CN102252672B - Nonlinear filtering method for underwater navigation - Google Patents

Nonlinear filtering method for underwater navigation Download PDF

Info

Publication number
CN102252672B
CN102252672B CN201110108952A CN201110108952A CN102252672B CN 102252672 B CN102252672 B CN 102252672B CN 201110108952 A CN201110108952 A CN 201110108952A CN 201110108952 A CN201110108952 A CN 201110108952A CN 102252672 B CN102252672 B CN 102252672B
Authority
CN
China
Prior art keywords
mrow
msub
mfrac
msup
partiald
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
CN201110108952A
Other languages
Chinese (zh)
Other versions
CN102252672A (en
Inventor
赵玉新
陈立娟
李刚
刘厂
张振兴
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Harbin Engineering University
Original Assignee
Harbin Engineering University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Harbin Engineering University filed Critical Harbin Engineering University
Priority to CN201110108952A priority Critical patent/CN102252672B/en
Publication of CN102252672A publication Critical patent/CN102252672A/en
Application granted granted Critical
Publication of CN102252672B publication Critical patent/CN102252672B/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Complex Calculations (AREA)

Abstract

The invention discloses a nonlinear filtering method for underwater navigation, and is used to solve a weak solution from a random differential model of underwater terrain navigation. According to the invention, segmental approach to a weak solution of a navigation random differential model is performed by using a cubic spline interpolation function so as to obtain a prior probability density function of a state, wherein difficult problems for constructing a cubic spline interpolation point are solved by using a forward Kolmogorov equation, and a posterior probability density function of the state is obtained by a Bayes formula. The method of the invention makes full use of the cubic spline interpolation, has the characteristics of simple calculation, good stability, guaranteed convergence, easy realization on computers, and guaranteed smoothness of a whole curve, can track various possibility of the system state better, has extremely high estimation accuracy, convergence speed, and convergence smoothness, and can track the change of the system state well.

Description

Nonlinear filtering method for underwater navigation
Technical Field
The invention relates to the field of underwater terrain aided navigation research, in particular to a nonlinear filtering method for underwater navigation, which approaches a weak solution of a navigation random differential model through a piecewise function under a nonlinear system with non-Gaussian noise.
Background
The precise navigation technology is one of the key technologies for ensuring the effective utilization and safe recovery of the underwater vehicle. Currently, most of underwater terrain aided navigation systems adopt a comprehensive navigation technology which mainly combines inertial navigation and a doppler log and is assisted by other correction information such as a GPS, gravity, terrain and the like. The filtering is an operation of filtering out specific band frequencies in signals, and is an important measure for suppressing and preventing interference, but the application of the traditional filtering method is greatly limited due to the fact that the underwater working environment is very complex and a plurality of uncertain factors exist.
The underwater topography-assisted navigation process is essentially an optimal estimation problem. Mr. dung divides the problem to be solved by the optimal estimation theory into three categories: 1. the estimation problem of model parameters; 2. estimation problems of time series, signals or states; 3. and (4) information fusion estimation problem. The terrain navigation problem belongs to the second category of problems. The development of the solution method is consistent with the development of the optimal estimation theory. The optimal estimation is subjected to three development stages of least square method, Kalman filtering and Bayesian estimation filtering:
(1) the most basic method for optimal estimation is a least square method, the estimation method only needs to establish a measurement model, the basic principle of the method is that the sum of squares of errors of an actual observation value and a model calculation value is minimum, the variance of a measurement error is only guaranteed to be minimum, batch processing is carried out on measurement data, and real-time processing is not facilitated.
(2) A Kalman (Kalman) filtering method solves the problem of state estimation based on a state space theory and a projective theory. The Kalman filtering adopts recursion calculation and is suitable for being realized by a computer. For a linear system with gaussian distributed noise, a recursive minimum mean square error estimate of the system state can be obtained. Kalman filtering has been widely used in various fields such as navigation guidance, target tracking, signal processing, control, and the like. The first Filtering theory proposed by Kalman was only applicable to linear systems, and Bucy et al propose Extended Kalman Filtering (EKF), which is further applied to the nonlinear field (R S Bucy, K D Senne. digital synthesis of nonlinear filters [ J ]. Automatica, 1971, 7: 287-298). The basic idea of EKF is to linearize the nonlinear system and then perform kalman filtering, so EKF is a sub-optimal filter. Based on the idea that the approximation of the state-fitting gaussian distribution is much simpler than linearizing the non-linear function, Julier et al propose Unscented Kalman Filtering (UKF) (see s.j. Julier, j.k. uhlmann. non-transformed responses [ C ] Proceedings of the IEEE American control conference, Albuquerque, NM, USA, 1997, 4: 2369 @ 2373), considering that the probability density distribution of states can be described by a sigma point that captures the mean and variance of the density function, obtaining the sigma points and their weights by ut (Unscented transform) transformation, and then weighting and summing the sigma points and variances by the state equations transferred by the system. Specific references may be found in: tone L, Herman B, Joris D s. article Kalman Filters for nonliner systems published in 2004: a compliance of performance.
The existing Kalman filtering, EKF and UKF filtering are only suitable for a system with Gaussian distribution noise, and all aim to obtain a second moment of system state probability distribution, and the estimation precision is not very high. In a specific practical application, the actual distribution of the system state probability may not be normal distribution, and the filtering method is adopted to describe the probability density distribution of the state by obtaining the mean and the variance of the density function, however, the posterior probability density of the system state based on the measurement information can represent the actual distribution of the state most, so that the system state probability density function is directly solved to further clarify various possibilities of the system state.
(3) Based on a filtering method of Bayesian (Bayesian) estimation, the posterior probability density of the system state based on the measurement information is solved. The difficulty with bayesian estimation is solving the prior probability density function of the state and performing the integration operation. Only a few systems can obtain the optimal solution of bayesian estimation, for example, linear gaussian system can be solved by Kalman filtering, most systems are solved by approximation or approximation, for example, particle filtering (particle Filter) method is to approximate the probability density of a state by a set of particles (random samples) with weights through a state transfer equation, and convert the integral operation into the weighted sum of finite sample points.
Cubic spline interpolation algorithms also fall into the category of bayesian-based estimation. The literature: the invention discloses a Chinese patent application 'cubic spline function-based interpolation method' with publication number CN101226630 in 2008-7-23, which applies cubic spline interpolation algorithm to realize an image scaling method of edge adaptive processing and provides a cubic spline function-based adaptive interpolation method with smooth image and clear outline after interpolation. In recent years, the application of the particle filter algorithm in bayesian estimation is very wide, and the document is as follows: on a wish-sharing basis, Zhao faithfully published in 2006 6.6 "particle filter and application review thereof in navigation systems", which proposes that the traditional extended Kalman filtering method requires approximate linearization of a nonlinear system and may introduce a large model error, but the application of particle filter can solve the problem, and the particle filter algorithm can be directly applied to the nonlinear model of the original system without considering whether system noise and measurement noise are white Gaussian noise, so that a good filtering effect can be obtained. The literature introduces the theoretical basis of particle filtering-Bayes estimation and a specific implementation manner-Monte Carlo method; the degradation problem of particle filtering is pointed out, and importance sampling and resampling methods are introduced into an algorithm from the reduction of the degradation phenomenon; finally, some applications of particle filtering in navigation systems are described. However, aiming at the degradation problem of particle filtering, it is difficult to maintain higher convergence and smoothness, and how to better track the change of the system state and improve the distribution accuracy is a problem to be solved in the field of solving the random differential model of underwater terrain navigation, but a method and an introduction for solving the problem are not given in document 3.
Disclosure of Invention
The invention aims to solve the problem that the weak solution of the weak solution equation of a navigation random differential model established by taking an underwater terrain navigation system as a background is difficult to solve, and provides a nonlinear filtering method for underwater navigation.
The invention relates to a nonlinear filtering method for underwater navigation, which comprises the steps of firstly establishing a state differential and measurement discrete equation for the underwater navigation, obtaining a weak solution equation for representing the motion state of a submersible vehicle, and then estimating the motion state of the submersible vehicle by approximating the weak solution equation through the following steps:
step one, the conditional probability of the initial time is used for obtaining the probability densityDegree as normal distribution, and projection interval [ a, b ] is selected]And a segmentation interval a ═ x0<x1<x2<…<xnB, constructing a cubic spline interpolation function pi(x):
p i ( x ) = M i - 1 ( x i - x ) 3 6 h i + M i ( x - x i - 1 ) 3 6 h i + A i ( x - x i - 1 ) + B i , x∈[xi-1,xi],i=1,2,…,n
Wherein A isi,BiAs an integral constant with respect to time, coefficient Mi=p″(xi),p″(xi) Interpolating the function p (x) at node x for a cubic splineiThe second derivative of (a), n represents the number of segment intervals and is an integer greater than 0, hiDenotes the length of the i-th segmentation interval, hi=xi-xi-1
Step two, obtaining the value of an interpolation point through a posterior probability density function of the previous moment, constructing the interpolation point of a cubic spline interpolation function of the current moment by utilizing a forward Kolmogorov equation, and substituting the interpolation point into a formula (1) to obtain a formula Mi,Mi-1Constant A of the expressioni,BiThereby obtaining the signal containing only the prior coefficient Mi,Mi-1A prior probability density function of;
step three, listing n +1 equation sets by utilizing the first-order continuous derivative and boundary conditions of the cubic spline interpolation function at each node, and solving the prior coefficient M by using a pursuit methodiA priori coefficient MiSubstituting formula (1) to obtain a prior probability density function;
determining likelihood probability density according to the measurement information of the current moment, and substituting the prior probability density and the likelihood probability density into a Bayes formula to obtain the posterior probability density of the motion state of the current submersible vehicle;
step five, judging whether the simulation time is up, if not, turning to the step two to continue execution; if the simulation time is up, the simulation result is output, and the simulation is finished.
The invention has the advantages and positive effects that: (1) the filtering method increases the edge sharpness on the basis of ensuring the image smoothness, and simultaneously effectively eliminates the problem of virtual images at two sides of the edge caused by mutual interference of discontinuous state pixels at two sides of the image edge in the original cubic spline interpolation function interpolation method; (2) the filtering method of the invention fully utilizes the characteristics of cubic spline interpolation, constructs cubic spline interpolation conditions through a forward Kolmogorov equation, performs piecewise approximation on the prior probability density function of the state in a function space, obtains the posterior probability density of the system state through a Bayesian formula, has very high estimation precision, convergence speed and convergence smoothness, and can well track the change of the system state.
Drawings
FIG. 1 is a schematic flow chart of a filtering method of the present invention;
in fig. 2, (a) is a schematic diagram of probability density of the moving state of the submersible vehicle at the 1 st second in the filtering method of the present invention; (b) the probability density diagram of the moving state of the submersible vehicle at the 2 nd second is shown by the filtering method; (c) the probability density diagram of the moving state of the submersible vehicle at the 31 st second by the filtering method is shown; (d) is a schematic diagram of the probability density of the moving state of the submersible vehicle at the 32 th second by the filtering method; (e) is a schematic diagram of the probability density of the moving state of the submersible vehicle at the 33 th second by the filtering method; (f) is a schematic diagram of the probability density of the moving state of the submersible vehicle at the 50 th second by the filtering method;
FIG. 3A is a schematic diagram showing a comparison of position averages obtained by simulation using the method of the present invention and a particle filtering method according to an embodiment of the present invention at a time interval of 0.1 second;
FIG. 3B is a schematic diagram showing a comparison of the standard deviation of positions obtained by simulation using the method of the present invention and the particle filtering method in the embodiment of the present invention at a time interval of 0.1 second;
FIG. 4A is a schematic diagram showing a comparison of position averages obtained by simulation using the method of the present invention and the particle filtering method in the embodiment of the present invention at a time interval of 0.01 second;
FIG. 4B is a schematic diagram showing a comparison of the standard deviation of positions obtained by simulation using the method of the present invention and the particle filtering method in the embodiment of the present invention at a time interval of 0.01 second;
FIG. 5A is a schematic diagram illustrating a comparison of root mean square error of the moving state of the submersible vehicle according to an embodiment of the present invention;
FIG. 5B is a graph illustrating a comparison of standard deviations of the states of motion of the submersible vehicle in an embodiment of the present invention.
Detailed Description
The present invention will be described in further detail with reference to the accompanying drawings and examples.
The invention discloses a nonlinear filtering method for underwater navigation, and aims to provide a method for solving a navigation random differential model weakly by utilizing the advantages of a filtering method based on Bayes estimation, so that the change of a system state can be better tracked.
In the context of an underwater terrain-aided navigation system, the motion state of a vehicle can be represented by a random process x (t), and it is assumed that for time t ∈ [0, ∞), all x (t) are defined in a fixed probability space (Ω, F, P), where Ω is a non-empty set called sample space, whose elements are called samples, F is a non-empty subset of the power set of the sample space, F must be a σ -algebra, and P is a probability measure, short for probability. Measurement z (t) is an algebraic domain in probability space, and z (t) is Pmeasurable. Simple notes
Figure BDA0000058244840000041
Unlike the discrete model in which both states and measurements are described by discrete equations, x is a random differential model for underwater navigationt、ztThe evolution process with time can be usedA differential equation of state and a measured dispersion equation:
dxt=f(xt,t)dt+b(ut,t)dt+g(xt,t)dβt (1)
zk=h(xk,tk)+ek (2)
wherein:
Figure BDA0000058244840000043
Figure BDA0000058244840000044
Figure BDA0000058244840000045
Figure BDA0000058244840000046
Figure BDA0000058244840000047
Figure BDA0000058244840000048
representing a real number set, n, c, d and m are all positive integers,
Figure BDA0000058244840000049
representing an n x 1-dimensional real number space,representing a real number space of dimension c x 1,representing a d x 1-dimensional real number space,
Figure BDA00000582448400000412
representing an m x 1 dimensional real number space.
Figure BDA00000582448400000413
Referred to as the drift function;
Figure BDA00000582448400000414
referred to as a control function;
referred to as the diffusion coefficient;
Figure BDA0000058244840000052
is a measurement function;
utis a c-dimensional control vector, betatIs a d-dimensional Brownian motion vector, E [ d β ]t d βt T]=Q(t)dt,
Figure BDA0000058244840000053
ekIs an m-dimensional white noise process, E [ E ]kek T]=R(k),
Figure BDA0000058244840000054
βtAnd ekIndependently of each other, tkRepresenting the sampling time. Q (t), R (k) are represented as covariance of process noise and measurement noise, respectively, and are abbreviated
Figure BDA0000058244840000055
The solution of the stochastic differential equation as a stochastic process can be abstractly applied with a functional xt=J[x0,βt,t]And (4) showing. The random differential equations have both strong and weak solutions, and only some types of random differential equations have closed solutions with strong solutions. The weak solution is a probability in a continuous function space, which is determined by a transfer function, and for the method of the invention, the weak solution refers to the prior probability obtained below. Bars appropriate for the coefficients μ (x, t), σ (x, t)Conditional probability density p (x, t | z) of state of motion of submersiblet) Satisfies the forward kolmogorov equation:
<math> <mrow> <mi>L</mi> <mrow> <mo>(</mo> <mi>p</mi> <mo>)</mo> </mrow> <mo>=</mo> <mfrac> <mrow> <mo>&PartialD;</mo> <mi>p</mi> </mrow> <mrow> <mo>&PartialD;</mo> <mi>t</mi> </mrow> </mfrac> <mo>=</mo> <mfrac> <mn>1</mn> <mn>2</mn> </mfrac> <munderover> <mi>&Sigma;</mi> <mrow> <mi>r</mi> <mo>,</mo> <mi>s</mi> <mo>=</mo> <mn>1</mn> </mrow> <mi>m</mi> </munderover> <mfrac> <mrow> <msup> <mo>&PartialD;</mo> <mn>2</mn> </msup> <mrow> <mo>(</mo> <mi>g</mi> <mrow> <mo>(</mo> <mi>x</mi> <mo>,</mo> <mi>t</mi> <mo>)</mo> </mrow> <mi>Q</mi> <mrow> <mo>(</mo> <mi>t</mi> <mo>)</mo> </mrow> <msup> <mi>g</mi> <mi>T</mi> </msup> <mrow> <mo>(</mo> <mi>x</mi> <mo>,</mo> <mi>t</mi> <mo>)</mo> </mrow> <mo>&CenterDot;</mo> <mi>p</mi> <mo>)</mo> </mrow> </mrow> <mrow> <msub> <mrow> <mo>&PartialD;</mo> <mi>x</mi> </mrow> <mi>r</mi> </msub> <msub> <mrow> <mo>&PartialD;</mo> <mi>x</mi> </mrow> <mi>s</mi> </msub> </mrow> </mfrac> <mo>-</mo> <munderover> <mi>&Sigma;</mi> <mrow> <mi>r</mi> <mo>=</mo> <mn>1</mn> </mrow> <mi>m</mi> </munderover> <mfrac> <mrow> <mo>&PartialD;</mo> <mrow> <mo>(</mo> <mi>f</mi> <mrow> <mo>(</mo> <mi>x</mi> <mo>,</mo> <mi>t</mi> <mo>)</mo> </mrow> <mo>&CenterDot;</mo> <mi>p</mi> <mo>)</mo> </mrow> </mrow> <msub> <mrow> <mo>&PartialD;</mo> <mi>x</mi> </mrow> <mi>r</mi> </msub> </mfrac> <mo>-</mo> <mo>-</mo> <mo>-</mo> <mrow> <mo>(</mo> <mn>3</mn> <mo>)</mo> </mrow> </mrow> </math>
wherein:
Figure BDA0000058244840000057
m represents the dimension of the space of the moving state of the submersible vehicle, f (x, t) represents the relation between the change of the moving state of the submersible vehicle and the moving state of the submersible vehicle, g (x, t) represents the noise diffusion, and x (x, t) represents the noise diffusionrAnd xsRepresenting the coordinates of the x-vector in m-dimensional space.
Wherein the initial conditions are:
p′(x0)=0,p′(xn)=0 (4)
the forward kolmogorov equation (3) and its initial condition equation (4) constitute a differential equation side value problem. Omega is
Figure BDA0000058244840000058
The area in space with a smooth boundary,
Figure BDA0000058244840000059
is a solution to the edge value problem.
The weak solution equation composed of the formula (3) and the formula (4) can be obtained by establishing a state differential and measurement discrete equation, and the motion state of the submersible vehicle is estimated by approximating the weak solution. The nonlinear filtering method of the invention approximates the navigation random differential model weak solution by a cubic spline interpolation segment, thereby obtaining the motion state of the submersible vehicle.
The nonlinear filtering method of the present invention is specifically shown in fig. 1, and includes the following steps.
Step 1, setting the conditional probability density of the initial moment as normal distribution, selecting a projection interval and a segmentation interval, and constructing a cubic spline interpolation function pi(x):
p i ( x ) = M i - 1 ( x i - x ) 3 6 h i + M i ( x - x i - 1 ) 3 6 h i + A i ( x - x i - 1 ) + B i , x∈[xi-1,xi],i=1,2,…,n (5)
Ai,BiAs an integral constant with respect to time, coefficient Mi=p″(xi) N represents the number of segment intervals and is an integer greater than 0, hiDenotes the length of the i-th segmentation interval, hi=xi-xi-1
The conditional probability density at the initial time is set as normal distribution and can be used as the posterior probability density at the initial time.
Selecting a projection interval [ a, b ]]And a segmentation interval a ═ x0<x1<x2<…<xnB, defined by a cubic spline interpolation function p (x): at node xiThe second derivative p' (x) of p (x)i) Comprises the following steps: p' (x)i)=Mi(i ═ 0, 1,2, …, n), over the subinterval [ x [, ]i-1,xi]The upper cubic spline interpolation function p (x) pi(x) It is a polynomial of not more than three times, so its second derivative must be a linear function or constant, represented by hi=xi-xi-1Then the second derivative p "(x) of the cubic spline interpolation function p (x)i) Comprises the following steps:
<math> <mrow> <msup> <mi>p</mi> <mrow> <mo>&prime;</mo> <mo>&prime;</mo> </mrow> </msup> <mrow> <mo>(</mo> <mi>x</mi> <mo>)</mo> </mrow> <mo>=</mo> <msub> <mi>M</mi> <mrow> <mi>i</mi> <mo>-</mo> <mn>1</mn> </mrow> </msub> <mfrac> <mrow> <msub> <mi>x</mi> <mi>i</mi> </msub> <mo>-</mo> <mi>x</mi> </mrow> <msub> <mi>h</mi> <mi>i</mi> </msub> </mfrac> <mo>+</mo> <msub> <mi>M</mi> <mi>i</mi> </msub> <mfrac> <msub> <mrow> <mi>x</mi> <mo>-</mo> <mi>x</mi> </mrow> <mrow> <mi>i</mi> <mo>-</mo> <mn>1</mn> </mrow> </msub> <msub> <mi>h</mi> <mi>i</mi> </msub> </mfrac> <mo>,</mo> </mrow> </math> x∈[xi-1,xi] (6)
the second derivative p' (x) obtained from equation (6)i) Two successive integrations can yield equation (5).
Step 2, obtaining the value of the interpolation point through the posterior probability density function of the previous moment, constructing the interpolation point of the cubic spline interpolation function of the current moment by utilizing the forward Kolmogorov equation, substituting the interpolation point into the cubic spline interpolation function expression (5), and utilizing Mi,Mi-1Handle Ai,BiShows that only M is obtainedi(i ═ 0, 1,2, …, n) the prior probability density function of the n +1 unknowns.
Due to p (x)i),p(xi-1) Satisfies the forward kolmogorov equation (3):
Figure BDA0000058244840000062
Figure BDA0000058244840000063
simple notes
Figure BDA0000058244840000064
Figure BDA0000058244840000065
Because: <math> <mrow> <mfrac> <mrow> <mo>&PartialD;</mo> <mrow> <mo>(</mo> <msup> <mi>gQg</mi> <mi>T</mi> </msup> <mo>&CenterDot;</mo> <mi>p</mi> <mo>)</mo> </mrow> </mrow> <msub> <mrow> <mo>&PartialD;</mo> <mi>x</mi> </mrow> <mi>s</mi> </msub> </mfrac> <mo>=</mo> <mfrac> <mrow> <mo>&PartialD;</mo> <mrow> <mo>(</mo> <msup> <mi>gQg</mi> <mi>T</mi> </msup> <mo>)</mo> </mrow> </mrow> <msub> <mrow> <mo>&PartialD;</mo> <mi>x</mi> </mrow> <mi>s</mi> </msub> </mfrac> <mo>&CenterDot;</mo> <mi>p</mi> <mo>+</mo> <msup> <mi>gQg</mi> <mi>T</mi> </msup> <mo>&CenterDot;</mo> <mfrac> <mrow> <mo>&PartialD;</mo> <mrow> <mo>(</mo> <mi>p</mi> <mo>)</mo> </mrow> </mrow> <msub> <mrow> <mo>&PartialD;</mo> <mi>x</mi> </mrow> <mi>s</mi> </msub> </mfrac> <mo>,</mo> </mrow> </math> <math> <mrow> <mfrac> <mrow> <mo>&PartialD;</mo> <mrow> <mo>(</mo> <mi>f</mi> <mo>&CenterDot;</mo> <mi>p</mi> <mo>)</mo> </mrow> </mrow> <msub> <mrow> <mo>&PartialD;</mo> <mi>x</mi> </mrow> <mi>r</mi> </msub> </mfrac> <mo>=</mo> <mfrac> <mrow> <mo>&PartialD;</mo> <mrow> <mo>(</mo> <mi>f</mi> <mo>)</mo> </mrow> </mrow> <msub> <mrow> <mo>&PartialD;</mo> <mi>x</mi> </mrow> <mi>r</mi> </msub> </mfrac> <mo>&CenterDot;</mo> <mi>p</mi> <mo>+</mo> <mi>f</mi> <mo>&CenterDot;</mo> <mfrac> <mrow> <mo>&PartialD;</mo> <mrow> <mo>(</mo> <mi>p</mi> <mo>)</mo> </mrow> </mrow> <msub> <mrow> <mo>&PartialD;</mo> <mi>x</mi> </mrow> <mi>r</mi> </msub> </mfrac> <mo>,</mo> </mrow> </math> then, the following steps are obtained:
<math> <mrow> <mfrac> <mrow> <msup> <mo>&PartialD;</mo> <mn>2</mn> </msup> <mrow> <mo>(</mo> <msup> <mi>gQg</mi> <mi>T</mi> </msup> <mo>&CenterDot;</mo> <mi>p</mi> <mo>)</mo> </mrow> </mrow> <mrow> <msub> <mrow> <mo>&PartialD;</mo> <mi>x</mi> </mrow> <mi>r</mi> </msub> <msub> <mrow> <mo>&PartialD;</mo> <mi>x</mi> </mrow> <mi>s</mi> </msub> </mrow> </mfrac> <mo>=</mo> <mfrac> <mrow> <msup> <mo>&PartialD;</mo> <mn>2</mn> </msup> <mrow> <mo>(</mo> <msup> <mi>gQg</mi> <mi>T</mi> </msup> <mo>)</mo> </mrow> </mrow> <mrow> <msub> <mrow> <mo>&PartialD;</mo> <mi>x</mi> </mrow> <mi>r</mi> </msub> <msub> <mrow> <mo>&PartialD;</mo> <mi>x</mi> </mrow> <mi>s</mi> </msub> </mrow> </mfrac> <mo>&CenterDot;</mo> <mi>p</mi> <mo>+</mo> <mn>2</mn> <mo>&CenterDot;</mo> <mfrac> <mrow> <mo>&PartialD;</mo> <mrow> <mo>(</mo> <msup> <mi>gQg</mi> <mi>T</mi> </msup> <mo>)</mo> </mrow> </mrow> <msub> <mrow> <mo>&PartialD;</mo> <mi>x</mi> </mrow> <mi>r</mi> </msub> </mfrac> <mo>&CenterDot;</mo> <mfrac> <mrow> <mo>&PartialD;</mo> <mrow> <mo>(</mo> <mi>p</mi> <mo>)</mo> </mrow> </mrow> <msub> <mrow> <mo>&PartialD;</mo> <mi>x</mi> </mrow> <mi>s</mi> </msub> </mfrac> <mo>+</mo> <msup> <mi>gQg</mi> <mi>T</mi> </msup> <mo>&CenterDot;</mo> <mfrac> <mrow> <msup> <mo>&PartialD;</mo> <mn>2</mn> </msup> <mrow> <mo>(</mo> <mi>p</mi> <mo>)</mo> </mrow> </mrow> <mrow> <msub> <mrow> <mo>&PartialD;</mo> <mi>x</mi> </mrow> <mi>r</mi> </msub> <msub> <mrow> <mo>&PartialD;</mo> <mi>x</mi> </mrow> <mi>s</mi> </msub> </mrow> </mfrac> <mo>-</mo> <mo>-</mo> <mo>-</mo> <mrow> <mo>(</mo> <mn>7</mn> <mo>)</mo> </mrow> </mrow> </math>
further, it is possible to obtain:
<math> <mrow> <mi>L</mi> <mrow> <mo>(</mo> <mi>p</mi> <mrow> <mo>(</mo> <mi>x</mi> <mo>)</mo> </mrow> <mo>)</mo> </mrow> <mo>=</mo> <mfrac> <mrow> <mo>&PartialD;</mo> <mi>p</mi> </mrow> <mrow> <mo>&PartialD;</mo> <mi>t</mi> </mrow> </mfrac> <mo>=</mo> <mfrac> <mn>1</mn> <mn>2</mn> </mfrac> <munderover> <mi>&Sigma;</mi> <mrow> <mi>r</mi> <mo>,</mo> <mi>s</mi> <mo>=</mo> <mn>1</mn> </mrow> <mi>n</mi> </munderover> <mo>[</mo> <mfrac> <mrow> <msup> <mo>&PartialD;</mo> <mn>2</mn> </msup> <mrow> <mo>(</mo> <msup> <mi>gQg</mi> <mi>T</mi> </msup> <mo>)</mo> </mrow> </mrow> <mrow> <msub> <mrow> <mo>&PartialD;</mo> <mi>x</mi> </mrow> <mi>r</mi> </msub> <msub> <mrow> <mo>&PartialD;</mo> <mi>x</mi> </mrow> <mi>s</mi> </msub> </mrow> </mfrac> <mo>&CenterDot;</mo> <mi>p</mi> <mo>+</mo> <mn>2</mn> <mo>&CenterDot;</mo> <mfrac> <mrow> <mo>&PartialD;</mo> <mrow> <mo>(</mo> <msup> <mi>gQg</mi> <mi>T</mi> </msup> <mo>)</mo> </mrow> </mrow> <msub> <mrow> <mo>&PartialD;</mo> <mi>x</mi> </mrow> <mi>r</mi> </msub> </mfrac> <mo>&CenterDot;</mo> <mfrac> <mrow> <mo>&PartialD;</mo> <mrow> <mo>(</mo> <mi>p</mi> <mo>)</mo> </mrow> </mrow> <msub> <mrow> <mo>&PartialD;</mo> <mi>x</mi> </mrow> <mi>s</mi> </msub> </mfrac> <mo>+</mo> <msup> <mi>gQg</mi> <mi>T</mi> </msup> <mo>&CenterDot;</mo> <mfrac> <mrow> <msup> <mo>&PartialD;</mo> <mn>2</mn> </msup> <mrow> <mo>(</mo> <mi>p</mi> <mo>)</mo> </mrow> </mrow> <mrow> <msub> <mrow> <mo>&PartialD;</mo> <mi>x</mi> </mrow> <mi>r</mi> </msub> <msub> <mrow> <mo>&PartialD;</mo> <mi>x</mi> </mrow> <mi>s</mi> </msub> </mrow> </mfrac> <mo>]</mo> <mo>-</mo> <munderover> <mi>&Sigma;</mi> <mrow> <mi>r</mi> <mo>=</mo> <mn>1</mn> </mrow> <mi>n</mi> </munderover> <mo>[</mo> <mfrac> <mrow> <mo>&PartialD;</mo> <mrow> <mo>(</mo> <mi>f</mi> <mo>)</mo> </mrow> </mrow> <msub> <mrow> <mo>&PartialD;</mo> <mi>x</mi> </mrow> <mi>r</mi> </msub> </mfrac> <mo>&CenterDot;</mo> <mi>p</mi> <mo>+</mo> <mi>f</mi> <mo>&CenterDot;</mo> <mfrac> <mrow> <mo>&PartialD;</mo> <mrow> <mo>(</mo> <mi>p</mi> <mo>)</mo> </mrow> </mrow> <msub> <mrow> <mo>&PartialD;</mo> <mi>x</mi> </mrow> <mi>r</mi> </msub> </mfrac> <mo>]</mo> <mo>-</mo> <mo>-</mo> <mo>-</mo> <mrow> <mo>(</mo> <mn>8</mn> <mo>)</mo> </mrow> </mrow> </math>
for brevity, the following notes: <math> <mrow> <mfrac> <mn>1</mn> <mn>2</mn> </mfrac> <munderover> <mi>&Sigma;</mi> <mrow> <mi>r</mi> <mo>,</mo> <mi>s</mi> <mo>=</mo> <mn>1</mn> </mrow> <mi>n</mi> </munderover> <mfrac> <mrow> <msup> <mo>&PartialD;</mo> <mn>2</mn> </msup> <mrow> <mo>(</mo> <msup> <mi>gQg</mi> <mi>T</mi> </msup> <mo>)</mo> </mrow> </mrow> <mrow> <msub> <mrow> <mo>&PartialD;</mo> <mi>x</mi> </mrow> <mi>r</mi> </msub> <msub> <mrow> <mo>&PartialD;</mo> <mi>x</mi> </mrow> <mi>s</mi> </msub> </mrow> </mfrac> <mo>-</mo> <munderover> <mi>&Sigma;</mi> <mrow> <mi>r</mi> <mo>=</mo> <mn>1</mn> </mrow> <mi>n</mi> </munderover> <mfrac> <mrow> <mo>&PartialD;</mo> <mrow> <mo>(</mo> <mi>f</mi> <mo>)</mo> </mrow> </mrow> <msub> <mrow> <mo>&PartialD;</mo> <mi>x</mi> </mrow> <mi>r</mi> </msub> </mfrac> <mover> <mo>=</mo> <mi>&Delta;</mi> </mover> <msub> <mi>&Delta;</mi> <mn>1</mn> </msub> <mo>,</mo> </mrow> </math> <math> <mrow> <munderover> <mi>&Sigma;</mi> <mrow> <mi>r</mi> <mo>=</mo> <mn>1</mn> </mrow> <mi>n</mi> </munderover> <mfrac> <mrow> <mo>&PartialD;</mo> <mrow> <mo>(</mo> <msup> <mi>gQg</mi> <mi>T</mi> </msup> <mo>)</mo> </mrow> </mrow> <msub> <mrow> <mo>&PartialD;</mo> <mi>x</mi> </mrow> <mi>r</mi> </msub> </mfrac> <mo>-</mo> <mi>f</mi> <mover> <mo>=</mo> <mi>&Delta;</mi> </mover> <msub> <mi>&Delta;</mi> <mn>2</mn> </msub> <mo>,</mo> </mrow> </math> <math> <mrow> <msup> <mi>gQg</mi> <mi>T</mi> </msup> <mover> <mo>=</mo> <mi>&Delta;</mi> </mover> <msub> <mi>&Delta;</mi> <mn>3</mn> </msub> <mo>,</mo> </mrow> </math>
if g, Q, f are independent of time, then Δ1,Δ2,Δ3Independently of time t, then:
<math> <mrow> <msubsup> <mo>&Integral;</mo> <msub> <mi>t</mi> <mi>k</mi> </msub> <msub> <mi>t</mi> <mrow> <mi>k</mi> <mo>+</mo> <mn>1</mn> </mrow> </msub> </msubsup> <mi>L</mi> <mrow> <mo>(</mo> <mi>p</mi> <mrow> <mo>(</mo> <mi>x</mi> <mo>)</mo> </mrow> <mo>)</mo> </mrow> <mo>=</mo> <msubsup> <mo>&Integral;</mo> <msub> <mi>t</mi> <mi>k</mi> </msub> <msub> <mi>t</mi> <mrow> <mi>k</mi> <mo>+</mo> <mn>1</mn> </mrow> </msub> </msubsup> <mfrac> <mrow> <mo>&PartialD;</mo> <mi>p</mi> </mrow> <mrow> <mo>&PartialD;</mo> <mi>t</mi> </mrow> </mfrac> <mi>dt</mi> <mo>=</mo> <msubsup> <mo>&Integral;</mo> <msub> <mi>t</mi> <mi>k</mi> </msub> <msub> <mi>t</mi> <mrow> <mi>k</mi> <mo>+</mo> <mn>1</mn> </mrow> </msub> </msubsup> <mrow> <mo>(</mo> <msub> <mi>&Delta;</mi> <mn>1</mn> </msub> <mi>p</mi> <mo>+</mo> <msub> <mi>&Delta;</mi> <mn>2</mn> </msub> <mfrac> <mrow> <mo>&PartialD;</mo> <mi>p</mi> </mrow> <mrow> <mo>&PartialD;</mo> <mi>x</mi> </mrow> </mfrac> <mo>+</mo> <msub> <mi>&Delta;</mi> <mn>3</mn> </msub> <mfrac> <mrow> <msup> <mo>&PartialD;</mo> <mn>2</mn> </msup> <mi>p</mi> </mrow> <msup> <mrow> <mo>&PartialD;</mo> <mi>x</mi> </mrow> <mn>2</mn> </msup> </mfrac> <mo>)</mo> </mrow> <mi>dt</mi> <mo>-</mo> <mo>-</mo> <mo>-</mo> <mrow> <mo>(</mo> <mn>9</mn> <mo>)</mo> </mrow> </mrow> </math>
further from the median theorem of integration:
<math> <mrow> <msup> <mi>p</mi> <msub> <mi>t</mi> <mrow> <mi>k</mi> <mo>+</mo> <mn>1</mn> </mrow> </msub> </msup> <mrow> <mo>(</mo> <mi>x</mi> <mo>)</mo> </mrow> <mo>=</mo> <msup> <mi>p</mi> <msub> <mi>t</mi> <mi>k</mi> </msub> </msup> <mrow> <mo>(</mo> <mi>x</mi> <mo>)</mo> </mrow> <mo>+</mo> <mrow> <mo>(</mo> <msub> <mi>&Delta;</mi> <mn>1</mn> </msub> <msup> <mi>p</mi> <msub> <mi>t</mi> <mi>k</mi> </msub> </msup> <mo>+</mo> <msub> <mi>&Delta;</mi> <mn>2</mn> </msub> <mfrac> <msup> <mrow> <mo>&PartialD;</mo> <mi>p</mi> </mrow> <msub> <mi>t</mi> <mi>k</mi> </msub> </msup> <mrow> <mo>&PartialD;</mo> <mi>x</mi> </mrow> </mfrac> <mo>+</mo> <msub> <mi>&Delta;</mi> <mn>3</mn> </msub> <mfrac> <mrow> <msup> <mo>&PartialD;</mo> <mn>2</mn> </msup> <msup> <mi>p</mi> <msub> <mi>t</mi> <mi>k</mi> </msub> </msup> </mrow> <msup> <mrow> <mo>&PartialD;</mo> <mi>x</mi> </mrow> <mn>2</mn> </msup> </mfrac> <mo>)</mo> </mrow> <mo>&CenterDot;</mo> <mrow> <mo>(</mo> <msub> <mi>t</mi> <mrow> <mi>k</mi> <mo>+</mo> <mn>1</mn> </mrow> </msub> <mo>-</mo> <msub> <mi>t</mi> <mi>k</mi> </msub> <mo>)</mo> </mrow> <mo>-</mo> <mo>-</mo> <mo>-</mo> <mrow> <mo>(</mo> <mn>10</mn> <mo>)</mo> </mrow> </mrow> </math>
wherein,
Figure BDA00000582448400000616
respectively, at time tk+1、tkCubic spline interpolation function of (1). t is tk+1Denotes the k +1 th time, which is the current time, tkIndicating the k-th time, which is the previous time. Then t can be obtained from equation (10)k+1At node x at timeiAnd node xi-1Interpolation point of the cubic spline interpolation function of (1):
Figure BDA00000582448400000617
Figure BDA00000582448400000618
the integration constant over time is finally obtained:
Figure BDA00000582448400000619
Figure BDA00000582448400000620
handle Ai,BiSubstituting formula (5) to obtain:
<math> <mrow> <msub> <mi>p</mi> <mi>i</mi> </msub> <mrow> <mo>(</mo> <mi>x</mi> <mo>)</mo> </mrow> <mo>=</mo> <msub> <mi>M</mi> <mrow> <mi>i</mi> <mo>-</mo> <mn>1</mn> </mrow> </msub> <mfrac> <msup> <mrow> <mo>(</mo> <msub> <mi>x</mi> <mi>i</mi> </msub> <mo>-</mo> <mi>x</mi> <mo>)</mo> </mrow> <mn>3</mn> </msup> <msub> <mrow> <mn>6</mn> <mi>h</mi> </mrow> <mi>i</mi> </msub> </mfrac> <mo>+</mo> <msub> <mi>M</mi> <mi>i</mi> </msub> <mfrac> <msup> <mrow> <mo>(</mo> <msub> <mrow> <mi>x</mi> <mo>-</mo> <mi>x</mi> </mrow> <mrow> <mi>i</mi> <mo>-</mo> <mn>1</mn> </mrow> </msub> <mo>)</mo> </mrow> <mn>3</mn> </msup> <msub> <mrow> <mn>6</mn> <mi>h</mi> </mrow> <mi>i</mi> </msub> </mfrac> <mo>+</mo> <mrow> <mo>(</mo> <msub> <mi>p</mi> <mi>i</mi> </msub> <mrow> <mo>(</mo> <msub> <mi>x</mi> <mrow> <mi>i</mi> <mo>-</mo> <mn>1</mn> </mrow> </msub> <mo>)</mo> </mrow> <mo>-</mo> <mfrac> <msup> <msub> <mi>h</mi> <mi>i</mi> </msub> <mn>2</mn> </msup> <mn>6</mn> </mfrac> <msub> <mi>M</mi> <mrow> <mi>i</mi> <mo>-</mo> <mn>1</mn> </mrow> </msub> <mo>)</mo> </mrow> <mo>&CenterDot;</mo> <mfrac> <mrow> <msub> <mi>x</mi> <mi>i</mi> </msub> <mo>-</mo> <mi>x</mi> </mrow> <msub> <mi>h</mi> <mi>i</mi> </msub> </mfrac> <mo>+</mo> <mrow> <mo>(</mo> <msub> <mi>p</mi> <mi>i</mi> </msub> <mrow> <mo>(</mo> <msub> <mi>x</mi> <mi>i</mi> </msub> <mo>)</mo> </mrow> <mo>-</mo> <mfrac> <msup> <msub> <mi>h</mi> <mi>i</mi> </msub> <mn>2</mn> </msup> <mn>6</mn> </mfrac> <msub> <mi>M</mi> <mi>i</mi> </msub> <mo>)</mo> </mrow> <mfrac> <msub> <mrow> <mi>x</mi> <mo>-</mo> <mi>x</mi> </mrow> <mrow> <mi>i</mi> <mo>-</mo> <mn>1</mn> </mrow> </msub> <msub> <mi>h</mi> <mi>i</mi> </msub> </mfrac> <mo>,</mo> </mrow> </math> x∈[xi-1,xi]
wherein i is 1,2, …, n. Then only M needs to be determinediThe n +1 unknowns can be used to obtain the prior probability density function.
Step 3, listing an n +1 equation set by utilizing a first-order continuous derivative of a cubic spline interpolation function at each node and boundary conditions, and solving a prior coefficient M by using a pursuit methodiThe expression of the prior probability density function can be obtained by substituting equation (5).
Cubic spline interpolationFirst derivative of value function at subinterval node xiAbove, the boundary conditions can be obtained:
pi′(xi-0)=pi+1′(xi+0) (11)
the first derivative of the function is interpolated again by a cubic spline:
<math> <mrow> <msup> <msub> <mi>p</mi> <mi>i</mi> </msub> <mo>&prime;</mo> </msup> <mrow> <mo>(</mo> <mi>x</mi> <mo>)</mo> </mrow> <mo>=</mo> <mo>-</mo> <msub> <mi>M</mi> <mrow> <mi>i</mi> <mo>-</mo> <mn>1</mn> </mrow> </msub> <mfrac> <msup> <mrow> <mo>(</mo> <msub> <mi>x</mi> <mi>i</mi> </msub> <mo>-</mo> <mi>x</mi> <mo>)</mo> </mrow> <mn>2</mn> </msup> <msub> <mi>h</mi> <mi>i</mi> </msub> </mfrac> <mo>+</mo> <msub> <mi>M</mi> <mi>i</mi> </msub> <mfrac> <msup> <mrow> <mo>(</mo> <msub> <mrow> <mi>x</mi> <mo>-</mo> <mi>x</mi> </mrow> <mrow> <mi>i</mi> <mo>-</mo> <mn>1</mn> </mrow> </msub> <mo>)</mo> </mrow> <mn>2</mn> </msup> <msub> <mi>h</mi> <mi>i</mi> </msub> </mfrac> <mo>+</mo> <mfrac> <mrow> <msub> <mi>p</mi> <mi>i</mi> </msub> <mrow> <mo>(</mo> <msub> <mi>x</mi> <mi>i</mi> </msub> <mo>)</mo> </mrow> <mo>-</mo> <msub> <mi>p</mi> <mi>i</mi> </msub> <mrow> <mo>(</mo> <msub> <mi>x</mi> <mrow> <mi>i</mi> <mo>-</mo> <mn>1</mn> </mrow> </msub> <mo>)</mo> </mrow> </mrow> <msub> <mi>h</mi> <mi>i</mi> </msub> </mfrac> <mo>-</mo> <mfrac> <msub> <mi>h</mi> <mi>i</mi> </msub> <mn>6</mn> </mfrac> <mrow> <mo>(</mo> <msub> <mi>M</mi> <mi>i</mi> </msub> <mo>-</mo> <msub> <mi>M</mi> <mrow> <mi>i</mi> <mo>-</mo> <mn>1</mn> </mrow> </msub> <mo>)</mo> </mrow> <mo>,</mo> </mrow> </math> x∈[xi-1,xi] (12)
from the formulae (11) and (12), it is possible:
h i 6 M i - 1 + h i + h i + 1 3 M i + h i + 1 6 M i + 1 = p i ( x i + 1 ) - p i ( x i ) h i + 1 - p i ( x i ) - p i ( x i - 1 ) h i - - - ( 13 )
multiplication of two sides of formula (13) simultaneously
Figure BDA0000058244840000073
The equation is obtained:
h i h i + h i + 1 M i - 1 + 2 M i + h i + 1 h i + h i + 1 M i + 1 = 6 h i + h i + 1 ( p i ( x i + 1 ) - p i ( x i ) h i + 1 - p i ( x i ) - p i ( x i - 1 ) h i ) (i=1,2,…,n-1) (14)
is provided with <math> <mfenced open='{' close=''> <mtable> <mtr> <mtd> <msub> <mi>u</mi> <mi>i</mi> </msub> <mo>=</mo> <mfrac> <msub> <mi>h</mi> <mi>i</mi> </msub> <mrow> <msub> <mi>h</mi> <mi>i</mi> </msub> <mo>+</mo> <msub> <mi>h</mi> <mrow> <mi>i</mi> <mo>+</mo> <mn>1</mn> </mrow> </msub> </mrow> </mfrac> </mtd> </mtr> <mtr> <mtd> <msub> <mi>&lambda;</mi> <mi>i</mi> </msub> <mo>=</mo> <mfrac> <msub> <mi>h</mi> <mrow> <mi>i</mi> <mo>+</mo> <mn>1</mn> </mrow> </msub> <mrow> <msub> <mi>h</mi> <mi>i</mi> </msub> <mo>+</mo> <msub> <mi>h</mi> <mrow> <mi>i</mi> <mo>+</mo> <mn>1</mn> </mrow> </msub> </mrow> </mfrac> <mo>=</mo> <mn>1</mn> <mo>-</mo> <msub> <mi>u</mi> <mi>i</mi> </msub> </mtd> </mtr> <mtr> <mtd> <msub> <mi>g</mi> <mi>i</mi> </msub> <mo>=</mo> <mfrac> <mn>6</mn> <mrow> <msub> <mi>h</mi> <mi>i</mi> </msub> <mo>+</mo> <msub> <mi>h</mi> <mrow> <mi>i</mi> <mo>+</mo> <mn>1</mn> </mrow> </msub> </mrow> </mfrac> <mrow> <mo>(</mo> <mfrac> <mrow> <msub> <mi>p</mi> <mi>i</mi> </msub> <mrow> <mo>(</mo> <msub> <mi>x</mi> <mrow> <mi>i</mi> <mo>+</mo> <mn>1</mn> </mrow> </msub> <mo>)</mo> </mrow> <mo>-</mo> <msub> <mi>p</mi> <mi>i</mi> </msub> <mrow> <mo>(</mo> <msub> <mi>x</mi> <mi>i</mi> </msub> <mo>)</mo> </mrow> </mrow> <msub> <mi>h</mi> <mrow> <mi>i</mi> <mo>+</mo> <mn>1</mn> </mrow> </msub> </mfrac> <mo>-</mo> <mfrac> <mrow> <msub> <mi>p</mi> <mi>i</mi> </msub> <mrow> <mo>(</mo> <msub> <mi>x</mi> <mi>i</mi> </msub> <mo>)</mo> </mrow> <mo>-</mo> <msub> <mi>p</mi> <mi>i</mi> </msub> <mrow> <mo>(</mo> <msub> <mi>x</mi> <mrow> <mi>i</mi> <mo>-</mo> <mn>1</mn> </mrow> </msub> <mo>)</mo> </mrow> </mrow> <msub> <mi>h</mi> <mi>i</mi> </msub> </mfrac> <mo>)</mo> </mrow> </mtd> </mtr> </mtable> </mfenced> </math>
(i=1,2,…,n-1)
From the boundary condition p' (x)0)=0,p′(xn) When the ratio is 0, the following:
<math> <mrow> <msup> <mi>p</mi> <mo>&prime;</mo> </msup> <mrow> <mo>(</mo> <msub> <mi>x</mi> <mn>0</mn> </msub> <mo>+</mo> <mn>0</mn> <mo>)</mo> </mrow> <mo>=</mo> <mfrac> <mrow> <msub> <mi>p</mi> <mn>0</mn> </msub> <mrow> <mo>(</mo> <msub> <mi>x</mi> <mn>1</mn> </msub> <mo>)</mo> </mrow> <mo>-</mo> <msub> <mi>p</mi> <mn>0</mn> </msub> <mrow> <mo>(</mo> <msub> <mi>x</mi> <mn>0</mn> </msub> <mo>)</mo> </mrow> </mrow> <msub> <mi>h</mi> <mn>1</mn> </msub> </mfrac> <mo>-</mo> <mfrac> <msub> <mi>h</mi> <mn>1</mn> </msub> <mn>6</mn> </mfrac> <msub> <mi>M</mi> <mn>1</mn> </msub> <mo>-</mo> <mfrac> <msub> <mi>h</mi> <mn>1</mn> </msub> <mn>3</mn> </mfrac> <msub> <mi>M</mi> <mn>0</mn> </msub> <mo>=</mo> <mn>0</mn> </mrow> </math>
<math> <mrow> <msup> <mi>p</mi> <mo>&prime;</mo> </msup> <mrow> <mo>(</mo> <msub> <mi>x</mi> <mi>n</mi> </msub> <mo>-</mo> <mn>0</mn> <mo>)</mo> </mrow> <mo>=</mo> <mfrac> <mrow> <msub> <mi>p</mi> <mrow> <mi>n</mi> <mo>-</mo> <mn>1</mn> </mrow> </msub> <mrow> <mo>(</mo> <msub> <mi>x</mi> <mi>n</mi> </msub> <mo>)</mo> </mrow> <mo>-</mo> <msub> <mi>p</mi> <mrow> <mi>n</mi> <mo>-</mo> <mn>1</mn> </mrow> </msub> <mrow> <mo>(</mo> <msub> <mi>x</mi> <mrow> <mi>n</mi> <mo>-</mo> <mn>1</mn> </mrow> </msub> <mo>)</mo> </mrow> </mrow> <msub> <mi>h</mi> <mi>n</mi> </msub> </mfrac> <mo>+</mo> <mfrac> <msub> <mi>h</mi> <mi>n</mi> </msub> <mn>6</mn> </mfrac> <msub> <mi>M</mi> <mrow> <mi>n</mi> <mo>-</mo> <mn>1</mn> </mrow> </msub> <mo>+</mo> <mfrac> <msub> <mi>h</mi> <mi>n</mi> </msub> <mn>3</mn> </mfrac> <msub> <mi>M</mi> <mi>n</mi> </msub> <mo>=</mo> <mn>0</mn> </mrow> </math>
two equations are obtained:
2 M 1 + M 0 = 6 p 0 ( x 1 ) - p 0 ( x 0 ) h 1 2 - - - ( 15 )
M n - 1 + 2 M n = - 6 p n - 1 ( x n ) - p n - 1 ( x n - 1 ) h n 2 - - - ( 16 )
n +1 formulae consisting of formulae (14), (15) and (16) can be obtained:
Figure BDA0000058244840000081
due to the fact thatAnd if the system is not singular, a unique solution exists in the equation system.
M can be obtained by catch-up methodiHandle MiSubstitution of formula (5) gives the following formula:
<math> <mrow> <msub> <mi>p</mi> <mi>i</mi> </msub> <mrow> <mo>(</mo> <mi>x</mi> <mo>)</mo> </mrow> <mo>=</mo> <msub> <mi>M</mi> <mrow> <mi>i</mi> <mo>-</mo> <mn>1</mn> </mrow> </msub> <mfrac> <msup> <mrow> <mo>(</mo> <msub> <mi>x</mi> <mi>i</mi> </msub> <mo>-</mo> <mi>x</mi> <mo>)</mo> </mrow> <mn>3</mn> </msup> <msub> <mrow> <mn>6</mn> <mi>h</mi> </mrow> <mi>i</mi> </msub> </mfrac> <mo>+</mo> <msub> <mi>M</mi> <mi>i</mi> </msub> <mfrac> <msup> <mrow> <mo>(</mo> <msub> <mrow> <mi>x</mi> <mo>-</mo> <mi>x</mi> </mrow> <mrow> <mi>i</mi> <mo>-</mo> <mn>1</mn> </mrow> </msub> <mo>)</mo> </mrow> <mn>3</mn> </msup> <msub> <mrow> <mn>6</mn> <mi>h</mi> </mrow> <mi>i</mi> </msub> </mfrac> <mo>+</mo> <mrow> <mo>(</mo> <msub> <mi>p</mi> <mi>i</mi> </msub> <mrow> <mo>(</mo> <msub> <mi>x</mi> <mrow> <mi>i</mi> <mo>-</mo> <mn>1</mn> </mrow> </msub> <mo>)</mo> </mrow> <mo>-</mo> <mfrac> <msup> <msub> <mi>h</mi> <mi>i</mi> </msub> <mn>2</mn> </msup> <mn>6</mn> </mfrac> <msub> <mi>M</mi> <mrow> <mi>i</mi> <mo>-</mo> <mn>1</mn> </mrow> </msub> <mo>)</mo> </mrow> <mo>&CenterDot;</mo> <mfrac> <mrow> <mo>(</mo> <msub> <mi>x</mi> <mi>i</mi> </msub> <mo>-</mo> <mi>x</mi> <mo>)</mo> </mrow> <msub> <mi>h</mi> <mi>i</mi> </msub> </mfrac> <mo>-</mo> <mo>-</mo> <mo>-</mo> <mrow> <mo>(</mo> <mn>16</mn> <mo>)</mo> </mrow> </mrow> </math>
+ ( p i ( x i ) - h i 2 6 M i ) ( x - x i - 1 ) h i , x∈[xi-1,xi]
finally, obtaining an expression of prior probability density p (x):
p ( x ) = p i ( x ) i = 1,2 , . . . , n - - - ( 17 )
and 4, calculating the likelihood probability density according to the measurement information of the current moment, substituting the prior probability and the likelihood probability density into a Bayes formula, and solving the posterior probability density of the motion state of the submersible vehicle at the current k +1 moment.
From bayesian formula: <math> <mrow> <mi>p</mi> <mrow> <mo>(</mo> <mi>x</mi> <mo>,</mo> <msub> <mi>t</mi> <mrow> <mi>k</mi> <mo>+</mo> <mn>1</mn> </mrow> </msub> <mo>/</mo> <msub> <mi>z</mi> <mrow> <mi>k</mi> <mo>+</mo> <mn>1</mn> </mrow> </msub> <mo>)</mo> </mrow> <mo>=</mo> <mfrac> <mrow> <mi>p</mi> <mrow> <mo>(</mo> <msub> <mi>z</mi> <mrow> <mi>k</mi> <mo>+</mo> <mn>1</mn> </mrow> </msub> <mo>/</mo> <mi>x</mi> <mo>)</mo> </mrow> <mi>p</mi> <mrow> <mo>(</mo> <mi>x</mi> <mo>,</mo> <msub> <msup> <mi>t</mi> <mo>-</mo> </msup> <mrow> <mi>k</mi> <mo>+</mo> <mn>1</mn> </mrow> </msub> <mo>/</mo> <msub> <mi>z</mi> <mi>k</mi> </msub> <mo>)</mo> </mrow> </mrow> <mrow> <msub> <mo>&Integral;</mo> <mi>&Omega;</mi> </msub> <mi>p</mi> <mrow> <mo>(</mo> <msub> <mi>z</mi> <mrow> <mi>k</mi> <mo>+</mo> <mn>1</mn> </mrow> </msub> <mo>/</mo> <mi>x</mi> <mo>)</mo> </mrow> <mi>p</mi> <mrow> <mo>(</mo> <mi>x</mi> <mo>,</mo> <msub> <msup> <mi>t</mi> <mo>-</mo> </msup> <mrow> <mi>k</mi> <mo>+</mo> <mn>1</mn> </mrow> </msub> <mo>/</mo> <msub> <mi>z</mi> <mi>k</mi> </msub> <mo>)</mo> </mrow> <mi>dx</mi> </mrow> </mfrac> </mrow> </math>
wherein, p (z)k+1/x) represents likelihood probability density, zkIndicating measurement information at the k-th time, zk+1Represents the measurement information at the k +1 th time, p (x, t)- k+1/zk) Denotes the t-thk+1A priori probability density of time instants, p (x, t)k+1/zk+1) The posterior probability density of the state of motion of the submersible vehicle at the time k +1 is represented.
Wherein the likelihood probability density is:
<math> <mrow> <mi>p</mi> <mrow> <mo>(</mo> <msub> <mi>z</mi> <mrow> <mi>k</mi> <mo>+</mo> <mn>1</mn> </mrow> </msub> <mo>/</mo> <mi>x</mi> <mo>)</mo> </mrow> <mo>=</mo> <mfrac> <mrow> <mi>exp</mi> <mo>{</mo> <mo>-</mo> <mfrac> <mn>1</mn> <mn>2</mn> </mfrac> <msup> <mrow> <mo>(</mo> <msub> <mi>z</mi> <mi>k</mi> </msub> <mo>-</mo> <mi>h</mi> <mrow> <mo>(</mo> <mi>x</mi> <mo>,</mo> <msub> <mi>t</mi> <mi>k</mi> </msub> <mo>)</mo> </mrow> <mo>)</mo> </mrow> <mi>T</mi> </msup> <msup> <msub> <mi>R</mi> <mi>k</mi> </msub> <mrow> <mo>-</mo> <mn>1</mn> </mrow> </msup> <mrow> <mo>(</mo> <msub> <mi>z</mi> <mi>k</mi> </msub> <mo>-</mo> <mi>h</mi> <mrow> <mo>(</mo> <mi>x</mi> <mo>,</mo> <msub> <mi>t</mi> <mi>k</mi> </msub> <mo>)</mo> </mrow> <mo>)</mo> </mrow> <mo>}</mo> </mrow> <msqrt> <msup> <mrow> <mo>(</mo> <mn>2</mn> <mi>&pi;</mi> <mo>)</mo> </mrow> <mi>m</mi> </msup> <mi>det</mi> <msub> <mi>R</mi> <mi>k</mi> </msub> </msqrt> </mfrac> <mo>-</mo> <mo>-</mo> <mo>-</mo> <mrow> <mo>(</mo> <mn>18</mn> <mo>)</mo> </mrow> </mrow> </math>
m represents the dimension of the state space of the vehicle motion, RkRepresents the covariance of the metrology noise, h (x, t)k) Representing the measurement function.
Substituting the prior probability densities shown in the formulas (16) and (17) into a Bayesian formula to obtain the posterior probability density p (x, t) of the motion state of the current submersible vehiclek+1/zk+1) The piecewise function of (c) is as follows:
<math> <mrow> <msub> <mi>p</mi> <mi>i</mi> </msub> <mrow> <mo>(</mo> <mi>x</mi> <mo>,</mo> <msub> <mi>t</mi> <mrow> <mi>k</mi> <mo>+</mo> <mn>1</mn> </mrow> </msub> <mo>/</mo> <msub> <mi>z</mi> <mrow> <mi>k</mi> <mo>+</mo> <mn>1</mn> </mrow> </msub> <mo>)</mo> </mrow> <mo>=</mo> <mfrac> <mrow> <mi>p</mi> <mrow> <mo>(</mo> <msub> <mi>z</mi> <mrow> <mi>k</mi> <mo>+</mo> <mn>1</mn> </mrow> </msub> <mo>/</mo> <mi>x</mi> <mo>)</mo> </mrow> <msub> <mi>p</mi> <mi>i</mi> </msub> <mrow> <mo>(</mo> <mi>x</mi> <mo>)</mo> </mrow> </mrow> <mrow> <msub> <mo>&Integral;</mo> <mi>&Omega;</mi> </msub> <mi>p</mi> <mrow> <mo>(</mo> <msub> <mi>z</mi> <mrow> <mi>k</mi> <mo>+</mo> <mn>1</mn> </mrow> </msub> <mo>/</mo> <mi>x</mi> <mo>)</mo> </mrow> <msub> <mi>p</mi> <mi>i</mi> </msub> <mrow> <mo>(</mo> <mi>x</mi> <mo>)</mo> </mrow> <mi>dx</mi> </mrow> </mfrac> <mo>,</mo> </mrow> </math> x∈[xi-1,xi](i=1,2,…,n) (19)
and obtaining the mean value Ex and the variance of the motion state of the submersible vehicle at the current moment
Figure BDA0000058244840000092
<math> <mrow> <mi>Ex</mi> <mo>=</mo> <munderover> <mi>&Sigma;</mi> <mrow> <mi>i</mi> <mo>=</mo> <mn>0</mn> </mrow> <mrow> <mi>n</mi> <mo>-</mo> <mn>1</mn> </mrow> </munderover> <msubsup> <mo>&Integral;</mo> <msub> <mi>x</mi> <mi>i</mi> </msub> <msub> <mi>x</mi> <mrow> <mi>i</mi> <mo>+</mo> <mn>1</mn> </mrow> </msub> </msubsup> <msub> <mi>p</mi> <mi>i</mi> </msub> <mrow> <mo>(</mo> <mi>x</mi> <mo>,</mo> <msub> <mi>t</mi> <mrow> <mi>k</mi> <mo>+</mo> <mn>1</mn> </mrow> </msub> <mo>/</mo> <msub> <mi>z</mi> <mrow> <mi>k</mi> <mo>+</mo> <mn>1</mn> </mrow> </msub> <mo>)</mo> </mrow> <mo>&CenterDot;</mo> <mi>xdx</mi> </mrow> </math>
<math> <mrow> <mi>cov</mi> <mrow> <mo>(</mo> <mover> <mi>x</mi> <mo>^</mo> </mover> <mo>)</mo> </mrow> <mo>=</mo> <mi>E</mi> <mrow> <mo>(</mo> <mi>x</mi> <mo>&CenterDot;</mo> <mi>x</mi> <mo>)</mo> </mrow> <mo>-</mo> <mrow> <mo>(</mo> <mi>Ex</mi> <mo>)</mo> </mrow> <mo>&CenterDot;</mo> <mrow> <mo>(</mo> <mi>Ex</mi> <mo>)</mo> </mrow> </mrow> </math>
And 5, if the simulation time is not finished, returning to the step 2 to execute, and obtaining the prior probability density of the system state at the next moment. And if the simulation time is reached, giving a simulation result of the state of the tracking system, wherein the simulation result specifically refers to the mean value and the variance of the posterior probability density obtained in the step 4, and then ending the simulation.
In the following embodiment of the invention, a simulation model is constructed through an underwater terrain auxiliary navigation model, and the method is realized by adopting computer matlab program simulation.
(1) And (3) carrying out a simulation experiment by utilizing matlab, and evaluating the performance of the method in a one-dimensional state space. The underwater terrain aided navigation system model used in the experiment is as follows:
<math> <mrow> <mover> <mi>x</mi> <mo>&CenterDot;</mo> </mover> <mrow> <mo>(</mo> <mi>t</mi> <mo>)</mo> </mrow> <mo>=</mo> <mi>sin</mi> <mrow> <mo>(</mo> <mi>x</mi> <mo>/</mo> <mn>2</mn> <mo>)</mo> </mrow> <mo>+</mo> <mi>w</mi> <mrow> <mo>(</mo> <mi>t</mi> <mo>)</mo> </mrow> </mrow> </math>
z(k)=h(xk,tk)+e(k)
wherein: e [ wwT]=0.0012,E[eeT]=0.52,h(xk,tk)=xk
Selecting a projection interval [ -4, 4 [ -4]And a segmentation interval xi-4+ i/5, i-0, 1, 2., 40, with the initial state being a normal distribution, initial state x0=0.5,P0The number of particles is 500, the simulation time is 50 times, and the time interval Δ t is 0.1 second.
In the embodiment of the invention, the method is adopted to solve the underwater terrain navigation random differential model, and part of experimental processes are shown in figure 2 and table 1:
table 1 integral value of partial probability density in experiment
Figure BDA0000058244840000096
The simulation results in fig. 2 and table 1 show that the filtering method of the present invention can approximate the prior probability density of the motion state of the system submersible in the one-dimensional space. In fig. 2, spline represents the method of the present invention, the comparison method is a particle filtering method (PF), and both spline and PF are methods for solving recursive bayesian estimation, one is to perform piecewise approximation on a probability density function of a motion state of a submersible vehicle in a function space, and the other is to perform approximation on state distribution in the motion state space of the submersible vehicle. In fig. 2 (d) it can be seen that small variations occur near position 1, for reasons that may be: the selection of cubic spline interpolation points in the method has deviation; (II) may be related to the cubic spline requirement to satisfy the property of second order continuous conductance; and thirdly, the projection interval is not properly selected, so that the curve is concave-convex. From table 1, it is basically feasible to approximate the probability density of the system using the method of the present invention. The probability density of the system is based on the posterior probability density, and the reference of comparison is the integral property of meeting the probability density.
As shown in fig. 3A and 3B, the time interval Δ t is 0.1 second, and the simulation time ST is 50 times, and the comparison between the position average and the position standard deviation obtained by the simulation using the particle filter method and the method of the present invention is shown. As shown in fig. 4A and 4B, the time interval Δ t is 0.01 seconds, the simulation time ST is 50 times, and the comparison between the position average and the position standard deviation obtained by the simulation using the particle filter method and the method of the present invention is shown. Fig. 3A and fig. 4A show that the overall probability distribution of the two methods is relatively close to the real situation, and when different time intervals are selected, the effect is not changed greatly, so that the method of the present invention can track the evolution of the motion state of the submersible vehicle. It can be seen from fig. 3B and 4B that the position standard deviation described by the method of the present invention converges, and the convergence speed and the convergence smoothness are better compared with the particle filtering method.
Fig. 5A and 5B are overall comparison diagrams of two methods adopted in the embodiment of the present invention. Fig. 5A is a schematic diagram showing a comparison between root mean square errors of the moving states of the submersible vehicles in the two methods, wherein the degree of dispersion of the observation points obtained by the method of the present invention is not much different from the degree of dispersion obtained by the particle filtering method. FIG. 5B is a schematic diagram showing the comparison of the standard deviation of the moving state of the submersible vehicle in the two methods, and it can be seen that the degree of deviation of the estimated value of the method of the present invention from the true value is better than that of the particle filtering method.
The above embodiment illustrates that the solution of the method of the present invention, which adopts cubic spline interpolation to approximate the navigation random differential model, has high estimation accuracy, convergence rate and convergence smoothness, and the filtering method of the present invention can better track the change of the motion state of the submersible vehicle.

Claims (5)

1. A nonlinear filtering method for underwater navigation is characterized in that a state differential and measurement discrete equation is established for an underwater terrain aided navigation system, a weak solution equation used for representing the motion state of a submersible vehicle is obtained, and then the motion state of the submersible vehicle is estimated by approximating the weak solution equation through the following steps:
step one, taking the conditional probability density of the initial time as normal distribution, and selecting a projection interval [ a, b ]]And a segmentation interval a ═ x0<x1<x2<...<xnB, constructing triplicate samplesStripe interpolation function pi(x):
<math> <mrow> <msub> <mi>p</mi> <mi>i</mi> </msub> <mrow> <mo>(</mo> <mi>x</mi> <mo>)</mo> </mrow> <mo>=</mo> <msub> <mi>M</mi> <mrow> <mi>i</mi> <mo>-</mo> <mn>1</mn> </mrow> </msub> <mfrac> <msup> <mrow> <mo>(</mo> <msub> <mi>x</mi> <mi>i</mi> </msub> <mo>-</mo> <mi>x</mi> <mo>)</mo> </mrow> <mn>3</mn> </msup> <msub> <mrow> <mn>6</mn> <mi>h</mi> </mrow> <mi>i</mi> </msub> </mfrac> <mo>+</mo> <msub> <mi>M</mi> <mi>i</mi> </msub> <mfrac> <msup> <mrow> <mo>(</mo> <mi>x</mi> <mo>-</mo> <msub> <mi>x</mi> <mrow> <mi>i</mi> <mo>-</mo> <mn>1</mn> </mrow> </msub> <mo>)</mo> </mrow> <mn>3</mn> </msup> <msub> <mrow> <mn>6</mn> <mi>h</mi> </mrow> <mi>i</mi> </msub> </mfrac> <mo>+</mo> <msub> <mi>A</mi> <mi>i</mi> </msub> <mrow> <mo>(</mo> <mi>x</mi> <mo>-</mo> <msub> <mi>x</mi> <mrow> <mi>i</mi> <mo>-</mo> <mn>1</mn> </mrow> </msub> <mo>)</mo> </mrow> <mo>+</mo> <msub> <mi>B</mi> <mi>i</mi> </msub> <mo>,</mo> <mi>x</mi> <mo>&Element;</mo> <mo>[</mo> <msub> <mi>x</mi> <mrow> <mi>i</mi> <mo>-</mo> <mn>1</mn> </mrow> </msub> <mo>,</mo> <msub> <mi>x</mi> <mi>i</mi> </msub> <mo>]</mo> <mo>,</mo> <mi>i</mi> <mo>=</mo> <mn>1,2</mn> <mo>,</mo> <mo>&CenterDot;</mo> <mo>&CenterDot;</mo> <mo>&CenterDot;</mo> <mo>,</mo> <mi>n</mi> <mo>-</mo> <mo>-</mo> <mo>-</mo> <mrow> <mo>(</mo> <mn>1</mn> <mo>)</mo> </mrow> </mrow> </math>
Wherein A isi,BiAs an integral constant with respect to time, a priori coefficient Mi=p″(xi),p″(xi) Interpolating the function p (x) at node x for a cubic splineiThe second derivative of (a), n represents the number of segment intervals and is an integer greater than 0, hiDenotes the length of the i-th segmentation interval, hi=xi-xi-1
The conditional probability density satisfies the forward kolmogorov equation:
<math> <mrow> <mi>L</mi> <mrow> <mo>(</mo> <mi>p</mi> <mo>)</mo> </mrow> <mo>=</mo> <mfrac> <mrow> <mo>&PartialD;</mo> <mi>p</mi> </mrow> <mrow> <mo>&PartialD;</mo> <mi>t</mi> </mrow> </mfrac> <mo>=</mo> <mfrac> <mn>1</mn> <mn>2</mn> </mfrac> <munderover> <mi>&Sigma;</mi> <mrow> <mi>r</mi> <mo>,</mo> <mi>s</mi> <mo>=</mo> <mn>1</mn> </mrow> <mi>m</mi> </munderover> <mfrac> <mrow> <msup> <mo>&PartialD;</mo> <mn>2</mn> </msup> <mrow> <mo>(</mo> <mi>g</mi> <mrow> <mo>(</mo> <mi>x</mi> <mo>,</mo> <mi>t</mi> <mo>)</mo> </mrow> <mi>Q</mi> <mrow> <mo>(</mo> <mi>t</mi> <mo>)</mo> </mrow> <msup> <mi>g</mi> <mi>T</mi> </msup> <mrow> <mo>(</mo> <mi>x</mi> <mo>,</mo> <mi>t</mi> <mo>)</mo> </mrow> <mo>&CenterDot;</mo> <mi>p</mi> <mo>)</mo> </mrow> </mrow> <mrow> <mo>&PartialD;</mo> <msub> <mi>x</mi> <mi>r</mi> </msub> <mo>&PartialD;</mo> <msub> <mi>x</mi> <mi>s</mi> </msub> </mrow> </mfrac> <mo>-</mo> <munderover> <mi>&Sigma;</mi> <mrow> <mi>r</mi> <mo>=</mo> <mn>1</mn> </mrow> <mi>m</mi> </munderover> <mfrac> <mrow> <mo>&PartialD;</mo> <mrow> <mo>(</mo> <mi>f</mi> <mrow> <mo>(</mo> <mi>x</mi> <mo>,</mo> <mi>t</mi> <mo>)</mo> </mrow> <mo>&CenterDot;</mo> <mi>p</mi> <mo>)</mo> </mrow> </mrow> <mrow> <mo>&PartialD;</mo> <msub> <mi>x</mi> <mi>r</mi> </msub> </mrow> </mfrac> <mo>-</mo> <mo>-</mo> <mo>-</mo> <mrow> <mo>(</mo> <mn>2</mn> <mo>)</mo> </mrow> </mrow> </math>
wherein p represents conditional probability density, t represents time, f (x, t) represents the relation between the change of the motion state of the submersible vehicle and the motion state of the submersible vehicle, g (x, t) represents noise diffusion, Q (t) is covariance of process noise, m represents the dimension of the motion state space of the submersible vehicle, and x represents the dimension of the motion state space of the submersible vehiclerAnd xsCoordinates representing an x-vector in an m-dimensional space; l (p) represents the forward Kolmogoroff operator;
step two, obtaining the value of an interpolation point through a posterior probability density function of the previous moment, constructing the interpolation point of a cubic spline interpolation function of the current moment by utilizing a forward Kolmogorov equation, and substituting the interpolation point into a formula (1) to obtain a formula Mi,Mi-1Integral constant A of expressioni,BiThereby obtaining a product containing onlyA prior probability density function of the coefficients is examined;
step three, listing n +1 equation sets by utilizing the first-order continuous derivative and boundary conditions of the cubic spline interpolation function at each node, and solving the prior coefficient M by using a pursuit methodiA priori coefficient MiAfter the formula (1) is substituted, obtaining the prior probability density of the current moment;
determining likelihood probability density according to the measurement information of the current moment, and substituting the prior probability density and the likelihood probability density into a Bayes formula to obtain the posterior probability density of the motion state of the submersible vehicle at the current moment;
step five, judging whether the simulation time is up, if not, turning to the step two to continue execution; if the simulation time is up, the simulation result is output, and the simulation is finished.
2. The nonlinear filtering method for underwater navigation according to claim 1, wherein the second step is specifically:
first, at node xi、xi-1A cubic spline interpolation function p (x)i)、p(xi-1) Satisfies the forward kolmogorov equation: <math> <mrow> <mi>L</mi> <mrow> <mo>(</mo> <mi>p</mi> <mrow> <mo>(</mo> <msub> <mi>x</mi> <mi>i</mi> </msub> <mo>)</mo> </mrow> <mo>)</mo> </mrow> <mo>=</mo> <mfrac> <mrow> <mo>&PartialD;</mo> <mi>p</mi> <mrow> <mo>(</mo> <mi>x</mi> <mo>)</mo> </mrow> </mrow> <mrow> <mo>&PartialD;</mo> <mi>t</mi> </mrow> </mfrac> <msub> <mo>|</mo> <mrow> <mi>x</mi> <mo>=</mo> <msub> <mi>x</mi> <mi>i</mi> </msub> </mrow> </msub> <mo>,</mo> <mi>L</mi> <mrow> <mo>(</mo> <mi>p</mi> <mrow> <mo>(</mo> <msub> <mi>x</mi> <mrow> <mi>i</mi> <mo>-</mo> <mn>1</mn> </mrow> </msub> <mo>)</mo> </mrow> <mo>)</mo> </mrow> <mo>=</mo> <mfrac> <mrow> <mo>&PartialD;</mo> <mi>p</mi> <mrow> <mo>(</mo> <mi>x</mi> <mo>)</mo> </mrow> </mrow> <mrow> <mo>&PartialD;</mo> <mi>t</mi> </mrow> </mfrac> <msub> <mo>|</mo> <mrow> <mi>x</mi> <mo>=</mo> <msub> <mi>x</mi> <mrow> <mi>i</mi> <mo>-</mo> <mn>1</mn> </mrow> </msub> </mrow> </msub> <mo>,</mo> </mrow> </math> simple notes <math> <mrow> <mi>g</mi> <mrow> <mo>(</mo> <mi>x</mi> <mo>,</mo> <mi>t</mi> <mo>)</mo> </mrow> <mover> <mo>=</mo> <mi>&Delta;</mi> </mover> <mi>g</mi> <mo>,</mo> <mi>Q</mi> <mrow> <mo>(</mo> <mi>t</mi> <mo>)</mo> </mrow> <mover> <mo>=</mo> <mi>&Delta;</mi> </mover> <mi>Q</mi> <mo>,</mo> <mi>f</mi> <mrow> <mo>(</mo> <mi>x</mi> <mo>,</mo> <mi>t</mi> <mo>)</mo> </mrow> <mover> <mo>=</mo> <mi>&Delta;</mi> </mover> <mi>f</mi> <mo>,</mo> </mrow> </math> Comprises the following steps:
<math> <mrow> <mfrac> <mrow> <mo>&PartialD;</mo> <mrow> <mo>(</mo> <mi>gQ</mi> <msup> <mi>g</mi> <mi>T</mi> </msup> <mo>&CenterDot;</mo> <mi>p</mi> <mo>)</mo> </mrow> </mrow> <mrow> <mo>&PartialD;</mo> <msub> <mi>x</mi> <mi>s</mi> </msub> </mrow> </mfrac> <mo>=</mo> <mfrac> <mrow> <mo>&PartialD;</mo> <mrow> <mo>(</mo> <mi>gQ</mi> <msup> <mi>g</mi> <mi>T</mi> </msup> <mo>)</mo> </mrow> </mrow> <mrow> <mo>&PartialD;</mo> <msub> <mi>x</mi> <mi>s</mi> </msub> </mrow> </mfrac> <mo>&CenterDot;</mo> <mi>p</mi> <mo>+</mo> <mi>gQ</mi> <msup> <mi>g</mi> <mi>T</mi> </msup> <mo>&CenterDot;</mo> <mfrac> <mrow> <mo>&PartialD;</mo> <mrow> <mo>(</mo> <mi>p</mi> <mo>)</mo> </mrow> </mrow> <mrow> <mo>&PartialD;</mo> <msub> <mi>x</mi> <mi>s</mi> </msub> </mrow> </mfrac> <mo>,</mo> </mrow> </math> <math> <mrow> <mfrac> <mrow> <mo>&PartialD;</mo> <mrow> <mo>(</mo> <mi>f</mi> <mo>&CenterDot;</mo> <mi>p</mi> <mo>)</mo> </mrow> </mrow> <mrow> <mo>&PartialD;</mo> <msub> <mi>x</mi> <mi>r</mi> </msub> </mrow> </mfrac> <mo>=</mo> <mfrac> <mrow> <mo>&PartialD;</mo> <mrow> <mo>(</mo> <mi>f</mi> <mo>)</mo> </mrow> </mrow> <mrow> <mo>&PartialD;</mo> <msub> <mi>x</mi> <mi>r</mi> </msub> </mrow> </mfrac> <mo>&CenterDot;</mo> <mi>p</mi> <mo>+</mo> <mi>f</mi> <mo>&CenterDot;</mo> <mfrac> <mrow> <mo>&PartialD;</mo> <mrow> <mo>(</mo> <mi>p</mi> <mo>)</mo> </mrow> </mrow> <mrow> <mo>&PartialD;</mo> <msub> <mi>x</mi> <mi>r</mi> </msub> </mrow> </mfrac> <mo>,</mo> </mrow> </math>
then, the following steps are obtained:
<math> <mrow> <mfrac> <mrow> <msup> <mo>&PartialD;</mo> <mn>2</mn> </msup> <mrow> <mo>(</mo> <mi>gQ</mi> <msup> <mi>g</mi> <mi>T</mi> </msup> <mo>&CenterDot;</mo> <mi>p</mi> <mo>)</mo> </mrow> </mrow> <mrow> <mo>&PartialD;</mo> <msub> <mi>x</mi> <mi>r</mi> </msub> <mo>&PartialD;</mo> <msub> <mi>x</mi> <mi>s</mi> </msub> </mrow> </mfrac> <mo>=</mo> <mfrac> <mrow> <msup> <mo>&PartialD;</mo> <mn>2</mn> </msup> <mrow> <mo>(</mo> <mi>gQ</mi> <msup> <mi>g</mi> <mi>T</mi> </msup> <mo>)</mo> </mrow> </mrow> <mrow> <mo>&PartialD;</mo> <msub> <mi>x</mi> <mi>r</mi> </msub> <mo>&PartialD;</mo> <msub> <mi>x</mi> <mi>s</mi> </msub> </mrow> </mfrac> <mo>&CenterDot;</mo> <mi>p</mi> <mo>+</mo> <mn>2</mn> <mo>&CenterDot;</mo> <mfrac> <mrow> <mo>&PartialD;</mo> <mrow> <mo>(</mo> <mi>gQ</mi> <msup> <mi>g</mi> <mi>T</mi> </msup> <mo>)</mo> </mrow> </mrow> <mrow> <mo>&PartialD;</mo> <msub> <mi>x</mi> <mi>r</mi> </msub> </mrow> </mfrac> <mo>&CenterDot;</mo> <mfrac> <mrow> <mo>&PartialD;</mo> <mrow> <mo>(</mo> <mi>p</mi> <mo>)</mo> </mrow> </mrow> <mrow> <mo>&PartialD;</mo> <msub> <mi>x</mi> <mi>s</mi> </msub> </mrow> </mfrac> <mo>+</mo> <mi>gQ</mi> <msup> <mi>g</mi> <mi>T</mi> </msup> <mo>&CenterDot;</mo> <mfrac> <mrow> <msup> <mo>&PartialD;</mo> <mn>2</mn> </msup> <mrow> <mo>(</mo> <mi>p</mi> <mo>)</mo> </mrow> </mrow> <mrow> <mo>&PartialD;</mo> <msub> <mi>x</mi> <mi>r</mi> </msub> <mo>&PartialD;</mo> <msub> <mi>x</mi> <mi>s</mi> </msub> </mrow> </mfrac> <mo>-</mo> <mo>-</mo> <mo>-</mo> <mrow> <mo>(</mo> <mn>3</mn> <mo>)</mo> </mrow> </mrow> </math>
further obtained by formula (3):
<math> <mrow> <mi>L</mi> <mrow> <mo>(</mo> <mi>p</mi> <mrow> <mo>(</mo> <mi>x</mi> <mo>)</mo> </mrow> <mo>)</mo> </mrow> <mo>=</mo> <mfrac> <mrow> <mo>&PartialD;</mo> <mi>p</mi> </mrow> <mrow> <mo>&PartialD;</mo> <mi>t</mi> </mrow> </mfrac> <mo>=</mo> <mfrac> <mn>1</mn> <mn>2</mn> </mfrac> <munderover> <mi>&Sigma;</mi> <mrow> <mi>r</mi> <mo>,</mo> <mi>s</mi> <mo>=</mo> <mn>1</mn> </mrow> <mi>n</mi> </munderover> <mo>[</mo> <mfrac> <mrow> <msup> <mo>&PartialD;</mo> <mn>2</mn> </msup> <mrow> <mo>(</mo> <mi>gQ</mi> <msup> <mi>g</mi> <mi>T</mi> </msup> <mo>)</mo> </mrow> </mrow> <mrow> <mo>&PartialD;</mo> <msub> <mi>x</mi> <mi>r</mi> </msub> <mo>&PartialD;</mo> <msub> <mi>x</mi> <mi>s</mi> </msub> </mrow> </mfrac> <mo>&CenterDot;</mo> <mi>p</mi> <mo>+</mo> <mn>2</mn> <mo>&CenterDot;</mo> <mfrac> <mrow> <mo>&PartialD;</mo> <mrow> <mo>(</mo> <mi>gQ</mi> <msup> <mi>g</mi> <mi>T</mi> </msup> <mo>)</mo> </mrow> </mrow> <mrow> <mo>&PartialD;</mo> <msub> <mi>x</mi> <mi>r</mi> </msub> </mrow> </mfrac> <mo>&CenterDot;</mo> <mfrac> <mrow> <mo>&PartialD;</mo> <mrow> <mo>(</mo> <mi>P</mi> <mo>)</mo> </mrow> </mrow> <mrow> <mo>&PartialD;</mo> <msub> <mi>x</mi> <mi>s</mi> </msub> </mrow> </mfrac> <mo>+</mo> <mi>gQ</mi> <msup> <mi>g</mi> <mi>T</mi> </msup> <mo>&CenterDot;</mo> <mfrac> <mrow> <msup> <mo>&PartialD;</mo> <mn>2</mn> </msup> <mrow> <mo>(</mo> <mi>p</mi> <mo>)</mo> </mrow> </mrow> <mrow> <mo>&PartialD;</mo> <msub> <mi>x</mi> <mi>r</mi> </msub> <mo>&PartialD;</mo> <msub> <mi>x</mi> <mi>s</mi> </msub> </mrow> </mfrac> <mo>]</mo> <mo>-</mo> <munderover> <mi>&Sigma;</mi> <mrow> <mi>r</mi> <mo>=</mo> <mn>1</mn> </mrow> <mi>n</mi> </munderover> <mo>[</mo> <mfrac> <mrow> <mo>&PartialD;</mo> <mrow> <mo>(</mo> <mi>f</mi> <mo>)</mo> </mrow> </mrow> <mrow> <mo>&PartialD;</mo> <msub> <mi>x</mi> <mi>r</mi> </msub> </mrow> </mfrac> <mo>&CenterDot;</mo> <mi>p</mi> <mo>+</mo> <mi>f</mi> <mo>&CenterDot;</mo> <mfrac> <mrow> <mo>&PartialD;</mo> <mrow> <mo>(</mo> <mi>p</mi> <mo>)</mo> </mrow> </mrow> <mrow> <mo>&PartialD;</mo> <msub> <mi>x</mi> <mi>r</mi> </msub> </mrow> </mfrac> <mo>]</mo> <mo>-</mo> <mo>-</mo> <mo>-</mo> <mrow> <mo>(</mo> <mn>4</mn> <mo>)</mo> </mrow> </mrow> </math>
for brevity, the following notes: <math> <mrow> <mfrac> <mn>1</mn> <mn>2</mn> </mfrac> <munderover> <mi>&Sigma;</mi> <mrow> <mi>r</mi> <mo>,</mo> <mi>s</mi> <mo>=</mo> <mn>1</mn> </mrow> <mi>n</mi> </munderover> <mfrac> <mrow> <msup> <mo>&PartialD;</mo> <mn>2</mn> </msup> <mrow> <mo>(</mo> <mi>gQ</mi> <msup> <mi>g</mi> <mi>T</mi> </msup> <mo>)</mo> </mrow> </mrow> <mrow> <mo>&PartialD;</mo> <msub> <mi>x</mi> <mi>r</mi> </msub> <mo>&PartialD;</mo> <msub> <mi>x</mi> <mi>s</mi> </msub> </mrow> </mfrac> <mo>-</mo> <munderover> <mi>&Sigma;</mi> <mrow> <mi>r</mi> <mo>=</mo> <mn>1</mn> </mrow> <mi>n</mi> </munderover> <mfrac> <mrow> <mo>&PartialD;</mo> <mrow> <mo>(</mo> <mi>f</mi> <mo>)</mo> </mrow> </mrow> <mrow> <mo>&PartialD;</mo> <msub> <mi>x</mi> <mi>r</mi> </msub> </mrow> </mfrac> <mover> <mo>=</mo> <mi>&Delta;</mi> </mover> <msub> <mi>&Delta;</mi> <mn>1</mn> </msub> <mo>,</mo> </mrow> </math> <math> <mrow> <munderover> <mi>&Sigma;</mi> <mrow> <mi>r</mi> <mo>,</mo> <mi>s</mi> <mo>=</mo> <mn>1</mn> </mrow> <mi>n</mi> </munderover> <mfrac> <mrow> <mo>&PartialD;</mo> <mrow> <mo>(</mo> <mi>gQ</mi> <msup> <mi>g</mi> <mi>T</mi> </msup> <mo>)</mo> </mrow> </mrow> <mrow> <mo>&PartialD;</mo> <msub> <mi>x</mi> <mi>r</mi> </msub> </mrow> </mfrac> <mo>-</mo> <mi>f</mi> <mover> <mo>=</mo> <mi>&Delta;</mi> </mover> <msub> <mi>&Delta;</mi> <mn>2</mn> </msub> <mo>,</mo> </mrow> </math> <math> <mrow> <mi>gQ</mi> <msup> <mi>g</mi> <mi>T</mi> </msup> <mover> <mo>=</mo> <mi>&Delta;</mi> </mover> <msub> <mi>&Delta;</mi> <mn>3</mn> </msub> <mo>,</mo> </mrow> </math>
then, when g, Q, f are independent of time t, then Δ123Also independent of time t, formula (5) is obtained:
<math> <mrow> <msubsup> <mo>&Integral;</mo> <msub> <mi>t</mi> <mi>k</mi> </msub> <msub> <mi>t</mi> <mrow> <mi>k</mi> <mo>+</mo> <mn>1</mn> </mrow> </msub> </msubsup> <mi>L</mi> <mrow> <mo>(</mo> <mi>p</mi> <mrow> <mo>(</mo> <mi>x</mi> <mo>)</mo> </mrow> <mo>)</mo> </mrow> <mo>=</mo> <msubsup> <mo>&Integral;</mo> <msub> <mi>t</mi> <mi>k</mi> </msub> <msub> <mi>t</mi> <mrow> <mi>k</mi> <mo>+</mo> <mn>1</mn> </mrow> </msub> </msubsup> <mfrac> <mrow> <mo>&PartialD;</mo> <mi>p</mi> </mrow> <mrow> <mo>&PartialD;</mo> <mi>t</mi> </mrow> </mfrac> <mi>dt</mi> <mo>=</mo> <msubsup> <mo>&Integral;</mo> <msub> <mi>t</mi> <mi>k</mi> </msub> <msub> <mi>t</mi> <mrow> <mi>k</mi> <mo>+</mo> <mn>1</mn> </mrow> </msub> </msubsup> <mrow> <mo>(</mo> <msub> <mi>&Delta;</mi> <mn>1</mn> </msub> <mi>p</mi> <mo>+</mo> <msub> <mi>&Delta;</mi> <mn>2</mn> </msub> <mfrac> <mrow> <mo>&PartialD;</mo> <mi>p</mi> </mrow> <mrow> <mo>&PartialD;</mo> <mi>x</mi> </mrow> </mfrac> <mo>+</mo> <msub> <mi>&Delta;</mi> <mn>3</mn> </msub> <mfrac> <mrow> <msup> <mo>&PartialD;</mo> <mn>2</mn> </msup> <mi>p</mi> </mrow> <mrow> <mo>&PartialD;</mo> <msup> <mi>x</mi> <mn>2</mn> </msup> </mrow> </mfrac> <mo>)</mo> </mrow> <mi>dt</mi> <mo>-</mo> <mo>-</mo> <mo>-</mo> <mrow> <mo>(</mo> <mn>5</mn> <mo>)</mo> </mrow> </mrow> </math>
further, formula (6) is obtained from the median theorem of integration:
<math> <mrow> <msup> <mi>p</mi> <msub> <mi>t</mi> <mrow> <mi>k</mi> <mo>+</mo> <mn>1</mn> </mrow> </msub> </msup> <mrow> <mo>(</mo> <mi>x</mi> <mo>)</mo> </mrow> <mo>=</mo> <msup> <mi>p</mi> <msub> <mi>t</mi> <mi>k</mi> </msub> </msup> <mrow> <mo>(</mo> <mi>x</mi> <mo>)</mo> </mrow> <mo>+</mo> <mrow> <mo>(</mo> <msub> <mi>&Delta;</mi> <mn>1</mn> </msub> <msup> <mi>p</mi> <msub> <mi>t</mi> <mi>k</mi> </msub> </msup> <mo>+</mo> <msub> <mi>&Delta;</mi> <mn>2</mn> </msub> <mfrac> <mrow> <mo>&PartialD;</mo> <msup> <mi>p</mi> <msub> <mi>t</mi> <mi>k</mi> </msub> </msup> </mrow> <mrow> <mo>&PartialD;</mo> <mi>x</mi> </mrow> </mfrac> <mo>+</mo> <msub> <mi>&Delta;</mi> <mn>3</mn> </msub> <mfrac> <mrow> <msup> <mo>&PartialD;</mo> <mn>2</mn> </msup> <msup> <mi>p</mi> <msub> <mi>t</mi> <mi>k</mi> </msub> </msup> </mrow> <mrow> <mo>&PartialD;</mo> <msup> <mi>x</mi> <mn>2</mn> </msup> </mrow> </mfrac> <mo>)</mo> </mrow> <mo>&CenterDot;</mo> <mrow> <mo>(</mo> <msub> <mi>t</mi> <mrow> <mi>k</mi> <mo>+</mo> <mn>1</mn> </mrow> </msub> <mo>-</mo> <msub> <mi>t</mi> <mi>k</mi> </msub> <mo>)</mo> </mrow> <mo>-</mo> <mo>-</mo> <mo>-</mo> <mrow> <mo>(</mo> <mn>6</mn> <mo>)</mo> </mrow> </mrow> </math>
wherein,
Figure FDA000018920246000210
respectively, at time tk+1、tkThe cubic spline interpolation function of, said tk+1Represents the k +1 th time, which is the current time, tkIndicating that the kth time is the last time; then t is obtained according to equation (6)k+1At node x at timeiAnd node xi-1Interpolation point of the cubic spline interpolation function of (1):
Figure FDA000018920246000211
finally, the interpolation points are substituted in equation (1) to obtain the integration constant with respect to time:
A i = p i ( x i ) - p i ( x i - 1 ) h i - h i 6 ( M i - M i - 1 ) , B i = p i ( x i - 1 ) - h i 2 6 M i - 1 ;
integrating constant Ai,BiSubstituting formula (1) to obtain the product containing only prior coefficient Mi,Mi-1Prior probability density function of (a):
<math> <mrow> <msub> <mi>p</mi> <mi>i</mi> </msub> <mrow> <mo>(</mo> <mi>x</mi> <mo>)</mo> </mrow> <mo>=</mo> <msub> <mi>M</mi> <mrow> <mi>i</mi> <mo>-</mo> <mn>1</mn> </mrow> </msub> <mfrac> <msup> <mrow> <mo>(</mo> <msub> <mi>x</mi> <mi>i</mi> </msub> <mo>-</mo> <mi>x</mi> <mo>)</mo> </mrow> <mn>3</mn> </msup> <msub> <mrow> <mn>6</mn> <mi>h</mi> </mrow> <mi>i</mi> </msub> </mfrac> <mo>+</mo> <msub> <mi>M</mi> <mrow> <mi>i</mi> <mo>-</mo> <mn>1</mn> </mrow> </msub> <mfrac> <msup> <mrow> <mo>(</mo> <mi>x</mi> <mo>-</mo> <msub> <mi>x</mi> <mrow> <mi>i</mi> <mo>-</mo> <mn>1</mn> </mrow> </msub> <mo>)</mo> </mrow> <mn>3</mn> </msup> <msub> <mrow> <mn>6</mn> <mi>h</mi> </mrow> <mi>i</mi> </msub> </mfrac> <mo>+</mo> <mrow> <mo>(</mo> <msub> <mi>p</mi> <mi>i</mi> </msub> <mrow> <mo>(</mo> <msub> <mi>x</mi> <mrow> <mi>i</mi> <mo>-</mo> <mn>1</mn> </mrow> </msub> <mo>)</mo> </mrow> <mo>-</mo> <mfrac> <msubsup> <mi>h</mi> <mi>i</mi> <mn>2</mn> </msubsup> <mn>6</mn> </mfrac> <msub> <mi>M</mi> <mrow> <mi>i</mi> <mo>-</mo> <mn>1</mn> </mrow> </msub> <mo>)</mo> </mrow> <mo>&CenterDot;</mo> <mfrac> <msub> <mi>x</mi> <mrow> <mi>i</mi> <mo>-</mo> <mi>x</mi> </mrow> </msub> <msub> <mi>h</mi> <mi>i</mi> </msub> </mfrac> <mo>+</mo> <mrow> <mo>(</mo> <msub> <mi>p</mi> <mi>i</mi> </msub> <mrow> <mo>(</mo> <msub> <mi>x</mi> <mi>i</mi> </msub> <mo>)</mo> </mrow> <mo>-</mo> <mfrac> <msubsup> <mi>h</mi> <mi>i</mi> <mn>2</mn> </msubsup> <mn>6</mn> </mfrac> <msub> <mi>M</mi> <mi>i</mi> </msub> <mo>)</mo> </mrow> <mfrac> <mrow> <mi>x</mi> <mo>-</mo> <msub> <mi>x</mi> <mrow> <mi>i</mi> <mo>-</mo> <mn>1</mn> </mrow> </msub> </mrow> <msub> <mi>h</mi> <mi>i</mi> </msub> </mfrac> <mo>,</mo> <mi>x</mi> <mo>&Element;</mo> <mo>[</mo> <msub> <mi>x</mi> <mrow> <mi>i</mi> <mo>-</mo> <mn>1</mn> </mrow> </msub> <mo>,</mo> <msub> <mi>x</mi> <mi>i</mi> </msub> <mo>]</mo> <mo>-</mo> <mo>-</mo> <mo>-</mo> <mrow> <mo>(</mo> <mn>7</mn> <mo>)</mo> </mrow> </mrow> </math>
wherein i is 1,2, …, n.
3. The nonlinear filtering method for underwater navigation according to claim 1, wherein the n +1 equation sets in step three are specifically:
<math> <mrow> <mfrac> <msub> <mi>h</mi> <mi>i</mi> </msub> <mrow> <msub> <mi>h</mi> <mi>i</mi> </msub> <mo>+</mo> <msub> <mi>h</mi> <mrow> <mi>i</mi> <mo>+</mo> <mn>1</mn> </mrow> </msub> </mrow> </mfrac> <msub> <mi>M</mi> <mrow> <mi>i</mi> <mo>-</mo> <mn>1</mn> </mrow> </msub> <mo>+</mo> <msub> <mrow> <mn>2</mn> <mi>M</mi> </mrow> <mi>i</mi> </msub> <mo>+</mo> <mfrac> <msub> <mi>h</mi> <mrow> <mi>i</mi> <mo>+</mo> <mn>1</mn> </mrow> </msub> <mrow> <msub> <mi>h</mi> <mi>i</mi> </msub> <mo>+</mo> <msub> <mi>h</mi> <mrow> <mi>i</mi> <mo>+</mo> <mn>1</mn> </mrow> </msub> </mrow> </mfrac> <msub> <mi>M</mi> <mrow> <mi>i</mi> <mo>+</mo> <mn>1</mn> </mrow> </msub> <mo>=</mo> <mfrac> <mn>6</mn> <mrow> <msub> <mi>h</mi> <mi>i</mi> </msub> <mo>+</mo> <msub> <mi>h</mi> <mrow> <mi>i</mi> <mo>+</mo> <mn>1</mn> </mrow> </msub> </mrow> </mfrac> <mrow> <mo>(</mo> <mfrac> <mrow> <msub> <mi>p</mi> <mi>i</mi> </msub> <mrow> <mo>(</mo> <msub> <mi>x</mi> <mrow> <mi>i</mi> <mo>+</mo> <mn>1</mn> </mrow> </msub> <mo>)</mo> </mrow> <mo>-</mo> <msub> <mi>p</mi> <mi>i</mi> </msub> <mrow> <mo>(</mo> <msub> <mi>x</mi> <mi>i</mi> </msub> <mo>)</mo> </mrow> </mrow> <msub> <mi>h</mi> <mrow> <mi>i</mi> <mo>+</mo> <mn>1</mn> </mrow> </msub> </mfrac> <mo>-</mo> <mfrac> <mrow> <msub> <mi>p</mi> <mi>i</mi> </msub> <mrow> <mo>(</mo> <msub> <mi>x</mi> <mi>i</mi> </msub> <mo>)</mo> </mrow> <msub> <mrow> <mo>-</mo> <mi>p</mi> </mrow> <mi>i</mi> </msub> <mrow> <mo>(</mo> <msub> <mi>x</mi> <mrow> <mi>i</mi> <mo>-</mo> <mn>1</mn> </mrow> </msub> <mo>)</mo> </mrow> </mrow> <msub> <mi>h</mi> <mi>i</mi> </msub> </mfrac> <mo>)</mo> </mrow> <mrow> <mo>(</mo> <mi>i</mi> <mo>=</mo> <mn>1,2</mn> <mo>,</mo> <mo>&CenterDot;</mo> <mo>&CenterDot;</mo> <mo>&CenterDot;</mo> <mo>,</mo> <mi>n</mi> <mo>-</mo> <mn>1</mn> <mo>)</mo> </mrow> <mo>-</mo> <mo>-</mo> <mo>-</mo> <mrow> <mo>(</mo> <mn>8</mn> <mo>)</mo> </mrow> </mrow> </math>
2 M 1 + M 0 = 6 p 0 ( x 1 ) - p 0 ( x 0 ) h 1 2 - - - ( 9 )
M n - 1 + 2 M n = - 6 p n - 1 ( x n ) - p n - 1 ( x n - 1 ) h n 2 - - - ( 10 )
wherein p isi(xi+1)、pi(xi) Respectively represent tk+1At node x at timei+1And node xiA cubic spline interpolation function of (1); obtaining prior coefficient M by using n +1 equation sets through a catch-up methodiThen, the further obtained prior probability density function is:
<math> <mrow> <msub> <mi>p</mi> <mi>i</mi> </msub> <mrow> <mo>(</mo> <mi>x</mi> <mo>)</mo> </mrow> <mo>=</mo> <msub> <mi>M</mi> <mrow> <mi>i</mi> <mo>-</mo> <mn>1</mn> </mrow> </msub> <mfrac> <msup> <mrow> <mo>(</mo> <msub> <mi>x</mi> <mi>i</mi> </msub> <mo>-</mo> <mi>x</mi> <mo>)</mo> </mrow> <mn>3</mn> </msup> <msub> <mrow> <mn>6</mn> <mi>h</mi> </mrow> <mi>i</mi> </msub> </mfrac> <mo>+</mo> <msub> <mi>M</mi> <mi>i</mi> </msub> <mfrac> <msup> <mrow> <mo>(</mo> <mi>x</mi> <mo>-</mo> <msub> <mi>x</mi> <mrow> <mi>i</mi> <mo>-</mo> <mn>1</mn> </mrow> </msub> <mo>)</mo> </mrow> <mn>3</mn> </msup> <msub> <mrow> <mn>6</mn> <mi>h</mi> </mrow> <mi>i</mi> </msub> </mfrac> <mo>+</mo> <mrow> <mo>(</mo> <msub> <mi>p</mi> <mi>i</mi> </msub> <mrow> <mo>(</mo> <msub> <mi>x</mi> <mrow> <mi>i</mi> <mo>-</mo> <mn>1</mn> </mrow> </msub> <mo>)</mo> </mrow> <mo>-</mo> <mfrac> <msubsup> <mi>h</mi> <mi>i</mi> <mn>2</mn> </msubsup> <mn>6</mn> </mfrac> <msub> <mi>M</mi> <mrow> <mi>i</mi> <mo>-</mo> <mn>1</mn> </mrow> </msub> <mo>)</mo> </mrow> <mo>&CenterDot;</mo> <mfrac> <msub> <mi>x</mi> <mrow> <mi>i</mi> <mo>-</mo> <mi>x</mi> </mrow> </msub> <msub> <mi>h</mi> <mi>i</mi> </msub> </mfrac> <mo>-</mo> <mo>-</mo> <mo>-</mo> <mrow> <mo>(</mo> <mn>11</mn> <mo>)</mo> </mrow> </mrow> </math>
<math> <mrow> <mo>+</mo> <mrow> <mo>(</mo> <msub> <mi>p</mi> <mi>i</mi> </msub> <mrow> <mo>(</mo> <msub> <mi>x</mi> <mi>i</mi> </msub> <mo>)</mo> </mrow> <mo>-</mo> <mfrac> <msubsup> <mi>h</mi> <mi>i</mi> <mn>2</mn> </msubsup> <mn>6</mn> </mfrac> <msub> <mi>M</mi> <mi>i</mi> </msub> <mo>)</mo> </mrow> <mfrac> <mrow> <mi>x</mi> <mo>-</mo> <msub> <mi>x</mi> <mrow> <mi>i</mi> <mo>-</mo> <mn>1</mn> </mrow> </msub> </mrow> <msub> <mi>h</mi> <mi>i</mi> </msub> </mfrac> <mo>,</mo> <mi>x</mi> <mo>&Element;</mo> <mo>[</mo> <msub> <mi>x</mi> <mrow> <mi>i</mi> <mo>-</mo> <mn>1</mn> </mrow> </msub> <mo>,</mo> <msub> <mi>x</mi> <mi>i</mi> </msub> <mo>]</mo> </mrow> </math>
equation (11) is the piecewise function of the prior probability density of the motion state of the submersible vehicle at the current moment.
4. The nonlinear filtering method for underwater navigation according to claim 1, wherein the fourth step is specifically:
first, a likelihood probability density p (z) of the current time is determinedk+1The/x) is:
<math> <mrow> <mi>p</mi> <mrow> <mo>(</mo> <msub> <mi>z</mi> <mrow> <mi>k</mi> <mo>+</mo> <mn>1</mn> </mrow> </msub> <mo>/</mo> <mi>x</mi> <mo>)</mo> </mrow> <mo>=</mo> <mfrac> <mrow> <mi>exp</mi> <mo>{</mo> <mo>-</mo> <mfrac> <mn>1</mn> <mn>2</mn> </mfrac> <msup> <mrow> <mo>(</mo> <msub> <mi>z</mi> <mi>k</mi> </msub> <mo>-</mo> <mi>h</mi> <mrow> <mo>(</mo> <mi>x</mi> <mo>,</mo> <msub> <mi>t</mi> <mi>k</mi> </msub> <mo>)</mo> </mrow> <mo>)</mo> </mrow> <mi>T</mi> </msup> <msup> <msub> <mi>R</mi> <mi>k</mi> </msub> <mrow> <mo>-</mo> <mn>1</mn> </mrow> </msup> <mrow> <mo>(</mo> <msub> <mi>z</mi> <mi>k</mi> </msub> <mo>-</mo> <mi>h</mi> <mrow> <mo>(</mo> <mi>x</mi> <mo>,</mo> <msub> <mi>t</mi> <mi>k</mi> </msub> <mo>)</mo> </mrow> <mo>)</mo> </mrow> <mo>}</mo> </mrow> <msqrt> <msup> <mrow> <mo>(</mo> <mn>2</mn> <mi>&pi;</mi> <mo>)</mo> </mrow> <mi>m</mi> </msup> <mi>det</mi> <msub> <mi>R</mi> <mi>k</mi> </msub> </msqrt> </mfrac> <mo>-</mo> <mo>-</mo> <mo>-</mo> <mrow> <mo>(</mo> <mn>12</mn> <mo>)</mo> </mrow> </mrow> </math>
wherein m represents the dimension of the motion state space of the submersible vehicle, RkRepresents the covariance of the metrology noise, h (x, t)k) Representing a measurement function, tk+1Represents the k +1 th time and is the current time;
then the obtained prior probability density and likelihood probability densitySubstituting into Bayes formula to obtain the posterior probability density of the current time, which is the segment function pi(x,tk+1/zk+1):
<math> <mrow> <msub> <mi>p</mi> <mi>i</mi> </msub> <mrow> <mo>(</mo> <mi>x</mi> <mo>,</mo> <msub> <mi>t</mi> <mrow> <mi>k</mi> <mo>+</mo> <mn>1</mn> </mrow> </msub> <mo>/</mo> <msub> <mi>z</mi> <mrow> <mi>k</mi> <mo>+</mo> <mn>1</mn> </mrow> </msub> <mo>)</mo> </mrow> <mo>=</mo> <mfrac> <mrow> <mi>p</mi> <mrow> <mo>(</mo> <msub> <mi>z</mi> <mrow> <mi>k</mi> <mo>+</mo> <mn>1</mn> </mrow> </msub> <mo>/</mo> <mi>x</mi> <mo>)</mo> </mrow> <msub> <mi>p</mi> <mi>i</mi> </msub> <mrow> <mo>(</mo> <mi>x</mi> <mo>)</mo> </mrow> </mrow> <mrow> <msub> <mo>&Integral;</mo> <mi>&Omega;</mi> </msub> <mi>p</mi> <mrow> <mo>(</mo> <msub> <mi>z</mi> <mrow> <mi>k</mi> <mo>+</mo> <mn>1</mn> </mrow> </msub> <mo>/</mo> <mi>x</mi> <mo>)</mo> </mrow> <msub> <mi>p</mi> <mi>i</mi> </msub> <mrow> <mo>(</mo> <mi>x</mi> <mo>)</mo> </mrow> <mi>dx</mi> </mrow> </mfrac> <mo>,</mo> <mi>x</mi> <mo>&Element;</mo> <mo>[</mo> <msub> <mi>x</mi> <mrow> <mi>i</mi> <mo>-</mo> <mn>1</mn> </mrow> </msub> <mo>,</mo> <msub> <mi>x</mi> <mi>i</mi> </msub> <mo>]</mo> <mrow> <mo>(</mo> <mi>i</mi> <mo>=</mo> <mn>1,2</mn> <mo>,</mo> <mo>&CenterDot;</mo> <mo>&CenterDot;</mo> <mo>&CenterDot;</mo> <mo>,</mo> <mi>n</mi> <mo>)</mo> </mrow> <mo>-</mo> <mo>-</mo> <mo>-</mo> <mrow> <mo>(</mo> <mn>13</mn> <mo>)</mo> </mrow> </mrow> </math>
Wherein z iskIndicating measurement information at the k-th time, zk+1Measurement information indicating the k +1 th time; Ω is the sample space.
5. The nonlinear filtering method for underwater navigation according to claim 1, wherein the simulation result in the fifth step is the mean and variance of the posterior probability density of the motion state of the submersible vehicle obtained in the fourth step:
the mean value Ex of the posterior probability density is as follows:
Figure FDA00001892024600035
wherein n represents the number of segment intervals, pi(x,tk+1/zk+1) Is a posterior probability density piecewise function;
the variance of the posterior probability density
Figure FDA00001892024600036
Comprises the following steps: <math> <mrow> <mi>cov</mi> <mrow> <mo>(</mo> <mover> <mi>x</mi> <mo>^</mo> </mover> <mo>)</mo> </mrow> <mo>=</mo> <mi>E</mi> <mrow> <mo>(</mo> <mi>x</mi> <mo>&CenterDot;</mo> <mi>x</mi> <mo>)</mo> </mrow> <mo>-</mo> <mrow> <mo>(</mo> <mi>Ex</mi> <mo>)</mo> </mrow> <mo>&CenterDot;</mo> <mrow> <mo>(</mo> <mi>Ex</mi> <mo>)</mo> </mrow> <mo>.</mo> </mrow> </math>
CN201110108952A 2011-04-28 2011-04-28 Nonlinear filtering method for underwater navigation Expired - Fee Related CN102252672B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201110108952A CN102252672B (en) 2011-04-28 2011-04-28 Nonlinear filtering method for underwater navigation

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201110108952A CN102252672B (en) 2011-04-28 2011-04-28 Nonlinear filtering method for underwater navigation

Publications (2)

Publication Number Publication Date
CN102252672A CN102252672A (en) 2011-11-23
CN102252672B true CN102252672B (en) 2012-10-10

Family

ID=44980089

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201110108952A Expired - Fee Related CN102252672B (en) 2011-04-28 2011-04-28 Nonlinear filtering method for underwater navigation

Country Status (1)

Country Link
CN (1) CN102252672B (en)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104021289B (en) * 2014-06-04 2017-04-26 山西大学 Non-Gaussian unsteady-state noise modeling method
CN105157704A (en) * 2015-06-03 2015-12-16 北京理工大学 Bayesian estimation-based particle filter gravity-assisted inertial navigation matching method
CN105513091A (en) * 2015-11-26 2016-04-20 哈尔滨工程大学 Dual-Bayesian estimation-based motion state estimation method for underwater motion body
CN114839866B (en) * 2022-03-21 2024-08-02 哈尔滨工程大学 Curve path tracking control method for underwater snake-shaped robot
CN114462458B (en) * 2022-04-11 2022-07-08 自然资源部第一海洋研究所 Ship underwater signal noise reduction and target enhancement method

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5991525A (en) * 1997-08-22 1999-11-23 Voyan Technology Method for real-time nonlinear system state estimation and control
US7526414B2 (en) * 2003-07-25 2009-04-28 Siemens Corporate Research, Inc. Density morphing and mode propagation for Bayesian filtering
CN101226630B (en) * 2007-09-27 2010-08-25 四川虹微技术有限公司 Interpolation method based on cubic spline function

Non-Patent Citations (4)

* Cited by examiner, † Cited by third party
Title
N.J. Gordon等.novel approach to nonlinear non-Gaussian Bayesian state estimation.《IEE PROCEEDINGS-F》.1993,第140卷(第2期),第107-113页.
novel approach to nonlinear non-Gaussian Bayesian state estimation;N.J. Gordon等;《IEE PROCEEDINGS-F》;19930430;第140卷(第2期);第107-113页 *
张共愿等.粒子滤波及其在导航系统中的应用综述.《中国惯性技术学报》.2006,第14卷(第6期),第91-94页.
粒子滤波及其在导航系统中的应用综述;张共愿等;《中国惯性技术学报》;20061231;第14卷(第6期);第91-94页 *

Also Published As

Publication number Publication date
CN102252672A (en) 2011-11-23

Similar Documents

Publication Publication Date Title
CN107481264B (en) Video target tracking method with self-adaptive scale
CN105929378B (en) Combine the direct tracking of time delay and Doppler frequency based on external sort algorithm
CN102252672B (en) Nonlinear filtering method for underwater navigation
CN109284677B (en) Bayesian filtering target tracking algorithm
CN110956653B (en) Satellite video dynamic target tracking method with fusion of correlation filter and motion estimation
CN114609912A (en) Angle-only target tracking method based on pseudo-linear maximum correlation entropy Kalman filtering
CN101916373B (en) Road semiautomatic extraction method based on wavelet detection and ridge line tracking
CN105549049A (en) Adaptive Kalman filtering algorithm applied to GPS navigation
CN104251991B (en) A kind of fractional dimension threshold value iteration sparse microwave imaging method estimated based on degree of rarefication
CN106443661A (en) Maneuvering extended target tracking method based on unscented Kalman filter
CN102156971B (en) Speckle suppression method of synthetic aperture radar (SAR) image based on linear singularity information
CN103684350B (en) A kind of particle filter method
CN105046717A (en) Robust video object tracking method
CN104021289A (en) Non-Gaussian unsteady-state noise modeling method
CN109031261B (en) Time difference estimation method and device
CN106603036A (en) Adaptive time delay estimation method based on low-order interpolation filter
CN111007473B (en) High-speed weak target detection method based on distance frequency domain autocorrelation function
Pfaff et al. Multimodal circular filtering using Fourier series
CN113589286A (en) Unscented Kalman filtering phase unwrapping method based on D-LinkNet
CN104200458A (en) MeanShift based high-resolution remote sensing image segmentation distance measurement optimization method
CN105701292B (en) A kind of parsing discrimination method of maneuvering target turning rate
CN110233608A (en) A kind of particle filter method and radar system based on Weight number adaptively
Fu et al. Maneuvering target tracking with improved unbiased FIR filter
CN113030945B (en) Phased array radar target tracking method based on linear sequential filtering
CN106371095A (en) Pulse compression technique-based range imaging method and range imaging system

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C14 Grant of patent or utility model
GR01 Patent grant
CF01 Termination of patent right due to non-payment of annual fee

Granted publication date: 20121010

CF01 Termination of patent right due to non-payment of annual fee