CN102252677A - Time series analysis-based variable proportion self-adaptive federal filtering method - Google Patents

Time series analysis-based variable proportion self-adaptive federal filtering method Download PDF

Info

Publication number
CN102252677A
CN102252677A CN2011100958407A CN201110095840A CN102252677A CN 102252677 A CN102252677 A CN 102252677A CN 2011100958407 A CN2011100958407 A CN 2011100958407A CN 201110095840 A CN201110095840 A CN 201110095840A CN 102252677 A CN102252677 A CN 102252677A
Authority
CN
China
Prior art keywords
mrow
msub
mtd
mtr
math
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN2011100958407A
Other languages
Chinese (zh)
Inventor
李宁
袁克非
袁赣南
刘利强
张勇刚
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Harbin Engineering University
Original Assignee
Harbin Engineering University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Harbin Engineering University filed Critical Harbin Engineering University
Priority to CN2011100958407A priority Critical patent/CN102252677A/en
Publication of CN102252677A publication Critical patent/CN102252677A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Navigation (AREA)

Abstract

The invention discloses a time series analysis-based variable proportion self-adaptive federal filtering method, and the method is utilized for underwater multi-sensor integrated navigation systems. The time series analysis-based variable proportion self-adaptive federal filtering method is characterized by establishing system state equations and measurement equations according to error equations belonging to all navigation sensor systems, carrying out discretization processing of the established equations, creating discrete state-space models respectively corresponding to the all navigation sensor systems, acquiring information weight of the navigation sensor systems through an autoregressive model according to historical data of the navigation sensor systems, acquiring an information distribution ratio according to the obtained information weight and a law of information conservation, realizing global optimal estimates, and resetting a filtering value and an evaluated error covariance matrix by the global optimal estimates. The time series analysis-based variable proportion self-adaptive federal filtering method improves system navigation precision, system stability and fault tolerance, and can satisfy requirements which belong to underwater navigation devices and comprise high precision and high reliability requirements.

Description

Time sequence analysis-based variable-proportion self-adaptive federal filtering method
Technical Field
The invention belongs to the technical field of multi-sensor integrated navigation systems, relates to a filtering method of a multi-sensor integrated navigation system, and particularly relates to a variable proportion self-adaptive federal filtering method based on time series analysis.
Background
With the progress of navigation technology, the performance and application range of any single navigation device show obvious limitations, cannot meet the increasing precision requirement of a vehicle, cannot adapt to a complex application environment, and cannot completely meet the requirement of system reliability. Horst Ahlers states: "future belongs to multisensor. "multi-sensor integrated navigation system" is becoming a necessary trend. With the improvement of hardware conditions, the fusion method becomes an important factor that restricts the performance of the combined system. The Federal Kalman filtering method developed by N.A.Carlson is a fusion method successfully applied to engineering practice, and adopts a noise variance upper bound technology to eliminate the sub-filtering correlation so as to achieve global optimization.
However, in the existing federal filter structure, the information distribution proportion is fixed along with the determination of the structure, and the information distribution proportion cannot reflect the changes of the working state and the data state of the navigation sensor, accurately reflect the information weight distribution of the navigation sensor, accurately and truly reflect the condition of the system, and is not beneficial to the research on improving the precision, the reliability and the fault tolerance of the system.
Disclosure of Invention
The invention provides a variable proportion self-adaptive federal filtering method based on time sequence analysis, aiming at the problem that the information distribution proportion in the existing federal filtering method can not accurately reflect the information weight distribution of a navigation sensor along with the determination of the structure, so that the information distribution proportion can be adapted to the working condition of the navigation sensor and the running environment condition of a carrier, and the purposes of improving the precision, the reliability and the fault tolerance of a system are achieved.
A time sequence analysis-based variable proportion self-adaptive federal filtering method specifically comprises the following steps:
firstly, establishing a system state equation and a measurement equation according to an error equation of each navigation sensor system of the integrated navigation system;
discretizing the obtained system state equation and measurement equation, and establishing a discrete state space model corresponding to each navigation sensor system;
thirdly, acquiring an information weight of the navigation sensor system through an autoregressive model according to historical data of the navigation sensor system;
step four, obtaining an information distribution proportion according to the information weight and an information conservation law;
and fifthly, carrying out federal filtering according to the information distribution proportion to obtain global optimal estimation, and finally resetting the filtering value and the estimation error variance matrix by using the global optimal estimation.
The integrated navigation system in the first step is composed of an inertial navigation system INS, an electrostatic gyro monitor ESGM, a satellite positioning navigation system GPS and a Doppler velocity measurement system DVL according to the configuration condition of a navigation sensor of an underwater vehicle.
Respectively establishing an INS state equation, an INS/ESGM measurement equation, an INS/GPS measurement equation, an INS/DVL system state equation and a measurement equation according to each system error equation:
the INS state equation is as follows:
Figure BDA0000055797420000021
wherein the state quantity
Figure BDA0000055797420000022
δ L, δ λ, δ h represent changes in latitude L, longitude λ, altitude h, respectively, and δ VE、δVN、δVURespectively represent east velocity VEVelocity V in the north directionNVelocity in the direction of the sky VUChange of (phi)E、φN、φURespectively representing pitch angle, roll angle, yaw angle, epsilonbx、εby、εbzIs the component of gyro drift random constant error on three axes, epsilonrx、εry、εrzFor the components of the gyro drift markov process error in the three axes,
Figure BDA0000055797420000023
is the component of the accelerometer error in three axes; process noise array W ═ Wbx wby wbz wgx wgy wgz wax way waz]T,wbx、wby、wbzComponent on three axes of white noise, w, representing the gyro drift random constantgx、wgy、wgzComponent of white noise on three axes, w, representing a gyro-drift Markov processax、way、wazA component of white noise on three axes representing accelerometer error; state transition arrayWherein
Figure BDA0000055797420000025
Figure BDA0000055797420000026
Figure BDA0000055797420000027
fE、fN、fURespectively an east acceleration, a north acceleration, a sky acceleration, omegaieThe rotational angular velocity of the earth; noise driving array
Figure BDA0000055797420000028
Wherein
Figure BDA0000055797420000029
Is a direction cosine matrix.
The INS/ESGM measurement equation is as follows: z1(t)=H1(t)X1(t)+V1(t) wherein Z1The difference value of the ESGM and the INS position and course information is an observed quantity V1(t)=[m1,m2,m3,m4]TIs a zero mean value generated by the position error and the orientation error of the ESGMWhite gaussian noise of (1); h1(t) is the measurement array, INS/ESGM State equation X1(t)=X(t)。
The INS/GPS measurement equation is as follows:
Figure BDA00000557974200000210
wherein the position quantity is measured
Figure BDA0000055797420000031
Measurement of speed v2(t) white noise, INS/GPS equation of state X2(t)=X(t);
The INS/DVL system state equation is as follows:
the INS/DVL measurement equation is as follows:
Figure BDA0000055797420000035
wherein, the noise of the Doppler velocity measurement system drives the array Gd(t)=diag[1 1 0],Fd(t) is the augmented state transition array of the Doppler velocimetry system, Wd(t) noise matrix of the augmentation Process of Doppler velocimetry System, Xd(t) is the Doppler velocimetry system augmented state quantity, Xd=[δVd δΔ δC]T,δVdThe measurement error is a speed deviation error in the Doppler velocity measurement system, delta is a drift angle error in the Doppler velocity measurement system, and delta C is a scale coefficient error in the Doppler velocity measurement system;
Figure BDA0000055797420000036
V3(t)=[mVE mVN]Tto observe white noise, VdE、VdNRespectively represents the east speed and the north speed in the Doppler velocity measurement system, and K' is the heading angle of the ship.
In the second step, the discrete state space model corresponding to each navigation sensor system is:
<math> <mfenced open='{' close=''> <mtable> <mtr> <mtd> <msub> <mi>X</mi> <mi>k</mi> </msub> <mo>=</mo> <msub> <mi>&Phi;</mi> <mrow> <mi>k</mi> <mo>/</mo> <mi>k</mi> <mo>-</mo> <mn>1</mn> </mrow> </msub> <msub> <mi>X</mi> <mrow> <mi>k</mi> <mo>-</mo> <mn>1</mn> </mrow> </msub> <mo>+</mo> <msub> <mi>&Gamma;</mi> <mrow> <mi>k</mi> <mo>/</mo> <mi>k</mi> <mo>-</mo> <mn>1</mn> </mrow> </msub> <msub> <mi>W</mi> <mrow> <mi>k</mi> <mo>-</mo> <mn>1</mn> </mrow> </msub> </mtd> </mtr> <mtr> <mtd> <msub> <mi>Z</mi> <mi>k</mi> </msub> <mo>=</mo> <msub> <mi>H</mi> <mi>k</mi> </msub> <msub> <mi>X</mi> <mi>k</mi> </msub> <mo>+</mo> <msub> <mi>V</mi> <mi>k</mi> </msub> </mtd> </mtr> </mtable> </mfenced> </math>
where k represents the index value of the discrete time state, XkTo representState quantity at time k, ZkRepresents the observed quantity at time k, HkA measuring matrix representing the time k, Γk/k-1Is a noise-driven array, Wk-1Is the system state noise at time k-1 and the process noise covariance matrix Qk=E[WkWk T],VkFor the system at time k, measure noise, and measure noise covariance matrix Rk=E[VkVk T]D, state transition matrix phik/k-1The method is obtained by adopting a step-by-step cumulative discretization method:
<math> <mrow> <msub> <mi>&Phi;</mi> <mrow> <mi>k</mi> <mo>/</mo> <mi>k</mi> <mo>-</mo> <mn>1</mn> </mrow> </msub> <mo>=</mo> <munderover> <mi>&Pi;</mi> <mrow> <mi>i</mi> <mo>-</mo> <mn>1</mn> </mrow> <mi>J</mi> </munderover> <msub> <mi>&Phi;</mi> <mrow> <mrow> <mo>(</mo> <msub> <mi>t</mi> <mrow> <mi>k</mi> <mo>-</mo> <mn>1</mn> </mrow> </msub> <mo>+</mo> <mi>is</mi> <mo>)</mo> </mrow> <mo>/</mo> <mrow> <mo>(</mo> <msub> <mi>t</mi> <mrow> <mi>k</mi> <mo>-</mo> <mn>1</mn> </mrow> </msub> <mo>+</mo> <mrow> <mo>(</mo> <mi>i</mi> <mo>-</mo> <mn>1</mn> <mo>)</mo> </mrow> <mi>s</mi> <mo>)</mo> </mrow> </mrow> </msub> <mo>&ap;</mo> <munderover> <mi>&Pi;</mi> <mrow> <mi>i</mi> <mo>-</mo> <mn>1</mn> </mrow> <mi>J</mi> </munderover> <mrow> <mo>(</mo> <mi>I</mi> <mo>+</mo> <mi>s</mi> <msub> <mi>F</mi> <mrow> <mi>i</mi> <mo>-</mo> <mn>1</mn> </mrow> </msub> <mo>)</mo> </mrow> <mo>&ap;</mo> <mi>I</mi> <mo>+</mo> <mi>s</mi> <munderover> <mi>&Sigma;</mi> <mrow> <mi>i</mi> <mo>=</mo> <mn>1</mn> </mrow> <mi>J</mi> </munderover> <msub> <mi>F</mi> <mrow> <mi>i</mi> <mo>-</mo> <mn>1</mn> </mrow> </msub> </mrow> </math>
where J is T/s, T is sampling time, s is step length divided in sampling time, I is unit array, Fi-1Is the state transition matrix at time i-1.
In the third step, the prediction error of each navigation sensor system is used as the information weight thetai
<math> <mrow> <msub> <mi>&Theta;</mi> <mi>i</mi> </msub> <mo>=</mo> <msub> <mi>y</mi> <mi>i</mi> </msub> <mrow> <mo>(</mo> <mi>&tau;</mi> <mo>)</mo> </mrow> <mo>-</mo> <msub> <mover> <mi>y</mi> <mo>^</mo> </mover> <mi>i</mi> </msub> <mrow> <mo>(</mo> <mi>&tau;</mi> <mo>)</mo> </mrow> <mrow> <mo>(</mo> <mi>i</mi> <mo>=</mo> <mn>0,1,2,3</mn> <mo>)</mo> </mrow> </mrow> </math>
Wherein, yi(τ) is the output sequence of the ith navigation sensor,for the predicted value of the output sequence of the ith navigation sensor, i is 0, 1, 2 and 3 respectively correspond to the inertial navigation system, the electrostatic gyro monitor, the satellite positioning navigation system and the DopplerA speed measuring system.
The information distribution proportion is in direct proportion to the information weight, and the weight sum of each navigation sensor system is
Figure BDA00000557974200000311
Wherein beta is0Is the primary system weight, betaiThe weight of each subsystem is obtained, n is the number of all subsystems, the main system is an inertial navigation system, the subsystems are an electrostatic gyro monitor, a satellite positioning navigation system and a Doppler velocity measurement system, and finally the weight of each navigation sensor system is obtained as follows:
Figure BDA00000557974200000312
the global optimal estimation in the fifth step is as follows:
Figure BDA0000055797420000041
wherein,
Figure BDA0000055797420000042
is a global estimate, PgTo estimate the mean square error, Pi,kAn estimation error variance matrix P representing the ith navigation sensor systemkBy the ratio betaiDividing the weighted estimation error variance matrix,
Figure BDA0000055797420000043
indicating the predicted state quantity of the ith navigation sensor system.
And resetting the filtering value and the estimation error variance matrix by using the global optimal solution.
Because the upper bound technology of variance is used when the system noise is distributed, all subsystems are not related, and the augmentation system is not coupled. Although the filtering results of the subsystems are suboptimal, the fusion is resynthesized so that the global estimate is optimal.
The method has the advantages and positive effects that:
(1) the selection of the information right is based on the source information of each navigation sensor system, so that errors caused by evaluating each navigation sensor system by a filter estimation value are avoided, and the structure of the integrated navigation system is more suitable for the real condition of the system; meanwhile, measurement forward data are used for obtaining the weight, so that the historical data of the navigation sensor system are fully utilized, and the utilization rate of information is improved.
(2) The method of the invention ensures that the navigation precision of the integrated navigation system is kept at a considerable level, the error is small and non-divergent relative to the INS error, and the defects of INS error accumulation, especially position error, are overcome.
(3) The method can keep the performance of the integrated navigation system stable under the condition of different navigation sensor configurations, so that the integrated navigation system has good filtering precision, good positioning capability and error correction capability, stronger anti-jamming capability and noise suppression capability, and the reliability and the usability of the integrated navigation system are improved.
Drawings
FIG. 1 is a schematic diagram of the Federal Filtering method of the present invention applied to a multi-sensor integrated navigation system;
FIG. 2 is a flow chart of the steps of the federated filtering method of the present invention;
FIG. 3 is a schematic representation of a federated filtering architecture employing the federated filtering method of the present invention;
FIG. 4 is a diagram illustrating a variation curve of an information distribution ratio;
FIG. 5 is a schematic diagram of a fusion system and INS system position error versus curve;
FIG. 6 is a schematic diagram of a velocity error versus INS system for a fusion system;
FIG. 7 is a schematic diagram of a position error versus curve for a fusion system applying the method of the present invention and a fusion system applying the classical federated filtering method.
Detailed Description
The present invention will be described in further detail with reference to the accompanying drawings and examples.
The multi-sensor combined Navigation System applied in the embodiment of the invention is an underwater multi-sensor combined Navigation System, and the combined Navigation System consists of an Inertial Navigation System (INS for short), an Electrostatic gyro Monitor (ESGM for short), a satellite Positioning Navigation System (GPS for short) and a Doppler Velocity measurement System (DVL for short).
The INS is composed of a gyroscope and an accelerometer, is an autonomous navigation system independent of external information, can provide various navigation parameters including speed, position, attitude and the like, has the advantages of interference resistance and all weather, and is suitable for serving as a reference navigation system of an underwater vehicle. The precision of the INS mainly depends on inertial devices, and navigation precision errors are increased along with the accumulation of time, so that the problem of error stability of long-time navigation needs to be considered. The ESGM is a dumbbell-type combination body formed by two-degree-of-freedom electrostatic gyroscopes and an indirect stable platform, and is used as an information source monitoring and compensating inertial navigation system with high precision and long-term stability. The ESGM utilizes the star navigation principle to monitor the INS parameters, and the INS provides an indirect stable platform and a solution parameter for the ESGM. The combined mode can greatly inhibit the divergence of navigation errors, prolong the readjustment period of the system and ensure the long-time high-precision cruising of the underwater vehicle. The GPS has the obvious advantages of real-time navigation, irrelevant positioning error and time and higher positioning and speed measurement precision. When the antenna floats out of the water surface or the detection buoy is thrown out, the accurate position of the current point is obtained, the navigation error is calibrated, and the system time is corrected. Based on Doppler effect, the DVL mostly adopts four-beam Doppler sonar with fixed transmitting direction, which not only can compensate attitude error of a carrier in drift angle measurement, but also can measure the ground speed of the carrier, thereby giving space absolute speed vector of the carrier.
As shown in fig. 1, navigation information measured by the integrated navigation system is preprocessed, mainly by performing outlier processing on data by a distance function method, and the like, then performing time and space calibration on the acquired navigation data, then fusing the calibrated effective data by a variable-proportion adaptive federal filtering method to obtain an optimal solution, and finally outputting the navigation data.
The invention discloses a time series analysis-based variable-proportion self-adaptive federal filtering method, which comprises the following steps as shown in figure 2.
Step one, establishing a system state equation and a measurement equation according to error equations of all navigation sensors of the integrated navigation system. In this embodiment, an INS state equation, an INS/ESGM measurement equation, an INS/GPS measurement equation, and an INS/DVL system state equation and measurement equation need to be established.
And A, establishing an INS state equation.
The inertial navigation system INS errors include three-channel position, velocity, attitude errors and inertial device errors. The three-channel position error is represented by latitude L, longitude lambda and altitude h, and the three-channel speed error is represented by east speed VEVelocity V in the north directionNVelocity V in the direction of the skyUAnd characterizing, wherein attitude errors of the three channels are characterized by a pitch angle, a roll angle and a yaw angle, and error equations are respectively as follows:
<math> <mrow> <mi>&delta;</mi> <mover> <mi>L</mi> <mo>&CenterDot;</mo> </mover> <mo>=</mo> <mfrac> <mrow> <mi>&delta;</mi> <msub> <mi>V</mi> <mi>N</mi> </msub> </mrow> <mrow> <msub> <mi>R</mi> <mi>M</mi> </msub> <mo>+</mo> <mi>h</mi> </mrow> </mfrac> </mrow> </math>
<math> <mrow> <mi>&delta;</mi> <mover> <mi>&lambda;</mi> <mo>&CenterDot;</mo> </mover> <mo>=</mo> <mfrac> <mrow> <mi>&delta;</mi> <msub> <mi>V</mi> <mi>E</mi> </msub> </mrow> <mrow> <msub> <mi>R</mi> <mi>N</mi> </msub> <mo>+</mo> <mi>h</mi> </mrow> </mfrac> <mi>sec</mi> <mi>L</mi> <mo>+</mo> <mfrac> <msub> <mi>V</mi> <mi>E</mi> </msub> <mrow> <msub> <mi>R</mi> <mi>N</mi> </msub> <mo>+</mo> <mi>h</mi> </mrow> </mfrac> <mi>sec</mi> <mi>LtgL&delta;L</mi> </mrow> </math>
<math> <mrow> <mi>&delta;</mi> <mover> <mi>h</mi> <mo>&CenterDot;</mo> </mover> <mo>=</mo> <mi>&delta;</mi> <msub> <mi>V</mi> <mi>U</mi> </msub> </mrow> </math>
<math> <mrow> <mi>&delta;</mi> <msub> <mover> <mi>V</mi> <mo>&CenterDot;</mo> </mover> <mi>E</mi> </msub> <mo>=</mo> <msub> <mi>f</mi> <mi>N</mi> </msub> <msub> <mi>&phi;</mi> <mi>U</mi> </msub> <mo>-</mo> <msub> <mi>f</mi> <mi>U</mi> </msub> <msub> <mi>&phi;</mi> <mi>N</mi> </msub> <mo>+</mo> <mrow> <mo>(</mo> <mfrac> <msub> <mi>V</mi> <mi>E</mi> </msub> <mrow> <msub> <mi>R</mi> <mi>M</mi> </msub> <mo>+</mo> <mi>h</mi> </mrow> </mfrac> <mi>tgL</mi> <mo>-</mo> <mfrac> <msub> <mi>V</mi> <mi>U</mi> </msub> <mrow> <msub> <mi>R</mi> <mi>M</mi> </msub> <mo>+</mo> <mi>h</mi> </mrow> </mfrac> <mo>)</mo> </mrow> <msub> <mi>&delta;V</mi> <mi>E</mi> </msub> <mo>+</mo> <mrow> <mo>(</mo> <msub> <mrow> <mn>2</mn> <mi>&omega;</mi> </mrow> <mi>ie</mi> </msub> <mi>sin</mi> <mi>L</mi> <mo>+</mo> <mfrac> <msub> <mi>V</mi> <mi>E</mi> </msub> <mrow> <msub> <mi>R</mi> <mi>N</mi> </msub> <mo>+</mo> <mi>h</mi> </mrow> </mfrac> <mi>tgL</mi> <mo>)</mo> </mrow> <msub> <mi>&delta;V</mi> <mi>N</mi> </msub> </mrow> </math>
<math> <mrow> <mo>+</mo> <mrow> <mo>(</mo> <mn>2</mn> <msub> <mi>&omega;</mi> <mi>ie</mi> </msub> <mi>cos</mi> <mi>L</mi> <mo>&CenterDot;</mo> <msub> <mi>V</mi> <mi>N</mi> </msub> <mo>+</mo> <mfrac> <mrow> <msub> <mi>V</mi> <mi>N</mi> </msub> <msub> <mi>V</mi> <mi>E</mi> </msub> </mrow> <mrow> <msub> <mi>R</mi> <mi>N</mi> </msub> <mo>+</mo> <mi>h</mi> </mrow> </mfrac> <msup> <mi>sec</mi> <mn>2</mn> </msup> <mi>L</mi> <mo>+</mo> <mn>2</mn> <msub> <mi>&omega;</mi> <mi>ie</mi> </msub> <mi>sin</mi> <mi>L</mi> <mo>&CenterDot;</mo> <msub> <mi>V</mi> <mi>U</mi> </msub> <mo>)</mo> </mrow> <mi>&delta;L</mi> <mo>-</mo> <mrow> <mo>(</mo> <mn>2</mn> <msub> <mi>&omega;</mi> <mi>ie</mi> </msub> <mi>cos</mi> <mi>L</mi> <mo>+</mo> <mfrac> <msub> <mi>V</mi> <mi>E</mi> </msub> <mrow> <msub> <mi>R</mi> <mi>N</mi> </msub> <mo>+</mo> <mi>h</mi> </mrow> </mfrac> <mo>)</mo> </mrow> <mi>&delta;</mi> <msub> <mi>V</mi> <mi>U</mi> </msub> <mo>+</mo> <msub> <mo>&dtri;</mo> <mi>E</mi> </msub> </mrow> </math>
<math> <mrow> <mi>&delta;</mi> <msub> <mover> <mi>V</mi> <mo>&CenterDot;</mo> </mover> <mi>N</mi> </msub> <mo>=</mo> <msub> <mi>f</mi> <mi>U</mi> </msub> <msub> <mi>&phi;</mi> <mi>E</mi> </msub> <mo>-</mo> <msub> <mi>f</mi> <mi>E</mi> </msub> <msub> <mi>&phi;</mi> <mi>U</mi> </msub> <mo>-</mo> <mn>2</mn> <mrow> <mo>(</mo> <msub> <mi>&omega;</mi> <mi>ie</mi> </msub> <mi>sin</mi> <mi>L</mi> <mo>+</mo> <mfrac> <msub> <mi>V</mi> <mi>E</mi> </msub> <mrow> <msub> <mi>R</mi> <mi>N</mi> </msub> <mo>+</mo> <mi>h</mi> </mrow> </mfrac> <mi>tgL</mi> <mo>)</mo> </mrow> <msub> <mi>&delta;V</mi> <mi>E</mi> </msub> <mo>-</mo> <mfrac> <msub> <mi>V</mi> <mi>U</mi> </msub> <mrow> <msub> <mi>R</mi> <mi>M</mi> </msub> <mo>+</mo> <mi>h</mi> </mrow> </mfrac> <msub> <mi>&delta;V</mi> <mi>N</mi> </msub> <mo>-</mo> <mfrac> <msub> <mi>V</mi> <mi>N</mi> </msub> <mrow> <msub> <mi>R</mi> <mi>M</mi> </msub> <mo>+</mo> <mi>h</mi> </mrow> </mfrac> <mi>&delta;</mi> <msub> <mi>V</mi> <mi>U</mi> </msub> </mrow> </math>
<math> <mrow> <mo>-</mo> <mrow> <mo>(</mo> <mn>2</mn> <msub> <mi>&omega;</mi> <mi>ie</mi> </msub> <mi>cos</mi> <mi>L</mi> <mo>+</mo> <mfrac> <msub> <mi>V</mi> <mi>E</mi> </msub> <mrow> <msub> <mi>R</mi> <mi>N</mi> </msub> <mo>+</mo> <mi>h</mi> </mrow> </mfrac> <msup> <mi>sec</mi> <mn>2</mn> </msup> <mi>L</mi> <mo>)</mo> </mrow> <msub> <mi>V</mi> <mi>E</mi> </msub> <mi>&delta;L</mi> <mo>+</mo> <msub> <mo>&dtri;</mo> <mi>N</mi> </msub> </mrow> </math>
<math> <mrow> <mi>&delta;</mi> <msub> <mover> <mi>V</mi> <mo>&CenterDot;</mo> </mover> <mi>U</mi> </msub> <mo>=</mo> <msub> <mi>f</mi> <mi>E</mi> </msub> <msub> <mi>&phi;</mi> <mi>N</mi> </msub> <mo>-</mo> <msub> <mi>f</mi> <mi>N</mi> </msub> <msub> <mi>&phi;</mi> <mi>E</mi> </msub> <mo>+</mo> <mn>2</mn> <mrow> <mo>(</mo> <msub> <mi>&omega;</mi> <mi>ie</mi> </msub> <mi>cos</mi> <mi>L</mi> <mo>+</mo> <mfrac> <msub> <mi>V</mi> <mi>E</mi> </msub> <mrow> <msub> <mi>R</mi> <mi>N</mi> </msub> <mo>+</mo> <mi>h</mi> </mrow> </mfrac> <mi>tgL</mi> <mo>)</mo> </mrow> <mi>&delta;</mi> <msub> <mi>V</mi> <mi>E</mi> </msub> <mo>+</mo> <mn>2</mn> <mfrac> <msub> <mi>V</mi> <mi>N</mi> </msub> <mrow> <msub> <mi>R</mi> <mi>M</mi> </msub> <mo>+</mo> <mi>h</mi> </mrow> </mfrac> <mi>&delta;</mi> <msub> <mi>V</mi> <mi>N</mi> </msub> <mo>-</mo> <mn>2</mn> <msub> <mi>&omega;</mi> <mi>ie</mi> </msub> <mi>cos</mi> <mi>L</mi> <mo>&CenterDot;</mo> <msub> <mi>V</mi> <mi>E</mi> </msub> <mi>&delta;L</mi> <mo>+</mo> <msub> <mo>&dtri;</mo> <mi>U</mi> </msub> </mrow> </math>
<math> <mrow> <msub> <mover> <mi>&phi;</mi> <mo>&CenterDot;</mo> </mover> <mi>E</mi> </msub> <mo>=</mo> <mo>-</mo> <mfrac> <mrow> <mi>&delta;</mi> <msub> <mi>V</mi> <mi>N</mi> </msub> </mrow> <mrow> <msub> <mi>R</mi> <mi>M</mi> </msub> <mo>+</mo> <mi>h</mi> </mrow> </mfrac> <mo>+</mo> <mrow> <mo>(</mo> <msub> <mi>&omega;</mi> <mi>ie</mi> </msub> <mi>sin</mi> <mi>L</mi> <mo>+</mo> <mfrac> <msub> <mi>V</mi> <mi>E</mi> </msub> <mrow> <msub> <mi>R</mi> <mi>N</mi> </msub> <mo>+</mo> <mi>h</mi> </mrow> </mfrac> <mi>tgL</mi> <mo>)</mo> </mrow> <msub> <mi>&phi;</mi> <mi>N</mi> </msub> <mo>-</mo> <mrow> <mo>(</mo> <msub> <mi>&omega;</mi> <mi>ie</mi> </msub> <mi>cos</mi> <mi>L</mi> <mo>+</mo> <mfrac> <msub> <mi>V</mi> <mi>E</mi> </msub> <mrow> <msub> <mi>R</mi> <mi>N</mi> </msub> <mo>+</mo> <mi>h</mi> </mrow> </mfrac> <mi>tgL</mi> <mo>)</mo> </mrow> <msub> <mi>&phi;</mi> <mi>U</mi> </msub> <mo>+</mo> <msub> <mi>&epsiv;</mi> <mi>E</mi> </msub> </mrow> </math>
<math> <mrow> <msub> <mover> <mi>&phi;</mi> <mo>&CenterDot;</mo> </mover> <mi>N</mi> </msub> <mo>=</mo> <mfrac> <mrow> <mi>&delta;</mi> <msub> <mi>V</mi> <mi>E</mi> </msub> </mrow> <mrow> <msub> <mi>R</mi> <mi>N</mi> </msub> <mo>+</mo> <mi>h</mi> </mrow> </mfrac> <mo>-</mo> <msub> <mi>&omega;</mi> <mi>ie</mi> </msub> <mi>sin</mi> <mi>L&delta;L</mi> <mo>-</mo> <mrow> <mo>(</mo> <msub> <mi>&omega;</mi> <mi>ie</mi> </msub> <mi>sin</mi> <mi>L</mi> <mo>+</mo> <mfrac> <msub> <mi>V</mi> <mi>E</mi> </msub> <mrow> <msub> <mi>R</mi> <mi>N</mi> </msub> <mo>+</mo> <mi>h</mi> </mrow> </mfrac> <mi>tgL</mi> <mo>)</mo> </mrow> <msub> <mi>&phi;</mi> <mi>E</mi> </msub> <mo>-</mo> <mfrac> <msub> <mi>V</mi> <mi>E</mi> </msub> <mrow> <msub> <mi>R</mi> <mi>N</mi> </msub> <mo>+</mo> <mi>h</mi> </mrow> </mfrac> <msub> <mi>&phi;</mi> <mi>U</mi> </msub> <mo>+</mo> <msub> <mi>&epsiv;</mi> <mi>N</mi> </msub> </mrow> </math>
<math> <mrow> <msub> <mover> <mi>&phi;</mi> <mo>&CenterDot;</mo> </mover> <mi>U</mi> </msub> <mo>=</mo> <mfrac> <mrow> <mi>&delta;</mi> <msub> <mi>V</mi> <mi>E</mi> </msub> </mrow> <mrow> <msub> <mi>R</mi> <mi>N</mi> </msub> <mo>+</mo> <mi>h</mi> </mrow> </mfrac> <mi>tgL</mi> <mo>+</mo> <mrow> <mo>(</mo> <msub> <mi>&omega;</mi> <mi>ie</mi> </msub> <mi>cos</mi> <mi>L</mi> <mo>+</mo> <mfrac> <msub> <mi>V</mi> <mi>E</mi> </msub> <mrow> <msub> <mi>R</mi> <mi>N</mi> </msub> <mo>+</mo> <mi>h</mi> </mrow> </mfrac> <msup> <mi>sec</mi> <mn>2</mn> </msup> <mi>L</mi> <mo>)</mo> </mrow> <mi>&delta;L</mi> <mo>+</mo> <mrow> <mo>(</mo> <msub> <mi>&omega;</mi> <mi>ie</mi> </msub> <mi>cos</mi> <mi>L</mi> <mo>+</mo> <mfrac> <msub> <mi>V</mi> <mi>E</mi> </msub> <mrow> <msub> <mi>R</mi> <mi>N</mi> </msub> <mo>+</mo> <mi>h</mi> </mrow> </mfrac> <mo>)</mo> </mrow> <msub> <mi>&phi;</mi> <mi>E</mi> </msub> <mo>+</mo> <mfrac> <msub> <mi>V</mi> <mi>N</mi> </msub> <mrow> <msub> <mi>R</mi> <mi>N</mi> </msub> <mo>+</mo> <mi>h</mi> </mrow> </mfrac> <msub> <mi>&phi;</mi> <mi>N</mi> </msub> <mo>+</mo> <msub> <mi>&epsiv;</mi> <mi>U</mi> </msub> </mrow> </math>
wherein,
Figure BDA0000055797420000069
latitude L, longitude lambda, altitude h, east speed VEVelocity V in the north directionNVelocity in the direction of the sky VUThe rate of change of pitch angle, roll angle, yaw angle; δ L, δ λ, δ h represent changes in latitude L, longitude λ, altitude h, respectively, and δ VE、δVN、δVURespectively represent east velocity VEVelocity V in the north directionNVelocity in the direction of the sky VUA change in (c); f. ofE、fN、fURespectively an east acceleration, a north acceleration, a sky acceleration, omegaieIs the rotational angular velocity of the earth, RMRadius of curvature of meridian, RNThe curvature radius of the unitary mortise ring.
The inertial device errors comprise installation errors, scale coefficient errors, random errors and the like, and the installation errors and the scale coefficient errors are different due to different conditions of device types, models, environments, processes and the like and have no uniformity, so that only the random errors are considered in the invention. The random error needs to take into account gyro drift and accelerometer error.
The gyro drift is: e ═ e-brg(ii) a Wherein epsilonbDenotes a random constant, ∈rRepresenting a first order Markov process,. epsilongWhite noise due to gyro drift. The triaxial gyro drift equation is:
<math> <mrow> <msub> <mover> <mi>&epsiv;</mi> <mo>&CenterDot;</mo> </mover> <mi>b</mi> </msub> <mo>=</mo> <mn>0</mn> </mrow> </math>
<math> <mrow> <msub> <mover> <mi>&epsiv;</mi> <mo>&CenterDot;</mo> </mover> <mi>r</mi> </msub> <mo>=</mo> <mo>-</mo> <mfrac> <mn>1</mn> <msub> <mi>T</mi> <mi>g</mi> </msub> </mfrac> <msub> <mi>&epsiv;</mi> <mi>r</mi> </msub> <mo>+</mo> <msub> <mi>w</mi> <mi>g</mi> </msub> </mrow> </math>
wherein T isgRepresenting the correlation time, w, of the three-axis gyro driftgWhite noise representing a gyro drift markov process.
The accelerometer error can be considered as a first order markov process, and the error equation of the accelerometer is as follows:
<math> <mrow> <msub> <mover> <mo>&dtri;</mo> <mo>&CenterDot;</mo> </mover> <mi>a</mi> </msub> <mo>=</mo> <mo>-</mo> <mfrac> <mn>1</mn> <msub> <mi>T</mi> <mi>a</mi> </msub> </mfrac> <msub> <mo>&dtri;</mo> <mi>a</mi> </msub> <mo>+</mo> <msub> <mi>w</mi> <mi>a</mi> </msub> </mrow> </math>
wherein T isaTime of correlation, w, representing accelerometer erroraWhite noise representing accelerometer error.
The INS state equation can be determined by an error equation of an inertial navigation system INS as follows:
<math> <mrow> <mover> <mi>X</mi> <mo>&CenterDot;</mo> </mover> <mrow> <mo>(</mo> <mi>t</mi> <mo>)</mo> </mrow> <mo>=</mo> <mi>F</mi> <mrow> <mo>(</mo> <mi>t</mi> <mo>)</mo> </mrow> <mi>X</mi> <mrow> <mo>(</mo> <mi>t</mi> <mo>)</mo> </mrow> <mo>+</mo> <mi>G</mi> <mrow> <mo>(</mo> <mi>t</mi> <mo>)</mo> </mrow> <mi>W</mi> <mrow> <mo>(</mo> <mi>t</mi> <mo>)</mo> </mrow> </mrow> </math>
wherein the state quantity
Figure BDA00000557974200000614
Including three channel position, velocity and attitude, gyro error and accelerometer error, epsilonbx、εby、εbzIs the component of gyro drift random constant error on three axes, epsilonrx、εry、εrzFor the components of the gyro drift markov process error in the three axes,
Figure BDA00000557974200000615
the components of the accelerometer error are in three axes, namely the x-axis, the y-axis and the z-axis.
Process noise array W ═ Wbx wby wbz wgx wgy wgz wax way waz]T,wbx、wby、wbzComponent on three axes of white noise, w, representing the gyro drift random constant, respectivelygx、wgy、wgzComponent of white noise on three axes, w, representing the gyro-drift Markov processax、way、wazThe components of white noise on the three axes representing the accelerometer error, respectively.
Noise driving array
Figure BDA0000055797420000071
Wherein
Figure BDA0000055797420000072
The direction cosine matrix is b, a ship body coordinate system is fixedly connected to a ship body, and n is a navigation coordinate system and is selected according to the working state of the navigation system.
State transition array
Figure BDA0000055797420000073
Wherein,
Figure BDA0000055797420000074
Figure BDA0000055797420000075
wherein T isgx、Tgy、TgzRespectively representing the components of the gyro drift with respect to time on three axes, Tax、Tay、TazRespectively representing the components of the accelerometer error in three axes with respect to time;
Figure BDA0000055797420000076
and step B, establishing an INS/ESGM measuring equation.
The electrostatic gyro monitor ESGM monitors and compensates the inertial navigation system INS, but it can only provide position and heading information. INS/ESGM system stateThe equation of state uses INS equation of state such that X1X. The difference value of the ESGM and the INS position and course information is the observed quantity Z1
<math> <mrow> <msub> <mi>Z</mi> <mn>1</mn> </msub> <mo>=</mo> <mfenced open='[' close=']'> <mtable> <mtr> <mtd> <msub> <mi>L</mi> <mi>E</mi> </msub> <mo>-</mo> <mi>L</mi> </mtd> </mtr> <mtr> <mtd> <msub> <mi>&lambda;</mi> <mi>E</mi> </msub> <mo>-</mo> <mi>&lambda;</mi> </mtd> </mtr> <mtr> <mtd> <msub> <mi>h</mi> <mi>E</mi> </msub> <mo>-</mo> <mi>h</mi> </mtd> </mtr> <mtr> <mtd> <msub> <mi>K</mi> <mi>E</mi> </msub> <mo>-</mo> <mi>K</mi> </mtd> </mtr> </mtable> </mfenced> <mo>+</mo> <mfenced open='[' close=']'> <mtable> <mtr> <mtd> <msub> <mi>m</mi> <mn>1</mn> </msub> </mtd> </mtr> <mtr> <mtd> <msub> <mi>m</mi> <mn>2</mn> </msub> </mtd> </mtr> <mtr> <mtd> <msub> <mi>m</mi> <mn>3</mn> </msub> </mtd> </mtr> <mtr> <mtd> <msub> <mi>m</mi> <mn>4</mn> </msub> </mtd> </mtr> </mtable> </mfenced> </mrow> </math>
Wherein L isEL is divided intoThe latitude, lambda, of ESGM and INS are respectively expressedEλ represents longitude of ESGM and INS, hEH represents the height of ESGM and INS respectively; kEAnd K respectively represent heading angles of the ESGM and the INS. [ m ] of1,m2,m3,m4]TIs zero-mean white gaussian noise generated by the ESGM position and orientation errors.
The corresponding INS/ESGM measurement equation is:
Z1(t)=H1(t)X1(t)+V1(t)
wherein, V1(t)=[m1,m2,m3,m4]TIs zero-mean white gaussian noise generated by the ESGM position and orientation errors. H1(t) is the measurement array, INS/ESGM State equation X1(t)=X(t)。
And step C, determining an INS/GPS measurement equation.
The GPS errors include: SA error, ionosphere transmission error, troposphere transmission error, ephemeris error, and clock synchronization error, etc. In the combined mode of position and speed, the error of GPS is regarded as measuring noise, and the state is not expanded, and X is taken2(t)=X(t)。
Observed quantity Z2The GPS and INS position difference and velocity difference. The INS/GPS system state equation uses the INS state equation: x2(t) x (t), INS/GPS measurement equation:
Z 2 = Z p ( t ) Z V ( t ) = H 2 ( t ) X 2 ( t ) + v 2 ( t )
wherein the position quantity is measured
Figure BDA0000055797420000082
Measurement of speed
Figure BDA0000055797420000083
Measuring array
Figure BDA0000055797420000084
v2(t) represents a zero-mean Gaussian white noise matrix generated by the position error and the orientation error of the GPS. L isGIndicating the latitude, λ, of the GPSGIndicates the longitude, h, of the GPSGIndicating the height, V, of the GPSGEIndicating east velocity, V, in GPSGNIndicating north velocity, V, in GPSGUIndicating the speed of the sky in GPS.
And D, determining an INS/DVL system equation.
The Doppler log can provide earth speed and drift angle, and its measurement error mainly includes speed deviation error delta VdThe scale coefficient error delta C and the drift angle error delta, the speed measurement error and the drift angle measurement error can be described by a first-order Markov process, the scale coefficient error is a random constant, and the error equation is as follows:
<math> <mfenced open='{' close=''> <mtable> <mtr> <mtd> <mi>&delta;</mi> <msub> <mover> <mi>V</mi> <mo>&CenterDot;</mo> </mover> <mi>d</mi> </msub> <mo>=</mo> <mo>-</mo> <msub> <mi>&beta;</mi> <mi>d</mi> </msub> <mi>&delta;</mi> <msub> <mi>V</mi> <mi>d</mi> </msub> <mo>+</mo> <msub> <mi>w</mi> <mi>d</mi> </msub> </mtd> </mtr> <mtr> <mtd> <mi>&delta;</mi> <mover> <mi>&Delta;</mi> <mo>&CenterDot;</mo> </mover> <mo>=</mo> <mo>-</mo> <msub> <mi>&beta;</mi> <mi>&Delta;</mi> </msub> <mi>&delta;&Delta;</mi> <mo>+</mo> <msub> <mi>w</mi> <mi>&Delta;</mi> </msub> </mtd> </mtr> <mtr> <mtd> <mi>&delta;</mi> <mover> <mi>C</mi> <mo>&CenterDot;</mo> </mover> <mo>=</mo> <mn>0</mn> </mtd> </mtr> </mtable> </mfenced> </math>
<math> <mrow> <mfenced open='[' close=']'> <mtable> <mtr> <mtd> <mi>&delta;</mi> <msub> <mover> <mi>V</mi> <mo>&CenterDot;</mo> </mover> <mi>d</mi> </msub> </mtd> </mtr> <mtr> <mtd> <mi>&delta;</mi> <mover> <mi>&Delta;</mi> <mo>&CenterDot;</mo> </mover> </mtd> </mtr> <mtr> <mtd> <mi>&delta;</mi> <mover> <mi>C</mi> <mo>&CenterDot;</mo> </mover> </mtd> </mtr> </mtable> </mfenced> <mo>=</mo> <mfenced open='[' close=']'> <mtable> <mtr> <mtd> <mo>-</mo> <msub> <mi>&beta;</mi> <mi>d</mi> </msub> </mtd> <mtd> </mtd> <mtd> </mtd> </mtr> <mtr> <mtd> </mtd> <mtd> <mo>-</mo> <msub> <mi>&beta;</mi> <mi>&Delta;</mi> </msub> </mtd> <mtd> </mtd> </mtr> <mtr> <mtd> </mtd> <mtd> </mtd> <mtd> <mn>0</mn> </mtd> </mtr> </mtable> </mfenced> <mfenced open='[' close=']'> <mtable> <mtr> <mtd> <msub> <mi>&delta;V</mi> <mi>d</mi> </msub> </mtd> </mtr> <mtr> <mtd> <mi>&delta;&Delta;</mi> </mtd> </mtr> <mtr> <mtd> <mi>&delta;C</mi> </mtd> </mtr> </mtable> </mfenced> <mo>+</mo> <mfenced open='[' close=']'> <mtable> <mtr> <mtd> <msub> <mi>w</mi> <mi>d</mi> </msub> </mtd> </mtr> <mtr> <mtd> <msub> <mi>w</mi> <mi>&Delta;</mi> </msub> </mtd> </mtr> <mtr> <mtd> <mn>0</mn> </mtd> </mtr> </mtable> </mfenced> </mrow> </math>
wherein, δ VdDelta and delta C respectively represent the change rates of speed error, drift angle error and scale coefficient error, betad、βΔThe inverse of the correlation time constant, w, of the velocity error Markov process and the drift angle error Markov process, respectivelyd、wΔWhite noise indicating a velocity error and a drift angle error. Thus, X isd=[δVd δΔ δC]TAnd as an expansion system state matrix, forming a system state equation of the INS/GPS together with an INS error equation:
<math> <mrow> <msub> <mover> <mi>X</mi> <mo>&CenterDot;</mo> </mover> <mn>3</mn> </msub> <mo>=</mo> <mfenced open='[' close=']'> <mtable> <mtr> <mtd> <mover> <mi>X</mi> <mo>&CenterDot;</mo> </mover> </mtd> </mtr> <mtr> <mtd> <msub> <mover> <mi>X</mi> <mo>&CenterDot;</mo> </mover> <mi>d</mi> </msub> </mtd> </mtr> </mtable> </mfenced> <mo>=</mo> <mfenced open='[' close=']'> <mtable> <mtr> <mtd> <mi>F</mi> </mtd> <mtd> </mtd> </mtr> <mtr> <mtd> </mtd> <mtd> <msub> <mi>F</mi> <mi>d</mi> </msub> </mtd> </mtr> </mtable> </mfenced> <mfenced open='[' close=']'> <mtable> <mtr> <mtd> <mi>X</mi> </mtd> </mtr> <mtr> <mtd> <msub> <mi>X</mi> <mi>d</mi> </msub> </mtd> </mtr> </mtable> </mfenced> <mo>+</mo> <mfenced open='[' close=']'> <mtable> <mtr> <mtd> <mi>G</mi> </mtd> <mtd> </mtd> </mtr> <mtr> <mtd> </mtd> <mtd> <msub> <mi>G</mi> <mi>d</mi> </msub> </mtd> </mtr> </mtable> </mfenced> <mfenced open='[' close=']'> <mtable> <mtr> <mtd> <mi>W</mi> </mtd> </mtr> <mtr> <mtd> <msub> <mi>W</mi> <mi>d</mi> </msub> </mtd> </mtr> </mtable> </mfenced> </mrow> </math>
wherein the matrix Gd=diag[1 1 0]。FdIs an extended state transfer array, W, of a Doppler velocity measurement systemdIs an amplification process noise array of the Doppler velocity measurement subsystem.
Observed quantity Z3(t) is the speed difference between the DVL and the INS, and the observation equation of the DVL/INS is as follows:
Z 3 ( t ) = V E - V dE V N - V dN = H 3 ( t ) X 3 ( t ) + V 3 ( t )
wherein the measuring array
Figure BDA0000055797420000092
V3(t)=[mVE mVN]TFor white noise observation, K' is the course angle of the ship, VdE、VdNIndicating the eastbound and northbound velocities of the doppler measurements.
And step two, discretizing the state equation and the measurement equation to establish a discrete state space model.
The federal filtering method of the invention adjusts the variable proportion weight to make the action weight of the main filter and the sub-filter adapt to the working condition of the navigation equipment and the effective condition of the navigation data, and the main filter provides feedback information for the sub-filter and has good performance. The variable-scale adaptive federal filter structure applying the method of the invention is shown in fig. 3. The inertial navigation system INS supplies state quantity to a main filter, and the electrostatic gyro monitors ESGM and INS generate observed quantity Z1Sending signals to the first sub-filter, and generating observation quantity Z by GPS and INS of satellite positioning and navigation system2And sending a signal to the second sub-filter, wherein the Doppler velocity measurement systems DVL and INS generate an observed quantity Z3 and send a signal to the third sub-filter, and the signal filtered by the three sub-filters is sent to the main filter. Performing proportional weight calculation according to historical data of an inertial navigation system INS, an electrostatic gyro monitor ESGM, a satellite positioning navigation system GPS and a Doppler velocity measurement system DVL through an AutoRegressive (AR) model to obtain an information weight thetaiAnd then provided to the main filter as a basis for information distribution ratio calculationAfter one filtering period is completed, the main filter provides global estimated values to the INS and the three sub-filters
Figure BDA0000055797420000093
Estimating mean square error PgAnd information distribution ratio betaiTo reset. And obtaining the optimal estimation through continuous time updating and measurement updating.
The state equation and the measurement equation of the main filter and each subsystem are discretized, and the INS state equation, the INS/ESGM measurement equation, the INS/GPS measurement equation, the INS/DVL state equation and the measurement equation are discretized in the embodiment of the invention. The discrete state space model established after discretization of the corresponding state equation and the measurement equation is as follows:
<math> <mfenced open='{' close=''> <mtable> <mtr> <mtd> <msub> <mi>X</mi> <mi>k</mi> </msub> <mo>=</mo> <msub> <mi>&Phi;</mi> <mrow> <mi>k</mi> <mo>/</mo> <mi>k</mi> <mo>-</mo> <mn>1</mn> </mrow> </msub> <msub> <mi>X</mi> <mrow> <mi>k</mi> <mo>-</mo> <mn>1</mn> </mrow> </msub> <mo>+</mo> <msub> <mi>&Gamma;</mi> <mrow> <mi>k</mi> <mo>/</mo> <mi>k</mi> <mo>-</mo> <mn>1</mn> </mrow> </msub> <msub> <mi>W</mi> <mrow> <mi>k</mi> <mo>-</mo> <mn>1</mn> </mrow> </msub> </mtd> </mtr> <mtr> <mtd> <msub> <mi>Z</mi> <mi>k</mi> </msub> <mo>=</mo> <msub> <mi>H</mi> <mi>k</mi> </msub> <msub> <mi>X</mi> <mi>k</mi> </msub> <mo>+</mo> <msub> <mi>V</mi> <mi>k</mi> </msub> </mtd> </mtr> </mtable> </mfenced> </math>
where k represents the index value of the discrete time state, XkRepresenting the state quantity at time k, ZkRepresents the observed quantity at time k, HkA measuring matrix representing the time k, Γk/k-1Is a noise-driven array, Wk-1Is system state noise and process noise covariance matrix Qk=E[WkWk T],VkNoise is measured for the system and a noise covariance matrix R is measuredk=E[VkVk T]. State transition matrix phik/k-1The method is obtained by adopting a step-by-step cumulative discretization method:
<math> <mrow> <msub> <mi>&Phi;</mi> <mrow> <mi>k</mi> <mo>/</mo> <mi>k</mi> <mo>-</mo> <mn>1</mn> </mrow> </msub> <mo>=</mo> <munderover> <mi>&Pi;</mi> <mrow> <mi>i</mi> <mo>-</mo> <mn>1</mn> </mrow> <mi>J</mi> </munderover> <msub> <mi>&Phi;</mi> <mrow> <mrow> <mo>(</mo> <msub> <mi>t</mi> <mrow> <mi>k</mi> <mo>-</mo> <mn>1</mn> </mrow> </msub> <mo>+</mo> <mi>is</mi> <mo>)</mo> </mrow> <mo>/</mo> <mrow> <mo>(</mo> <msub> <mi>t</mi> <mrow> <mi>k</mi> <mo>-</mo> <mn>1</mn> </mrow> </msub> <mo>+</mo> <mrow> <mo>(</mo> <mi>i</mi> <mo>-</mo> <mn>1</mn> <mo>)</mo> </mrow> <mi>s</mi> <mo>)</mo> </mrow> </mrow> </msub> <mo>&ap;</mo> <munderover> <mi>&Pi;</mi> <mrow> <mi>i</mi> <mo>-</mo> <mn>1</mn> </mrow> <mi>J</mi> </munderover> <mrow> <mo>(</mo> <mi>I</mi> <mo>+</mo> <mi>s</mi> <msub> <mi>F</mi> <mrow> <mi>i</mi> <mo>-</mo> <mn>1</mn> </mrow> </msub> <mo>)</mo> </mrow> <mo>&ap;</mo> <mi>I</mi> <mo>+</mo> <mi>s</mi> <munderover> <mi>&Sigma;</mi> <mrow> <mi>i</mi> <mo>=</mo> <mn>1</mn> </mrow> <mi>J</mi> </munderover> <msub> <mi>F</mi> <mrow> <mi>i</mi> <mo>-</mo> <mn>1</mn> </mrow> </msub> </mrow> </math>
where J is T/s, T is sampling time, s is step length divided in sampling time, I is unit array, Fi-1Is the state transition matrix at time i-1.
And step three, obtaining an information weight value through an autoregressive model according to historical data measured by each navigation sensor system before.
The calculation of the information weight of the navigation sensor system is based on a plurality of historical data measured by the navigation sensor system before, and is obtained by the analysis of an autoregressive model (AR model). The following description will be given taking one of the navigation sensor systems as an example.
Let y (τ) be the output sequence of the navigation sensor system, and the AR model of y (τ) is expressed as:
Figure BDA0000055797420000101
wherein τ represents the sequence y (τ)) N denotes the order of the AR model, akIs that the mean value is zero and the variance is sigma2White Gaussian noise of (a)kThe error of the model is represented by,
Figure BDA0000055797420000102
representing AR model coefficients of order N, the power spectral density S of y (tau) can be obtainedy(ω) is:
Figure BDA0000055797420000103
Figure BDA0000055797420000104
representing the AR model coefficients of order τ, e-jωτDenotes the frequency response of the system, ω denotes the angular frequency and j denotes the imaginary unit. y (tau) autocorrelation function array RN+1Comprises the following steps:
R N + 1 = r ^ y ( 0 ) r ^ y ( 1 ) r ^ y ( 2 ) . . . r ^ y ( N ) r ^ y ( 1 ) r ^ y ( 0 ) r ^ y ( 2 ) . . . r ^ y ( N - 1 ) r ^ y ( 2 ) r ^ y ( 1 ) r ^ y ( 0 ) . . . r ^ y ( N - 2 ) . . . . . . . . . . . . . . . r ^ y ( N ) r ^ y ( N - 1 ) r ^ y ( N - 2 ) . . . r ^ y ( 0 )
from the Yule-Waker equation, the autocorrelation function R of y (τ) is knownN+1Can calculate the model coefficient of AR model
Figure BDA0000055797420000106
Suppose that
Figure BDA0000055797420000107
As coefficients of AR model
Figure BDA0000055797420000108
I is equal to 1, 2, … N,
Figure BDA0000055797420000109
is the error power of the AR model of order N,
Figure BDA00000557974200001010
in order to be the predicted minimum error power,
Figure BDA00000557974200001011
according to the properties of the Toeplite matrix, determining the model coefficients by a Levinson-Durbin recursion algorithm:
Figure BDA00000557974200001012
Figure BDA00000557974200001013
the order is obtained by the Final Prediction Error (FPE) rule:
<math> <mrow> <mi>FPE</mi> <mrow> <mo>(</mo> <mi>N</mi> <mo>)</mo> </mrow> <mo>=</mo> <msub> <mover> <mi>&rho;</mi> <mo>^</mo> </mover> <mi>N</mi> </msub> <mfrac> <mrow> <mi>&Xi;</mi> <mo>+</mo> <mrow> <mo>(</mo> <mi>N</mi> <mo>+</mo> <mn>1</mn> <mo>)</mo> </mrow> </mrow> <mrow> <mi>&Xi;</mi> <mo>-</mo> <mrow> <mo>(</mo> <mi>N</mi> <mo>+</mo> <mn>1</mn> <mo>)</mo> </mrow> </mrow> </mfrac> </mrow> </math>
wherein xi is the length of the measurement data.
Thus, the predicted value of the sensor output is obtained:
since the AR model is an all-pole model built on a stationary solution space, the prediction error can reflect the smoothness of the sensor output. The prediction error of each sensor is taken as the information weight thetaiThe smaller the information weight, the smaller the prediction error, and the smoother the navigation sensor output. The information weight is as follows:
<math> <mrow> <msub> <mi>&Theta;</mi> <mi>i</mi> </msub> <mo>=</mo> <msub> <mi>y</mi> <mi>i</mi> </msub> <mrow> <mo>(</mo> <mi>&tau;</mi> <mo>)</mo> </mrow> <mo>-</mo> <msub> <mover> <mi>y</mi> <mo>^</mo> </mover> <mi>i</mi> </msub> <mrow> <mo>(</mo> <mi>&tau;</mi> <mo>)</mo> </mrow> <mrow> <mo>(</mo> <mi>i</mi> <mo>=</mo> <mn>0,1,2,3</mn> <mo>)</mo> </mrow> </mrow> </math>
yi(τ) is the output sequence of the ith navigation sensor,
Figure BDA00000557974200001018
the predicted value of the output sequence of the ith navigation sensor is that i is 0, 1, 2 and 3 respectively correspond to an inertial navigation system, an electrostatic gyro monitor, a satellite positioning navigation system and a Doppler velocity measurement system.
And step four, calculating the information distribution proportion according to the information weight and the information conservation law.
The information distribution proportion selection principle is as follows: the higher the accuracy of the subsystem is, the more reliable the output is, and the more the effect of the estimation value of the main system is reduced, the smaller the information distribution ratio is. The main system is a reference system, the embodiment of the invention is an inertial navigation system, and the subsystems are an electrostatic gyro monitor, a satellite positioning navigation system and a Doppler velocity measurement system. Therefore, the information distribution proportion is proportional to the information weight. Meanwhile, according to information conservation:wherein beta is0Is the primary system weight, betaiAnd n is the number of all subsystems. Therefore, the final weight of each navigation sensor system is obtained as follows:
<math> <mrow> <msub> <mi>&beta;</mi> <mi>i</mi> </msub> <mo>=</mo> <mfrac> <msub> <mi>&Theta;</mi> <mi>i</mi> </msub> <mrow> <munderover> <mi>&Sigma;</mi> <mrow> <mi>i</mi> <mo>=</mo> <mn>0</mn> </mrow> <mi>n</mi> </munderover> <msub> <mi>&Theta;</mi> <mi>i</mi> </msub> </mrow> </mfrac> </mrow> </math>
and fifthly, carrying out federal filtering according to the information distribution proportion to obtain the global optimal estimation.
Firstly, information distribution is obtained:
<math> <mrow> <msub> <mi>P</mi> <mrow> <mi>i</mi> <mo>,</mo> <mi>k</mi> <mo>-</mo> <mn>1</mn> </mrow> </msub> <mo>=</mo> <msubsup> <mi>&beta;</mi> <mi>i</mi> <mrow> <mo>-</mo> <mn>1</mn> </mrow> </msubsup> <msub> <mi>P</mi> <mrow> <mi>k</mi> <mo>-</mo> <mn>1</mn> </mrow> </msub> </mrow> </math>
<math> <mrow> <msub> <mi>Q</mi> <mrow> <mi>i</mi> <mo>,</mo> <mi>k</mi> <mo>-</mo> <mn>1</mn> </mrow> </msub> <mo>=</mo> <msubsup> <mi>&beta;</mi> <mi>i</mi> <mrow> <mo>-</mo> <mn>1</mn> </mrow> </msubsup> <msub> <mi>Q</mi> <mrow> <mi>k</mi> <mo>-</mo> <mn>1</mn> </mrow> </msub> </mrow> </math>
Xi,k-1=Xk-1
using the estimated error variance matrix P of the ith navigation sensor systemk-1By the ratio betaiAssigned as the reset estimation error variance matrix Pi,k-1And the process noise covariance matrix Q of the ith navigation sensor systemk-1Distribution as reset process noise covariance matrix Q by proportion betai,k-1。Xi,k-1Indicating the state quantity of the i-th navigation sensor system, and k indicates the index value of the discrete-time state.
And secondly, updating time:
<math> <mrow> <msub> <mover> <mi>X</mi> <mo>^</mo> </mover> <mrow> <mi>i</mi> <mo>,</mo> <mi>k</mi> <mo>/</mo> <mi>k</mi> <mo>-</mo> <mn>1</mn> </mrow> </msub> <mo>=</mo> <msub> <mi>&Phi;</mi> <mrow> <mi>i</mi> <mo>,</mo> <mi>k</mi> <mo>/</mo> <mi>k</mi> <mo>-</mo> <mn>1</mn> </mrow> </msub> <msub> <mover> <mi>X</mi> <mo>^</mo> </mover> <mrow> <mi>i</mi> <mo>,</mo> <mi>k</mi> <mo>-</mo> <mn>1</mn> </mrow> </msub> </mrow> </math>
<math> <mrow> <msub> <mi>P</mi> <mrow> <mi>i</mi> <mo>,</mo> <mi>k</mi> <mo>/</mo> <mi>k</mi> <mo>-</mo> <mn>1</mn> </mrow> </msub> <mo>=</mo> <msub> <mi>&Phi;</mi> <mrow> <mi>i</mi> <mo>,</mo> <mi>k</mi> <mo>/</mo> <mi>k</mi> <mo>-</mo> <mn>1</mn> </mrow> </msub> <msub> <mi>P</mi> <mrow> <mi>i</mi> <mo>,</mo> <mi>k</mi> <mo>-</mo> <mn>1</mn> </mrow> </msub> <msubsup> <mi>&Phi;</mi> <mrow> <mi>i</mi> <mo>,</mo> <mi>k</mi> <mo>/</mo> <mi>k</mi> <mo>-</mo> <mn>1</mn> </mrow> <mi>T</mi> </msubsup> <mo>+</mo> <msub> <mi>&Gamma;</mi> <mrow> <mi>i</mi> <mo>,</mo> <mi>k</mi> <mo>/</mo> <mi>k</mi> <mo>-</mo> <mn>1</mn> </mrow> </msub> <msub> <mi>Q</mi> <mrow> <mi>i</mi> <mo>,</mo> <mi>k</mi> <mo>-</mo> <mn>1</mn> </mrow> </msub> <msubsup> <mi>&Gamma;</mi> <mrow> <mi>i</mi> <mo>,</mo> <mi>k</mi> <mo>/</mo> <mi>k</mi> <mo>-</mo> <mn>1</mn> </mrow> <mi>T</mi> </msubsup> </mrow> </math>
Figure BDA0000055797420000117
one-step prediction matrix for state of ith navigation sensor system, Pi,k/k-1Predicting mean square error matrix for the ith navigation sensor system in one step, phii,k/k-1For state-transfer arrays of the i-th navigation sensor system, Γi,k/k-1For the noise-driven array of the ith navigation sensor system,
Figure BDA0000055797420000118
is a state quantity Xi,k-1The predicted value of (2).
Then, observation updating is carried out:
K i , k = P i , k / k - 1 H i , k T ( H i , k P i , k / k - 1 H i , k T + R i , k ) - 1
X ^ i , k = X ^ i , k / k - 1 + K i , k ( Z i , k - H i , k X ^ i , k / k - 1 )
P i , k = ( I - K i , k H i , k ) P i , k / k - 1 ( I - K i , k H i , k ) T + K i , k R i , k K i , k T
Ki,kfilter gain for the ith navigation sensor system, Hi,kIs a measurement array of the ith navigation sensor system, Ri,kIs a system of the ith navigation sensor systemStatistical noise covariance matrix, Zi,kIs the observed quantity of the ith navigation sensor system. k represents the index value of the discrete time state.
And finally obtaining a global optimization value:
<math> <mrow> <msub> <mover> <mi>X</mi> <mo>^</mo> </mover> <mi>g</mi> </msub> <mo>=</mo> <msub> <mi>P</mi> <mi>g</mi> </msub> <munderover> <mi>&Sigma;</mi> <mrow> <mi>i</mi> <mo>=</mo> <mn>1</mn> </mrow> <mi>m</mi> </munderover> <msubsup> <mi>P</mi> <mrow> <mi>i</mi> <mo>,</mo> <mi>k</mi> </mrow> <mrow> <mo>-</mo> <mn>1</mn> </mrow> </msubsup> <msub> <mover> <mi>X</mi> <mo>^</mo> </mover> <mrow> <mi>i</mi> <mo>,</mo> <mi>k</mi> </mrow> </msub> </mrow> </math>
<math> <mrow> <msub> <mi>P</mi> <mi>g</mi> </msub> <mo>=</mo> <msup> <mrow> <mo>(</mo> <munderover> <mi>&Sigma;</mi> <mrow> <mi>i</mi> <mo>=</mo> <mn>1</mn> </mrow> <mi>m</mi> </munderover> <msubsup> <mi>P</mi> <mrow> <mi>i</mi> <mo>,</mo> <mi>k</mi> </mrow> <mrow> <mo>-</mo> <mn>1</mn> </mrow> </msubsup> <mo>)</mo> </mrow> <mrow> <mo>-</mo> <mn>1</mn> </mrow> </msup> </mrow> </math>
Figure BDA0000055797420000123
is a global estimate, PgTo estimate the mean square error, m is the number of sub-filters, and m is 3 in the embodiment of the present invention.
And resetting the filtering value and the estimation error variance matrix by using the global optimal solution. Because the upper bound technology of variance is used when the system noise is distributed, all subsystems are not related, and the augmentation system is not coupled. Although the filtering results of the subsystems are suboptimal, the fusion is resynthesized so that the global estimate is optimal.
And performing simulation experiments through the integrated navigation system in the mathematic analysis software matlab environment. The simulation experiment was 8 hours. The following parameters are set, and the variable-ratio federal filtering method provided by the invention is compared with the INS error result. INS constant drift of 0.1 degree/h, drift Markov process time constant Tg300s, adding table zero bias of 0.1mg, adding table Markov process time constant TaIs 1000 s. ESGM white noise was 0.04 °/h. The GPS outputs add randomly distributed position and velocity errors. DVL error 0.4 m/s.
The proportional weight change curve is shown in fig. 4. From fig. 4, the proportional weight change under different working conditions of the sensor can be reflected, and when the INS plays a main role, the weight β of the INS0If the ratio is lower than other ratio values, when the GPS or DVL is used for correction, the ratio weight value is higher than other systems, and the function of the correction system is highlighted. The system error curves are obtained as shown in fig. 5 and fig. 6. Wherein the red solid line represents the error of the underwater multi-sensor combined navigation system of the embodiment of the invention, and the black dotted line represents the INS system error. As shown in fig. 5 and 6, the absolute value of the position error peak of the combined system is 20m, and the absolute value of the velocity error peak is 0.8m/s, and does not diverge. And the INS position error is 500m, the speed error is 5m/s and is continuously increased. It can be seen that the navigation information precision obtained by the federal filtering method provided by the invention is superior to that of a single-sensor system, the system output is kept stable and does not diverge within a certain range, and the weak error accumulation (especially position error) of an inertial navigation system is overcomeAnd the reliability and stability of the system are improved. The position error variance calculated under the condition that the information weight of the navigation sensor is changed continuously, particularly under the condition of large jump of GPS and DVL correction switching is 8.92, and the speed error variance is 0.065, so that the performance of the combined navigation system using the method of the invention is relatively stable. As shown in fig. 7, compared with the integrated navigation system using the conventional federal filtering method, the dynamic performance and the position error amplitude of the integrated navigation system using the variable-ratio adaptive federal filtering method of the present invention have the advantages that the position error amplitude of the integrated navigation system using the method of the present invention changes little, and the method has obvious advantages, and can reflect the situation of the integrated navigation system more truly.
The invention obtains the information weight by analyzing a plurality of forward data of the navigation sensor and adopting time sequence analysis, and then calculates the filter weight, thereby changing the proportion of information distribution and achieving the purposes of improving the precision, reliability and fault tolerance of the system. Compared with other self-adaptive federal filtering, the system has the advantages that the information weight is determined according to the source information of the navigation sensor instead of the estimated value processed by Kalman filtering, so that the determination of the weight is closer to the real situation of the navigation sensor, and the situation of the system is reflected more truly.

Claims (7)

1. A time series analysis-based variable proportion self-adaptive federal filtering method is characterized by comprising the following steps:
firstly, establishing a system state equation and a measurement equation according to an error equation of each navigation sensor system of the integrated navigation system;
discretizing the obtained system state equation and measurement equation, and establishing a discrete state space model corresponding to each navigation sensor system;
thirdly, acquiring an information weight of the navigation sensor system through an autoregressive model according to historical data of the navigation sensor system;
step four, obtaining an information distribution proportion according to the information weight and an information conservation law;
and fifthly, carrying out federal filtering according to the information distribution proportion to obtain global optimal estimation, and finally resetting the filtering value and the estimation error variance matrix by using the global optimal estimation.
2. The variable-proportion self-adaptive federal filtering method based on time series analysis according to claim 1, wherein the integrated navigation system is an underwater multi-sensor integrated navigation system, and is composed of four navigation sensor systems: inertial navigation system INS, static gyro monitor ESGM, satellite positioning navigation system GPS and Doppler velocity measurement system DVL.
3. The time series analysis-based variable-scale adaptive federated filtering method according to claim 1 or 2, wherein the system state equation and the measurement equation of step one include: an INS state equation, an INS/ESGM measurement equation, an INS/GPS measurement equation, an INS/DVL system state equation and a measurement equation;
the INS state equation is as follows:
Figure FDA0000055797410000011
wherein the state quantity
Figure FDA0000055797410000012
δ L, δ λ, δ h represent changes in latitude L, longitude λ, altitude h, respectively, and δ VE、δVN、δVURespectively represent east velocity VEVelocity V in the north directionNVelocity in the direction of the sky VUChange of (phi)E、φN、φURespectively representing pitch angle, roll angle, yaw angle, epsilonbx、εby、εbzIs the component of gyro drift random constant error on three axes, epsilonrx、εry、εrzFor the components of the gyro drift markov process error in the three axes,
Figure FDA0000055797410000013
is the component of the accelerometer error in three axes; process noise array W ═ Wbx wby wbz wgx wgy wgz wax way waz]T,wbx、wby、wbzComponent on three axes of white noise, w, representing the gyro drift random constantgx、wgy、wgzComponent of white noise on three axes, w, representing a gyro-drift Markov processax、way、wazA component of white noise on three axes representing accelerometer error; the three axes are an x axis, a y axis and a z axis; noise driving array
Figure FDA0000055797410000014
Wherein
Figure FDA0000055797410000015
Is a directional cosine matrix; state transition array
Figure FDA0000055797410000016
Wherein,
Figure FDA0000055797410000017
Figure FDA0000055797410000021
Tgx、Tgy、Tgzrespectively representing the components of the gyro drift with respect to time on three axes, Tax、Tay、TazRespectively representing the components of the accelerometer error with respect to time in three axes,
Figure FDA0000055797410000022
wherein f isEFor acceleration in east directionDegree fNIs the north acceleration, fUAcceleration in the direction of the sky, ωieIs the rotational angular velocity of the earth, RMRadius of curvature of meridian, RNThe curvature radius of the prime circle is;
the INS/ESGM measurement equation is as follows: z1(t)=H1(t)X1(t)+V1(t);
Wherein, V1(t)=[m1,m2,m3,m4]TIs zero-mean white Gaussian noise, H, generated by the ESGM position and orientation errors1(t) is a measurement array, the observed quantity Z1(t) is the difference value of the ESGM, the INS and the course information; INS/ESGM State equation X1(t)=X(t);
The INS/GPS measurement equation is as follows:
Figure FDA0000055797410000023
wherein the position quantity is measured
Figure FDA0000055797410000024
Measurement of speedMeasuring array
Figure FDA0000055797410000026
v2(t) the observed quantity Z is a white Gaussian noise array of zero mean value generated by the position error and the azimuth error of the GPS2(t) is the difference between the GPS and INS positions and velocities; l isGIndicating the latitude, λ, of the GPSGIndicates the longitude, h, of the GPSGIndicating the height, V, of the GPSGEIndicating east velocity, V, in GPSGNIndicating north velocity, V, in GPSGURepresenting the speed of the sky in GPS; INS/GPS equation of state X2(t)=X(t);
The INS/DVL system state equation is as follows:
<math> <mrow> <msub> <mover> <mi>X</mi> <mo>&CenterDot;</mo> </mover> <mn>3</mn> </msub> <mrow> <mo>(</mo> <mi>t</mi> <mo>)</mo> </mrow> <mo>=</mo> <mfenced open='[' close=']'> <mtable> <mtr> <mtd> <mover> <mrow> <mi>X</mi> <mrow> <mo>(</mo> <mi>t</mi> <mo>)</mo> </mrow> </mrow> <mo>&CenterDot;</mo> </mover> </mtd> </mtr> <mtr> <mtd> <mover> <mrow> <msub> <mi>X</mi> <mi>d</mi> </msub> <mrow> <mo>(</mo> <mi>t</mi> <mo>)</mo> </mrow> </mrow> <mo>&CenterDot;</mo> </mover> </mtd> </mtr> </mtable> </mfenced> <mo>=</mo> <mfenced open='[' close=']'> <mtable> <mtr> <mtd> <mi>F</mi> <mrow> <mo>(</mo> <mi>t</mi> <mo>)</mo> </mrow> </mtd> <mtd> </mtd> </mtr> <mtr> <mtd> </mtd> <mtd> <msub> <mi>F</mi> <mi>d</mi> </msub> <mrow> <mo>(</mo> <mi>t</mi> <mo>)</mo> </mrow> </mtd> </mtr> </mtable> </mfenced> <mfenced open='[' close=']'> <mtable> <mtr> <mtd> <mi>X</mi> <mrow> <mo>(</mo> <mi>t</mi> <mo>)</mo> </mrow> </mtd> </mtr> <mtr> <mtd> <msub> <mi>X</mi> <mi>d</mi> </msub> <mrow> <mo>(</mo> <mi>t</mi> <mo>)</mo> </mrow> </mtd> </mtr> </mtable> </mfenced> <mo>+</mo> <mfenced open='[' close=']'> <mtable> <mtr> <mtd> <mi>G</mi> <mrow> <mo>(</mo> <mi>t</mi> <mo>)</mo> </mrow> </mtd> <mtd> </mtd> </mtr> <mtr> <mtd> </mtd> <mtd> <msub> <mi>G</mi> <mi>d</mi> </msub> <mrow> <mo>(</mo> <mi>t</mi> <mo>)</mo> </mrow> </mtd> </mtr> </mtable> </mfenced> <mfenced open='[' close=']'> <mtable> <mtr> <mtd> <mi>W</mi> <mrow> <mo>(</mo> <mi>t</mi> <mo>)</mo> </mrow> </mtd> </mtr> <mtr> <mtd> <msub> <mi>W</mi> <mi>d</mi> </msub> <mrow> <mo>(</mo> <mi>t</mi> <mo>)</mo> </mrow> </mtd> </mtr> </mtable> </mfenced> <mo>;</mo> </mrow> </math>
wherein, the noise of the Doppler velocity measurement system drives the array Gd(t)=diag[1 1 0],Fd(t) is the augmented state transition array of the Doppler velocimetry system, Wd(t) noise matrix of the augmentation Process of Doppler velocimetry System, Xd(t) is the Doppler velocimetry system augmented state quantity, Xd=[δVd δΔ δC]T,δVdThe measurement error is a speed deviation error in the Doppler velocity measurement system, delta is a drift angle error in the Doppler velocity measurement system, and delta C is a scale coefficient error in the Doppler velocity measurement system;
the INS/DVL measurement equation is as follows:
Figure FDA0000055797410000031
wherein the measuring array
Figure FDA0000055797410000032
V3(t)=[mVE mVN]TTo observe white noise, VdE、VdNRespectively represents the east speed and the north speed in the Doppler velocity measurement system, and K' is the heading angle of the ship.
4. The time series analysis-based variable-proportion adaptive federated filtering method according to claim 1 or 2, characterized in that the discrete state space model corresponding to each navigation sensor system in step two is:
<math> <mfenced open='{' close=''> <mtable> <mtr> <mtd> <msub> <mi>X</mi> <mi>k</mi> </msub> <mo>=</mo> <msub> <mi>&Phi;</mi> <mrow> <mi>k</mi> <mo>/</mo> <mi>k</mi> <mo>-</mo> <mn>1</mn> </mrow> </msub> <msub> <mi>X</mi> <mrow> <mi>k</mi> <mo>-</mo> <mn>1</mn> </mrow> </msub> <mo>+</mo> <msub> <mi>&Gamma;</mi> <mrow> <mi>k</mi> <mo>/</mo> <mi>k</mi> <mo>-</mo> <mn>1</mn> </mrow> </msub> <msub> <mi>W</mi> <mrow> <mi>k</mi> <mo>-</mo> <mn>1</mn> </mrow> </msub> </mtd> </mtr> <mtr> <mtd> <msub> <mi>Z</mi> <mi>k</mi> </msub> <mo>=</mo> <msub> <mi>H</mi> <mi>k</mi> </msub> <msub> <mi>X</mi> <mi>k</mi> </msub> <mo>+</mo> <msub> <mi>V</mi> <mi>k</mi> </msub> </mtd> </mtr> </mtable> </mfenced> </math>
where k represents the index value of the discrete time state, XkRepresenting the state quantity at time k, ZkRepresents the observed quantity at time k, HkA measuring matrix representing the time k, Γk/k-1Is a noise-driven array, Wk-1Is the system state noise at time k-1 and the process noise covariance matrix Qk=E[WkWk T],VkFor the system at time k, measure noise, and measure noise covariance matrix Rk=E[VkVk T]D, state transition matrix phik/k-1The method is obtained by adopting a step-by-step cumulative discretization method:
<math> <mrow> <msub> <mi>&Phi;</mi> <mrow> <mi>k</mi> <mo>/</mo> <mi>k</mi> <mo>-</mo> <mn>1</mn> </mrow> </msub> <mo>=</mo> <munderover> <mi>&Pi;</mi> <mrow> <mi>i</mi> <mo>-</mo> <mn>1</mn> </mrow> <mi>J</mi> </munderover> <msub> <mi>&Phi;</mi> <mrow> <mrow> <mo>(</mo> <msub> <mi>t</mi> <mrow> <mi>k</mi> <mo>-</mo> <mn>1</mn> </mrow> </msub> <mo>+</mo> <mi>is</mi> <mo>)</mo> </mrow> <mo>/</mo> <mrow> <mo>(</mo> <msub> <mi>t</mi> <mrow> <mi>k</mi> <mo>-</mo> <mn>1</mn> </mrow> </msub> <mo>+</mo> <mrow> <mo>(</mo> <mi>i</mi> <mo>-</mo> <mn>1</mn> <mo>)</mo> </mrow> <mi>s</mi> <mo>)</mo> </mrow> </mrow> </msub> <mo>&ap;</mo> <munderover> <mi>&Pi;</mi> <mrow> <mi>i</mi> <mo>-</mo> <mn>1</mn> </mrow> <mi>J</mi> </munderover> <mrow> <mo>(</mo> <mi>I</mi> <mo>+</mo> <mi>s</mi> <msub> <mi>F</mi> <mrow> <mi>i</mi> <mo>-</mo> <mn>1</mn> </mrow> </msub> <mo>)</mo> </mrow> <mo>&ap;</mo> <mi>I</mi> <mo>+</mo> <mi>s</mi> <munderover> <mi>&Sigma;</mi> <mrow> <mi>i</mi> <mo>=</mo> <mn>1</mn> </mrow> <mi>J</mi> </munderover> <msub> <mi>F</mi> <mrow> <mi>i</mi> <mo>-</mo> <mn>1</mn> </mrow> </msub> </mrow> </math>
where J is T/s, T is sampling time, s is step length divided in sampling time, I is unit array, Fi-1Is the state transition matrix at time i-1.
5. The time series analysis-based variable-proportion adaptive federated filtering method according to claim 1 or 2, wherein the information weight obtained by the autoregressive model in step three is specifically:
first, an autoregressive model of the navigation sensor system is determined:
Figure FDA0000055797410000035
where y (τ) is the output sequence of the navigation sensor system, τ represents the τ -th point of the sequence y (τ), N represents the order of the autoregressive model, akRepresenting the error of the model as mean zero and variance σ2Is highThe white noise of the white noise is generated,
Figure FDA0000055797410000036
representing the coefficients of an Nth order autoregressive model;
then, the autoregressive model coefficients were determined by the Levinson-Durbin recursion algorithm:
Figure FDA0000055797410000037
Figure FDA0000055797410000038
Figure FDA0000055797410000039
wherein,
Figure FDA00000557974100000310
for coefficients of an Nth order autoregressive modelI is equal to 1, 2, … N,
Figure FDA00000557974100000312
is the coefficient of an autoregressive model of order N-1Is determined by the estimated value of (c),
Figure FDA00000557974100000314
is the coefficient of an autoregressive model of order N-1Is determined by the estimated value of (c),
Figure FDA00000557974100000316
to predict the minimum error power of the autoregressive model of order N,to predict the minimum error power of the N-1 order autoregressive model,
Figure FDA00000557974100000318
Figure FDA00000557974100000319
as an intermediate parameter, the parameter is,
Figure FDA00000557974100000320
the 1 st element and the i +1 st element of the Nth row in the autocorrelation function matrix of the output sequence y (tau) of the navigation sensor respectively;
the order is obtained by the final prediction error rule:
<math> <mrow> <mi>FPE</mi> <mrow> <mo>(</mo> <mi>N</mi> <mo>)</mo> </mrow> <mo>=</mo> <msub> <mover> <mi>&rho;</mi> <mo>^</mo> </mover> <mi>N</mi> </msub> <mfrac> <mrow> <mi>&Xi;</mi> <mo>+</mo> <mrow> <mo>(</mo> <mi>N</mi> <mo>+</mo> <mn>1</mn> <mo>)</mo> </mrow> </mrow> <mrow> <mi>&Xi;</mi> <mo>-</mo> <mrow> <mo>(</mo> <mi>N</mi> <mo>+</mo> <mn>1</mn> <mo>)</mo> </mrow> </mrow> </mfrac> </mrow> </math>
wherein xi is the length of the measured data,
Figure FDA0000055797410000042
error for AR model of order NA differential power;
and further obtaining a predicted value of the output sequence of the navigation sensor system:
Figure FDA0000055797410000043
taking the prediction error of each navigation sensor system as an information weight thetai
<math> <mrow> <msub> <mi>&Theta;</mi> <mi>i</mi> </msub> <mo>=</mo> <msub> <mi>y</mi> <mi>i</mi> </msub> <mrow> <mo>(</mo> <mi>&tau;</mi> <mo>)</mo> </mrow> <mo>-</mo> <msub> <mover> <mi>y</mi> <mo>^</mo> </mover> <mi>i</mi> </msub> <mrow> <mo>(</mo> <mi>&tau;</mi> <mo>)</mo> </mrow> <mrow> <mo>(</mo> <mi>i</mi> <mo>=</mo> <mn>0,1,2,3</mn> <mo>)</mo> </mrow> </mrow> </math>
yi(τ) is the output sequence of the ith navigation sensor,
Figure FDA0000055797410000045
the predicted value of the output sequence of the ith navigation sensor is that i is 0, 1, 2 and 3 respectively correspond to an inertial navigation system, an electrostatic gyro monitor, a satellite positioning navigation system and a Doppler velocity measurement system.
6. The time series analysis-based variable-proportion adaptive federal filtering method as claimed in claim 1 or 2, wherein the information distribution proportion in the step four is proportional to the information weight, and the sum of the weights of the navigation sensor systems is equal to
Figure FDA0000055797410000046
Wherein beta is0Is the primary system weight, betaiThe weight of each subsystem is obtained, n is the number of all subsystems, the main system is an inertial navigation system, the subsystems are an electrostatic gyro monitor, a satellite positioning navigation system and a Doppler velocity measurement system, and finally the weight of each navigation sensor system is obtained as follows:
<math> <mrow> <msub> <mi>&beta;</mi> <mi>i</mi> </msub> <mo>=</mo> <mfrac> <msub> <mi>&Theta;</mi> <mi>i</mi> </msub> <mrow> <munderover> <mi>&Sigma;</mi> <mrow> <mi>i</mi> <mo>=</mo> <mn>0</mn> </mrow> <mi>n</mi> </munderover> <msub> <mi>&Theta;</mi> <mi>i</mi> </msub> </mrow> </mfrac> </mrow> </math>
wherein, i is 0, 1, 2, 3 respectively correspond inertial navigation system, static top monitor, satellite positioning navigation system and doppler speed measuring system.
7. The time series analysis-based variable-proportion adaptive federated filtering method according to claim 1 or 2, characterized in that the global optimum estimation of step five is obtained specifically by the following process:
first, information allocation is obtained:
<math> <mrow> <msub> <mi>P</mi> <mrow> <mi>i</mi> <mo>,</mo> <mi>k</mi> <mo>-</mo> <mn>1</mn> </mrow> </msub> <mo>=</mo> <msubsup> <mi>&beta;</mi> <mi>i</mi> <mrow> <mo>-</mo> <mn>1</mn> </mrow> </msubsup> <msub> <mi>P</mi> <mrow> <mi>k</mi> <mo>-</mo> <mn>1</mn> </mrow> </msub> </mrow> </math>
<math> <mrow> <msub> <mi>Q</mi> <mrow> <mi>i</mi> <mo>,</mo> <mi>k</mi> <mo>-</mo> <mn>1</mn> </mrow> </msub> <mo>=</mo> <msubsup> <mi>&beta;</mi> <mi>i</mi> <mrow> <mo>-</mo> <mn>1</mn> </mrow> </msubsup> <msub> <mi>Q</mi> <mrow> <mi>k</mi> <mo>-</mo> <mn>1</mn> </mrow> </msub> </mrow> </math>
Xi,k-1=Xk-1
wherein, Pi,k-1An estimation error variance matrix P representing the ith navigation sensor systemk-1By the ratio betaiWeighted estimation error variance matrix, Qi,k-1Covariance matrix Q representing process noise for the ith navigation sensor systemk-1By the ratio betaiCovariance matrix of process noise after weight distribution, Xi,k-1An index value representing a state quantity of the i-th navigation sensor system, k representing a discrete-time state; the i is 0, 1, 2 and 3 respectively corresponding to an inertial navigation system, an electrostatic gyro monitor, a satellite positioning navigation system and a Doppler velocity measurement system;
and then time updating is carried out:
<math> <mrow> <msub> <mover> <mi>X</mi> <mo>^</mo> </mover> <mrow> <mi>i</mi> <mo>,</mo> <mi>k</mi> <mo>/</mo> <mi>k</mi> <mo>-</mo> <mn>1</mn> </mrow> </msub> <mo>=</mo> <msub> <mi>&Phi;</mi> <mrow> <mi>i</mi> <mo>,</mo> <mi>k</mi> <mo>/</mo> <mi>k</mi> <mo>-</mo> <mn>1</mn> </mrow> </msub> <msub> <mover> <mi>X</mi> <mo>^</mo> </mover> <mrow> <mi>i</mi> <mo>,</mo> <mi>k</mi> <mo>-</mo> <mn>1</mn> </mrow> </msub> </mrow> </math>
<math> <mrow> <msub> <mi>P</mi> <mrow> <mi>i</mi> <mo>,</mo> <mi>k</mi> <mo>/</mo> <mi>k</mi> <mo>-</mo> <mn>1</mn> </mrow> </msub> <mo>=</mo> <msub> <mi>&Phi;</mi> <mrow> <mi>i</mi> <mo>,</mo> <mi>k</mi> <mo>/</mo> <mi>k</mi> <mo>-</mo> <mn>1</mn> </mrow> </msub> <msub> <mi>P</mi> <mrow> <mi>i</mi> <mo>,</mo> <mi>k</mi> <mo>-</mo> <mn>1</mn> </mrow> </msub> <msubsup> <mi>&Phi;</mi> <mrow> <mi>i</mi> <mo>,</mo> <mi>k</mi> <mo>/</mo> <mi>k</mi> <mo>-</mo> <mn>1</mn> </mrow> <mi>T</mi> </msubsup> <mo>+</mo> <msub> <mi>&Gamma;</mi> <mrow> <mi>i</mi> <mo>,</mo> <mi>k</mi> <mo>/</mo> <mi>k</mi> <mo>-</mo> <mn>1</mn> </mrow> </msub> <msub> <mi>Q</mi> <mrow> <mi>i</mi> <mo>,</mo> <mi>k</mi> <mo>-</mo> <mn>1</mn> </mrow> </msub> <msubsup> <mi>&Gamma;</mi> <mrow> <mi>i</mi> <mo>,</mo> <mi>k</mi> <mo>/</mo> <mi>k</mi> <mo>-</mo> <mn>1</mn> </mrow> <mi>T</mi> </msubsup> </mrow> </math>
wherein,
Figure FDA00000557974100000412
one-step prediction matrix for state of ith navigation sensor system, Pi,k/k-1Predicting mean square error matrix for the ith navigation sensor system in one step, phii,k/k-1For state-transfer arrays of the i-th navigation sensor system, Γi,k/k-1For the noise-driven array of the ith navigation sensor system,
Figure FDA0000055797410000051
is a state quantity Xi,k-1The predicted value of (2);
then, observation updating is carried out:
K i , k = P i , k / k - 1 H i , k T ( H i , k P i , k / k - 1 H i , k T + R i , k ) - 1
X ^ i , k = X ^ i , k / k - 1 + K i , k ( Z i , k - H i , k X ^ i , k / k - 1 )
P i , k = ( I - K i , k H i , k ) P i , k / k - 1 ( I - K i , k H i , k ) T + K i , k R i , k K i , k T
wherein, Ki,kFilter gain for the ith navigation sensor system, Hi,kIs a measurement array of the ith navigation sensor system, Ri,kIs the system measurement noise covariance matrix, Z, of the ith navigation sensor systemi,kIs the observed quantity of the ith navigation sensor system;
and finally obtaining global optimization estimation:
<math> <mrow> <msub> <mover> <mi>X</mi> <mo>^</mo> </mover> <mi>g</mi> </msub> <mo>=</mo> <msub> <mi>P</mi> <mi>g</mi> </msub> <munderover> <mi>&Sigma;</mi> <mrow> <mi>i</mi> <mo>=</mo> <mn>1</mn> </mrow> <mi>m</mi> </munderover> <msubsup> <mi>P</mi> <mrow> <mi>i</mi> <mo>,</mo> <mi>k</mi> </mrow> <mrow> <mo>-</mo> <mn>1</mn> </mrow> </msubsup> <msub> <mover> <mi>X</mi> <mo>^</mo> </mover> <mrow> <mi>i</mi> <mo>,</mo> <mi>k</mi> </mrow> </msub> </mrow> </math>
<math> <mrow> <msub> <mi>P</mi> <mi>g</mi> </msub> <mo>=</mo> <msup> <mrow> <mo>(</mo> <munderover> <mi>&Sigma;</mi> <mrow> <mi>i</mi> <mo>=</mo> <mn>1</mn> </mrow> <mi>m</mi> </munderover> <msubsup> <mi>P</mi> <mrow> <mi>i</mi> <mo>,</mo> <mi>k</mi> </mrow> <mrow> <mo>-</mo> <mn>1</mn> </mrow> </msubsup> <mo>)</mo> </mrow> <mrow> <mo>-</mo> <mn>1</mn> </mrow> </msup> </mrow> </math>
wherein,
Figure FDA0000055797410000057
is a global estimate, PgTo estimate the mean square error, m is the number of filters.
CN2011100958407A 2011-04-18 2011-04-18 Time series analysis-based variable proportion self-adaptive federal filtering method Pending CN102252677A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN2011100958407A CN102252677A (en) 2011-04-18 2011-04-18 Time series analysis-based variable proportion self-adaptive federal filtering method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN2011100958407A CN102252677A (en) 2011-04-18 2011-04-18 Time series analysis-based variable proportion self-adaptive federal filtering method

Publications (1)

Publication Number Publication Date
CN102252677A true CN102252677A (en) 2011-11-23

Family

ID=44980094

Family Applications (1)

Application Number Title Priority Date Filing Date
CN2011100958407A Pending CN102252677A (en) 2011-04-18 2011-04-18 Time series analysis-based variable proportion self-adaptive federal filtering method

Country Status (1)

Country Link
CN (1) CN102252677A (en)

Cited By (23)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102830415A (en) * 2012-08-31 2012-12-19 西北工业大学 Quick integrated navigation method based on Carlson filtering algorithm for reducing dimensionality
CN102853848A (en) * 2012-08-03 2013-01-02 南京航空航天大学 Inertial device error simulation method based on positioning accuracy of strapdown inertial navigation system
CN103454652A (en) * 2012-05-31 2013-12-18 长沙威佳电子科技有限公司 High-precision GNSS system with multiple or double GNSS receiving systems
CN105091907A (en) * 2015-07-28 2015-11-25 东南大学 Estimation method of installation error of DVL direction in SINS and DVL combination
CN105758401A (en) * 2016-05-14 2016-07-13 中卫物联成都科技有限公司 Integrated navigation method and equipment based on multisource information fusion
CN106885572A (en) * 2015-12-15 2017-06-23 中国电信股份有限公司 Using the assisted location method and system of time series forecasting
CN106908095A (en) * 2017-01-09 2017-06-30 浙江大学 A kind of extraction of sensing data alignment features and appraisal procedure
CN107831774A (en) * 2017-09-20 2018-03-23 南京邮电大学 Rigid body attitude of satellite system passive fault tolerant control method based on adaptive PI control
CN108501768A (en) * 2018-03-29 2018-09-07 南京航空航天大学 A kind of two-wheeled method for control speed based on Z axis gyroscope and difference in wheel
CN108594272A (en) * 2018-08-01 2018-09-28 北京航空航天大学 A kind of anti-deceptive interference Combinated navigation method based on Robust Kalman Filter
CN108759838A (en) * 2018-05-23 2018-11-06 安徽科技学院 Mobile robot multiple sensor information amalgamation method based on order Kalman filter
CN109737959A (en) * 2019-03-20 2019-05-10 哈尔滨工程大学 A kind of polar region Multi-source Information Fusion air navigation aid based on federated filter
CN110471096A (en) * 2019-09-11 2019-11-19 哈尔滨工程大学 A kind of distribution seabed flight node group localization method
CN110646825A (en) * 2019-10-22 2020-01-03 北京新能源汽车技术创新中心有限公司 Positioning method, positioning system and automobile
CN111854728A (en) * 2020-05-20 2020-10-30 哈尔滨工程大学 Fault-tolerant filtering method based on generalized relative entropy
CN112269200A (en) * 2020-10-14 2021-01-26 北京航空航天大学 Inertial/satellite system self-adaptive hybrid correction method based on observability degree
CN112325876A (en) * 2020-10-20 2021-02-05 北京嘀嘀无限科技发展有限公司 Positioning method, positioning device, electronic equipment and readable storage medium
CN113640780A (en) * 2021-08-23 2021-11-12 哈尔滨工程大学 Improved federal filtering-based underwater AUV sensor time registration method
CN114624754A (en) * 2022-03-28 2022-06-14 智己汽车科技有限公司 Automatic driving positioning device and method for space-time positioning and near-field compensation
CN114710252A (en) * 2022-03-17 2022-07-05 陕西国防工业职业技术学院 Filtering method and system for precise clock synchronization
CN115824225A (en) * 2023-02-23 2023-03-21 中国人民解放军海军潜艇学院 Course error compensation method and device for electrostatic gyro monitor
CN117096956A (en) * 2023-10-20 2023-11-21 江苏力普电子科技有限公司 Harmonic control method and system of high-voltage frequency converter
CN117553864A (en) * 2024-01-12 2024-02-13 北京宏数科技有限公司 Sensor acquisition method and system based on big data

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101762272A (en) * 2010-01-18 2010-06-30 哈尔滨工业大学 Deep space autonomous navigation method based on observability degree analysis
CN101865693A (en) * 2010-06-03 2010-10-20 天津职业技术师范大学 Multi-sensor combined navigation system for aviation

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101762272A (en) * 2010-01-18 2010-06-30 哈尔滨工业大学 Deep space autonomous navigation method based on observability degree analysis
CN101865693A (en) * 2010-06-03 2010-10-20 天津职业技术师范大学 Multi-sensor combined navigation system for aviation

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
GANNAN YUAN等: "A variable proportion adaptive federal Kalman filter for INS/ESGM/GPS/DVL integrated navigation system", 《IEEE CONFERENCE PUBLICATIONS:2011 FOURTH INTERNATIONAL JOINT CONFERENCE ON COMPUTATIONAL SCIENCES AND OPTIMIZATION (CSO 2011)》 *
徐田来等: "基于置信度加权的组合导航数据融合算法", 《航空学报》 *

Cited By (37)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103454652A (en) * 2012-05-31 2013-12-18 长沙威佳电子科技有限公司 High-precision GNSS system with multiple or double GNSS receiving systems
CN102853848A (en) * 2012-08-03 2013-01-02 南京航空航天大学 Inertial device error simulation method based on positioning accuracy of strapdown inertial navigation system
CN102853848B (en) * 2012-08-03 2015-03-25 南京航空航天大学 Inertial device error simulation method based on positioning accuracy of strapdown inertial navigation system
CN102830415B (en) * 2012-08-31 2014-03-12 西北工业大学 Quick integrated navigation method based on Carlson filtering algorithm for reducing dimensionality
CN102830415A (en) * 2012-08-31 2012-12-19 西北工业大学 Quick integrated navigation method based on Carlson filtering algorithm for reducing dimensionality
CN105091907B (en) * 2015-07-28 2017-11-28 东南大学 DVL orientation alignment error method of estimation in SINS/DVL combinations
CN105091907A (en) * 2015-07-28 2015-11-25 东南大学 Estimation method of installation error of DVL direction in SINS and DVL combination
CN106885572B (en) * 2015-12-15 2019-06-21 中国电信股份有限公司 Utilize the assisted location method and system of time series forecasting
CN106885572A (en) * 2015-12-15 2017-06-23 中国电信股份有限公司 Using the assisted location method and system of time series forecasting
CN105758401A (en) * 2016-05-14 2016-07-13 中卫物联成都科技有限公司 Integrated navigation method and equipment based on multisource information fusion
CN106908095A (en) * 2017-01-09 2017-06-30 浙江大学 A kind of extraction of sensing data alignment features and appraisal procedure
CN107831774A (en) * 2017-09-20 2018-03-23 南京邮电大学 Rigid body attitude of satellite system passive fault tolerant control method based on adaptive PI control
CN108501768A (en) * 2018-03-29 2018-09-07 南京航空航天大学 A kind of two-wheeled method for control speed based on Z axis gyroscope and difference in wheel
CN108759838A (en) * 2018-05-23 2018-11-06 安徽科技学院 Mobile robot multiple sensor information amalgamation method based on order Kalman filter
CN108594272A (en) * 2018-08-01 2018-09-28 北京航空航天大学 A kind of anti-deceptive interference Combinated navigation method based on Robust Kalman Filter
CN109737959A (en) * 2019-03-20 2019-05-10 哈尔滨工程大学 A kind of polar region Multi-source Information Fusion air navigation aid based on federated filter
CN110471096A (en) * 2019-09-11 2019-11-19 哈尔滨工程大学 A kind of distribution seabed flight node group localization method
CN110646825A (en) * 2019-10-22 2020-01-03 北京新能源汽车技术创新中心有限公司 Positioning method, positioning system and automobile
WO2021077622A1 (en) * 2019-10-22 2021-04-29 北京新能源汽车技术创新中心有限公司 Positioning method, positioning system, and automobile
US11988757B2 (en) 2019-10-22 2024-05-21 Beijing National New Energy Vehicle Technology Innovation Center Co., Ltd. Positioning method, positioning system and automobile
CN110646825B (en) * 2019-10-22 2022-01-25 北京国家新能源汽车技术创新中心有限公司 Positioning method, positioning system and automobile
CN111854728A (en) * 2020-05-20 2020-10-30 哈尔滨工程大学 Fault-tolerant filtering method based on generalized relative entropy
CN111854728B (en) * 2020-05-20 2022-12-13 哈尔滨工程大学 Fault-tolerant filtering method based on generalized relative entropy
CN112269200A (en) * 2020-10-14 2021-01-26 北京航空航天大学 Inertial/satellite system self-adaptive hybrid correction method based on observability degree
CN112269200B (en) * 2020-10-14 2024-05-17 北京航空航天大学 Inertial/satellite system self-adaptive hybrid correction method based on observability
CN112325876A (en) * 2020-10-20 2021-02-05 北京嘀嘀无限科技发展有限公司 Positioning method, positioning device, electronic equipment and readable storage medium
CN113640780A (en) * 2021-08-23 2021-11-12 哈尔滨工程大学 Improved federal filtering-based underwater AUV sensor time registration method
CN113640780B (en) * 2021-08-23 2023-08-08 哈尔滨工程大学 Underwater AUV sensor time registration method based on improved federal filtering
CN114710252B (en) * 2022-03-17 2023-05-16 陕西国防工业职业技术学院 Filtering method and system for precise clock synchronization
CN114710252A (en) * 2022-03-17 2022-07-05 陕西国防工业职业技术学院 Filtering method and system for precise clock synchronization
CN114624754B (en) * 2022-03-28 2024-05-14 智己汽车科技有限公司 Automatic driving positioning device and method for space-time positioning and near-field compensation
CN114624754A (en) * 2022-03-28 2022-06-14 智己汽车科技有限公司 Automatic driving positioning device and method for space-time positioning and near-field compensation
CN115824225A (en) * 2023-02-23 2023-03-21 中国人民解放军海军潜艇学院 Course error compensation method and device for electrostatic gyro monitor
CN117096956A (en) * 2023-10-20 2023-11-21 江苏力普电子科技有限公司 Harmonic control method and system of high-voltage frequency converter
CN117096956B (en) * 2023-10-20 2023-12-26 江苏力普电子科技有限公司 Harmonic control method and system of high-voltage frequency converter
CN117553864A (en) * 2024-01-12 2024-02-13 北京宏数科技有限公司 Sensor acquisition method and system based on big data
CN117553864B (en) * 2024-01-12 2024-04-19 北京宏数科技有限公司 Sensor acquisition method and system based on big data

Similar Documents

Publication Publication Date Title
CN102252677A (en) Time series analysis-based variable proportion self-adaptive federal filtering method
CN109324330B (en) USBL/SINS tight combination navigation positioning method based on mixed derivative-free extended Kalman filtering
Davari et al. An asynchronous adaptive direct Kalman filter algorithm to improve underwater navigation system performance
Grenon et al. Enhancement of the inertial navigation system for the Morpheus autonomous underwater vehicles
CN102829777B (en) Autonomous underwater vehicle combined navigation system and method
CN103744098B (en) AUV integrated navigation systems based on SINS/DVL/GPS
CN109443379A (en) A kind of underwater anti-shake dynamic alignment methods of the SINS/DVL of deep-sea submariner device
CN101949703B (en) Strapdown inertial/satellite combined navigation filtering method
CN109000640B (en) Vehicle GNSS/INS integrated navigation method based on discrete grey neural network model
CN103743395B (en) The compensation method of time delay in a kind of inertia-gravity coupling integrated navigation system
CN112505737B (en) GNSS/INS integrated navigation method
CN109141436A (en) The improved Unscented kalman filtering algorithm application method in integrated navigation under water
CN102353378B (en) Adaptive federal filtering method of vector-form information distribution coefficients
CN102818567A (en) AUV (autonomous underwater vehicle) integrated navigation method integrating Kalman filtering and particle filtering
Xu et al. A novel self-adapting filter based navigation algorithm for autonomous underwater vehicles
CN103076026B (en) A kind of method determining Doppler log range rate error in SINS
Hegrenæs et al. Validation of a new generation DVL for underwater vehicle navigation
CN105091907A (en) Estimation method of installation error of DVL direction in SINS and DVL combination
CN110567454A (en) SINS/DVL tightly-combined navigation method in complex environment
CN106441291A (en) Integrated navigation system and method based on strong-tracking SDRE filtering
CN104061930B (en) A kind of air navigation aid based on strap-down inertial guidance and Doppler log
Zorina et al. Enhancement of INS/GNSS integration capabilities for aviation-related applications
Geng et al. Hybrid derivative-free EKF for USBL/INS tightly-coupled integration in AUV
Shabani et al. Improved underwater integrated navigation system using unscented filtering approach
Zhang et al. An underwater SINS/DVL integrated system outlier interference suppression method based on LSTM-EEWKF

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C02 Deemed withdrawal of patent application after publication (patent law 2001)
WD01 Invention patent application deemed withdrawn after publication

Application publication date: 20111123