 2010-01-07 University Of Bath Hollow core photonic crystal fibre comprising a fibre grating in the cladding and its applications
CN101339275A (zh) * 2008-08-13 2009-01-07 哈尔滨工程大学 毛细管光纤与标准光纤的连接方法
CN101363940A (zh) * 2008-10-07 2009-02-11 哈尔滨工程大学 具有环形波导层的毛细管光纤及其制造方法
WO2010043876A2 (en) * 2008-10-16 2010-04-22 University Of Strathclyde Fibre optic sensor system
CN101614662A (zh) * 2009-07-24 2009-12-30 重庆大学 全光纤环型反射面结构的微型f-p折射率传感器
CN102226725A (zh) * 2011-03-29 2011-10-26 哈尔滨工程大学 一种壁中波导长周期光纤光栅传感器
CN202041465U (zh) * 2011-05-05 2011-11-16 哈尔滨工程大学 一种毛细管光纤折射率传感器

Non-Patent Citations (4)

* Cited by examiner, † Cited by third party
Title
Hollow-core grating fiber;R.Barille et al.;《Optics Communications》;20120531;第285卷;468-472 *
R.Barille et al..Hollow-core grating fiber.《Optics Communications》.2012,第285卷468-472.
单芯光纤与毛细管光纤的耦合方法及其机理;朱晓亮等;《中国激光》;20110531;第38卷(第5期);0505009-1-0505009-5 *
朱晓亮等.单芯光纤与毛细管光纤的耦合方法及其机理.《中国激光》.2011,第38卷(第5期),0505009-1-0505009-5.

Also Published As

Publication number Publication date
CN102269700A (zh) 2011-12-07

Similar Documents

Publication Publication Date Title
CN102269700B (zh) 一种毛细管光纤折射率传感器
CN100437036C (zh) 同时测量液体温度和折射率的光纤传感装置
CN102226725B (zh) 一种壁中波导长周期光纤光栅传感器
CN202041465U (zh) 一种毛细管光纤折射率传感器
CN202041222U (zh) 一种壁中波导长周期光纤光栅传感器
CN100367016C (zh) 光纤温度测量仪及其测量方法
CN103940455B (zh) 一种基于光纤多模干涉的全光纤高精度传感器及其应用
CN203894161U (zh) 基于迈克尔逊干涉仪的全光纤折射率计及其系统
Gouveia et al. Simultaneous measurement of refractive index and temperature using multimode interference inside a high birefringence fiber loop mirror
CN101957227A (zh) 光子晶体光纤液位传感器及其形成的传感系统
CN203224447U (zh) 一种基于细芯光纤mz干涉仪的折射率传感器
CN101545851B (zh) 基于长周期光纤光栅的反射型光纤生化传感器及制作方法
CN103900994A (zh) 基于迈克尔逊干涉仪的全光纤折射率计、制作方法及系统
CA2606662A1 (en) Evanescent sensor using a hollow-core ring mode waveguide
CN104236602A (zh) 一种可同时测量温度和湿度的全光纤传感器
CN203432906U (zh) 一种拉锥结构的折射率光纤传感探头
CN105334190B (zh) 光纤纤芯与包层交界面的Bragg光栅生化传感器及方法
Li et al. Temperature-independent refractometer based on fiber-optic Fabry–Perot interferometer
CN109632133A (zh) 一种基于光纤的温度测量装置及方法
Zhang et al. 3D printing optofluidic Mach-Zehnder interferometer on a fiber tip for refractive index sensing
CN101377527A (zh) 光纤电压测量仪
CN105403535A (zh) 光纤包层表面Bragg光栅生化传感器及其制作方法
CN204964381U (zh) 一种基于单模异芯光纤结构的明胶浓度检测系统
CN102147362B (zh) 一种基于锥形腐蚀的温度自补偿fbg折射率传感器
CN106546187A (zh) 一种长周期光纤光栅曲率传感器及其检测方法

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C14 Grant of patent or utility model
GR01 Patent grant
CF01 Termination of patent right due to non-payment of annual fee

Granted publication date: 20130605

Termination date: 20190505

CF01 Termination of patent right due to non-payment of annual fee