CN102252672B - A Nonlinear Filtering Method for Underwater Navigation - Google Patents

A Nonlinear Filtering Method for Underwater Navigation Download PDF

Info

Publication number
CN102252672B
CN102252672B CN201110108952A CN201110108952A CN102252672B CN 102252672 B CN102252672 B CN 102252672B CN 201110108952 A CN201110108952 A CN 201110108952A CN 201110108952 A CN201110108952 A CN 201110108952A CN 102252672 B CN102252672 B CN 102252672B
Authority
CN
China
Prior art keywords
mrow
msub
mfrac
msup
partiald
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
CN201110108952A
Other languages
Chinese (zh)
Other versions
CN102252672A (en
Inventor
赵玉新
陈立娟
李刚
刘厂
张振兴
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Harbin Engineering University
Original Assignee
Harbin Engineering University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Harbin Engineering University filed Critical Harbin Engineering University
Priority to CN201110108952A priority Critical patent/CN102252672B/en
Publication of CN102252672A publication Critical patent/CN102252672A/en
Application granted granted Critical
Publication of CN102252672B publication Critical patent/CN102252672B/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Complex Calculations (AREA)

Abstract

本发明公开了一种用于水下导航的非线性滤波方法,用于从水下地形导航随机微分模型中求得弱解。本发明通过使用了三次样条插值函数来分段逼近导航随机微分模型的弱解可得到状态的先验概率密度函数,其中利用前向柯尔莫哥洛夫方程解决了构造三次样条插值点的难点问题,然后再由贝叶斯公式得到状态的后验概率密度函数。本发明方法充分利用了三次样条插值具有计算简单、稳定性好、收敛性有保证、易于在计算机上实现并且能保证整体曲线的光滑性等特性能更好跟踪系统状态各种可能性,具有很高的估计精度、收敛速度和收敛光滑性,可以很好的跟踪系统状态的变化。

Figure 201110108952

The invention discloses a nonlinear filtering method for underwater navigation, which is used for obtaining a weak solution from a stochastic differential model of underwater terrain navigation. The present invention uses the cubic spline interpolation function to segmentally approximate the weak solution of the navigation stochastic differential model to obtain the prior probability density function of the state, wherein the forward Kolmogorov equation is used to solve the problem of constructing the cubic spline interpolation points The difficult problem of the state, and then get the posterior probability density function of the state by the Bayesian formula. The method of the invention makes full use of the cubic spline interpolation, which has the advantages of simple calculation, good stability, guaranteed convergence, easy realization on the computer, and can ensure the smoothness of the overall curve, and can better track various possibilities of the system state, and has the advantages of High estimation accuracy, convergence speed and convergence smoothness, can track the changes of the system state very well.

Figure 201110108952

Description

一种用于水下导航的非线性滤波方法A Nonlinear Filtering Method for Underwater Navigation

技术领域 technical field

本发明涉及水下地形辅助导航研究领域,特别涉及一种存在非高斯噪声的非线性系统下,通过一种分段函数逼近导航随机微分模型弱解的用于水下导航的非线性滤波方法。The invention relates to the research field of underwater terrain aided navigation, in particular to a nonlinear filtering method for underwater navigation that uses a piecewise function to approximate the weak solution of a navigation stochastic differential model under a nonlinear system with non-Gaussian noise.

背景技术 Background technique

精确导航技术是确保水下潜器有效利用和安全回收的关键技术之一。目前,水下地形辅助导航系统大多采用以惯导和多普勒计程仪组合为主,辅以如GPS、重力、地形等其它校正信息的综合导航技术。滤波是将信号中特定波段频率滤除的操作,是抑制和防止干扰的一项重要措施,但是由于水下工作环境非常复杂、存在诸多不确定性因素,使得传统滤波方法的应用受到极大限制。Precise navigation technology is one of the key technologies to ensure the effective utilization and safe recovery of underwater vehicles. At present, most underwater terrain-assisted navigation systems use the combination of inertial navigation and Doppler log, supplemented by integrated navigation technology such as GPS, gravity, terrain and other correction information. Filtering is the operation of filtering out the frequency of a specific band in the signal. It is an important measure to suppress and prevent interference. However, due to the complex underwater working environment and many uncertain factors, the application of traditional filtering methods is greatly limited. .

水下地形辅助导航过程本质上是一个最优估计问题。邓自立先生把最优估计理论要解决的问题分为三类:1、模型参数的估计问题;2、时间序列、信号或状态的估计问题;3、信息融合估计问题。地形导航问题属于第二类问题。求解方法的发展与最优估计理论的发展是一致的。最优估计经历了最小二乘法、Kalman滤波和贝叶斯估计滤波三个发展阶段:The underwater terrain aided navigation process is essentially an optimal estimation problem. Mr. Deng Zili divided the problems to be solved by the optimal estimation theory into three categories: 1. Estimation of model parameters; 2. Estimation of time series, signals or states; 3. Estimation of information fusion. Terrain navigation problems belong to the second category of problems. The development of solution methods coincides with the development of optimal estimation theory. Optimal estimation has gone through three stages of development: least squares method, Kalman filtering and Bayesian estimation filtering:

(1)最优估计最基本的方法是最小二乘法,这类估计方法只需要建立测量模型,它的基本原理是实际观测值与模型计算值的误差平方和最小,其只保证量测误差的方差最小,对测量数据进行的是批处理,不利于实时处理。(1) The most basic method of optimal estimation is the least squares method. This type of estimation method only needs to establish a measurement model. Its basic principle is that the sum of squares of the errors between the actual observation value and the model calculation value is the smallest, and it only guarantees the measurement error. The variance is the smallest, and the measurement data is processed in batches, which is not conducive to real-time processing.

(2)卡尔曼(Kalman)滤波方法,基于状态空间理论和射影理论解决状态估计问题。卡尔曼滤波采用递推计算,适宜计算机实现。对于具有高斯分布噪声的线性系统,可以得到系统状态的递推最小均方差估计。卡尔曼滤波已广泛应用于各种领域,如导航制导、目标跟踪、信号处理、控制等。卡尔曼最初提出的滤波理论只适用于线性系统,Bucy等人提出了扩展卡尔曼滤(Extended Kalman Filtering,简称EKF),将卡尔曼滤波理论进一步应用到非线性领域(可参考文献:R S Bucy,K D Senne.Digital synthesis of nonlinear filters[J].Automatica,1971,7:287-298)。EKF的基本思想是将非线性系统进行线性化,然后进行卡尔曼滤波,因此EKF是一种次优滤波。与对非线性函数线性化相比,对状态符合高斯分布的近似要简单的多,基于这种思想,Julier等人提出无迹卡尔曼滤波(Unscented Kalman Filter,UKF)(可参考文献:S.J.Julier,J.K.Uhlmann.non-divergent estimation algorithm inthe presence of unknown correlations[C].Proceedings of the IEEE American ControlConference,Albuquerque,NM,USA,1997,4:2369-2373),认为状态的概率密度分布可通过能捕获密度函数的均值和方差的sigma点来描述,通过UT(Unscented Transction)变换获得sigma点和它们的权值,而后把通过系统的状态方程传递的sigma点加权求和,得到后验均值和协方差。具体可参考文献:Tine L,Herman B,Joris D S.于2004年发表的文章Kalman Filters for nonlinear systems:a comparison of performance。(2) Kalman filtering method, based on the state space theory and projective theory to solve the state estimation problem. Kalman filtering adopts recursive calculation, which is suitable for computer implementation. For linear systems with Gaussian distributed noise, a recursive minimum mean square error estimate of the system state can be obtained. Kalman filtering has been widely used in various fields, such as navigation guidance, target tracking, signal processing, control, etc. The filtering theory originally proposed by Kalman is only applicable to linear systems. Bucy et al. proposed Extended Kalman Filtering (EKF for short), which further applies Kalman filtering theory to the nonlinear field (reference: R S Bucy , K D Senne. Digital synthesis of nonlinear filters [J]. Automatica, 1971, 7: 287-298). The basic idea of EKF is to linearize the nonlinear system and then perform Kalman filtering, so EKF is a suboptimal filtering. Compared with the linearization of nonlinear functions, the approximation of the state conforming to the Gaussian distribution is much simpler. Based on this idea, Julier et al. proposed the Unscented Kalman Filter (UKF) (reference: S.J.Julier , J.K.Uhlmann.non-divergent estimation algorithm in the presence of unknown correlations[C].Proceedings of the IEEE American Control Conference, Albuquerque, NM, USA, 1997, 4:2369-2373), that the probability density distribution of the state can be captured by energy The mean value and variance of the density function are described by the sigma points, and the sigma points and their weights are obtained through UT (Unscented Transction) transformation, and then the weighted sum of the sigma points passed through the state equation of the system is obtained to obtain the posterior mean and covariance . For details, please refer to the article: Kalman Filters for nonlinear systems: a comparison of performance published by Tine L, Herman B, Joris D S. in 2004.

现有的Kalman滤波、EKF和UKF滤波仅适用于具有高斯分布噪声的系统,都以求得系统状态概率分布的二阶矩为目的,估计精度不是很高。并且在具体的实际应用中,系统状态概率的实际分布也可能不是正态分布,采用这类滤波方法都是通过求得密度函数的均值和方差来描述状态的概率密度分布,然而系统状态基于量测信息的后验概率密度最能代表状态的实际分布,所以直接对系统状态概率密度函数进行求解更能明确系统状态各种可能性。Existing Kalman filtering, EKF and UKF filtering are only suitable for systems with Gaussian distribution noise, and they all aim to obtain the second-order moment of the system state probability distribution, and the estimation accuracy is not very high. And in specific practical applications, the actual distribution of the system state probability may not be a normal distribution. This kind of filtering method is used to describe the probability density distribution of the state by obtaining the mean and variance of the density function. However, the system state is based on the quantity The posterior probability density of the measured information can best represent the actual distribution of the state, so directly solving the probability density function of the system state can clarify the various possibilities of the system state.

(3)基于贝叶斯(Bayesian)估计的滤波方法,求解的是系统状态基于量测信息的后验概率密度。使用贝叶斯估计的难点是求解状态的先验概率密度函数和进行积分运算。只有很少数的系统可以求得贝叶斯估计的最优解,如线性高斯系统可由Kalman滤波进行求解,大多数系统是采用近似或逼近的方式进行求解,例如粒子滤波(Partical Filter)方法是采用一组带有权值的粒子(随机样本)通过状态传递方程来逼近状态的概率密度,将积分运算转化为有限样本点的加权和。(3) The filtering method based on Bayesian (Bayesian) estimation solves the posterior probability density of the system state based on the measurement information. The difficulty of using Bayesian estimation is to solve the prior probability density function of the state and perform integral operations. Only a small number of systems can obtain the optimal solution of Bayesian estimation. For example, the linear Gaussian system can be solved by Kalman filter, and most systems are solved by approximation or approximation. For example, the Partical Filter method is A group of weighted particles (random samples) is used to approximate the probability density of the state through the state transfer equation, and the integral operation is transformed into a weighted sum of finite sample points.

三次样条插值算法也属于基于贝叶斯估计的范畴。文献:公开号为CN101226630于2008-7-23公开的中国发明专利申请《基于三次样条函数的插值方法》,该文献中应用三次样条插值算法实现了一种边缘自适应处理的图像缩放方法,提供了一种插值后图像光滑,轮廓清晰的基于三次样条函数的自适应插值方法,所采用的技术方案是,先检测插值点的位置状态,然后对处于不同的位置状态的插值点再采用不同的处理方法进行插值运算。近几年,粒子滤波算法在贝叶斯估计方面应用非常广泛,文献:张共愿,赵忠在2006年6月发表的《粒子滤波及其在导航系统中的应用综述》,该文献中提出了传统的扩展卡尔曼滤波方法要求对非线性系统近似线性化,有可能会引入较大的模型误差,但应用粒子滤波可解决这一问题,粒子滤波算法可以直接应用于原系统的非线性模型当中,并且不需考虑系统噪声和量测噪声是否为高斯白噪声,都能得到很好的滤波效果。该文献中介绍了粒子滤波的理论基础-贝叶斯估计及具体的实现方式-蒙特卡罗方法;指出粒子滤波存在的退化问题,并从减小退化现象入手将重要性采样和再采样方法引入到算法之中;最后阐述了粒子滤波在导航系统中的一些应用。然而针对粒子滤波的退化问题,使其难以保持较高的收敛性和光滑性,如何更好的跟踪系统状态的变化,提高其分布精度,是目前水下地形导航随机微分模型求解领域上亟待解决的问题,但文献3中并没有给出解决的方法和启示。The cubic spline interpolation algorithm also belongs to the category based on Bayesian estimation. Document: Publication No. CN101226630 published on 2008-7-23 Chinese Invention Patent Application "Interpolation Method Based on Cubic Spline Function". , provides an adaptive interpolation method based on a cubic spline function with smooth interpolated images and clear outlines. The technical solution adopted is to first detect the position state of the interpolation point, and then reassess the interpolation point in a different position state. Interpolation operations are performed using different processing methods. In recent years, the particle filter algorithm has been widely used in Bayesian estimation. Literature: Zhang Gongyuan, Zhao Zhong published "A Review of Particle Filter and Its Application in Navigation Systems" in June 2006, which proposed The traditional extended Kalman filter method requires approximate linearization of the nonlinear system, which may introduce a large model error, but the application of particle filter can solve this problem, and the particle filter algorithm can be directly applied to the nonlinear model of the original system Among them, and regardless of whether the system noise and measurement noise are Gaussian white noise, a good filtering effect can be obtained. This document introduces the theoretical basis of particle filter-Bayesian estimation and the specific implementation method-Monte Carlo method; points out the degradation problem of particle filter, and introduces the importance sampling and re-sampling methods to reduce the degradation phenomenon. into the algorithm; Finally, some applications of particle filter in navigation system are expounded. However, in view of the degradation problem of the particle filter, it is difficult to maintain high convergence and smoothness. How to better track the changes of the system state and improve its distribution accuracy is an urgent problem in the field of solving the stochastic differential model for underwater terrain navigation. problem, but there is no solution and enlightenment given in Document 3.

发明内容 Contents of the invention

本发明的目的是为了解决以水下地形导航系统为背景,建立的导航随机微分模型的弱解方程的弱解很难求得的问题,提出了一种用于水下导航的非线性滤波方法,采用一种三次样条插值函数来分段逼近其解可得到状态的先验概率密度函数,再由贝叶斯公式得到状态的后验概率密度函数,同时也解决了构造三次样条插值条件的难点问题,实现更好的跟踪系统状态的变化,具有很高的估计精度、收敛速度和收敛光滑性。The purpose of the present invention is to solve the problem that the weak solution of the weak solution equation of the navigation stochastic differential model established in the background of the underwater terrain navigation system is difficult to obtain, and proposes a nonlinear filtering method for underwater navigation , using a cubic spline interpolation function to approximate its solution in pieces, the prior probability density function of the state can be obtained, and then the posterior probability density function of the state is obtained by the Bayesian formula, and the construction of the cubic spline interpolation condition is also solved It can better track the changes of the system state, and has high estimation accuracy, convergence speed and convergence smoothness.

本发明一种用于水下导航的非线性滤波方法,首先为水下导航建立状态微分与量测离散方程,并得到一个用来表示潜器运动状态的弱解方程,然后通过以下步骤对弱解方程进行逼近来对潜器的运动状态进行估计:The present invention is a nonlinear filtering method for underwater navigation. First, the state differential and measurement discrete equations are established for underwater navigation, and a weak solution equation used to represent the motion state of the submersible is obtained, and then the weak solution is obtained through the following steps. The solution equation is approximated to estimate the motion state of the submersible:

步骤一、将初始时刻的条件概率密度作为正态分布,选定投影区间[a,b]和分段区间a=x0<x1<x2<…<xn=b,构造三次样条插值函数pi(x):Step 1. Take the conditional probability density at the initial moment as a normal distribution, select the projection interval [a, b] and the segment interval a=x 0 <x 1 <x 2 <...<x n =b, and construct a cubic spline Interpolation function p i (x):

p i ( x ) = M i - 1 ( x i - x ) 3 6 h i + M i ( x - x i - 1 ) 3 6 h i + A i ( x - x i - 1 ) + B i , x∈[xi-1,xi],i=1,2,…,n p i ( x ) = m i - 1 ( x i - x ) 3 6 h i + m i ( x - x i - 1 ) 3 6 h i + A i ( x - x i - 1 ) + B i , x∈[x i-1 , x i ], i=1, 2, ..., n

其中,Ai,Bi为关于时间的积分常数,系数Mi=p″(xi),p″(xi)为三次样条插值函数p(x)在节点xi处的二阶导数,n表示分段区间的个数,为大于0的整数,hi表示第i个分段区间的长度,hi=xi-xi-1Among them, A i , B i are integral constants with respect to time, coefficient M i =p″(xi ) , p″(xi ) is the second order derivative of the cubic spline interpolation function p(x) at node xi , n represents the number of segmentation intervals, which is an integer greater than 0, h i represents the length of the i-th segmentation interval, h i =xi - xi-1 ;

步骤二、通过上一个时刻的后验概率密度函数得到插值点的值,再利用前向柯尔莫哥洛夫方程构造当前时刻的三次样条插值函数的插值点,把插值点代入式(1)中,得到用Mi,Mi-1把表示的常数Ai,Bi,从而得到只含先验系数Mi,Mi-1的先验概率密度函数;Step 2. Obtain the value of the interpolation point through the posterior probability density function at the previous moment, and then use the forward Kolmogorov equation to construct the interpolation point of the cubic spline interpolation function at the current moment, and substitute the interpolation point into the formula (1 ), get the constants A i , B i represented by M i , M i-1 , so as to obtain the prior probability density function containing only the prior coefficients M i , M i-1 ;

步骤三、利用三次样条插值函数在每个节点处的一阶连续导数和边界条件列出n+1个方程组,用追赶法求出先验系数Mi,将先验系数Mi代入式(1)得到先验概率密度函数;Step 3: Use the first-order continuous derivative of the cubic spline interpolation function at each node and the boundary conditions to list n+1 equations, use the catch-up method to find the prior coefficient M i , and substitute the prior coefficient M i into the formula (1) Obtain the prior probability density function;

步骤四、根据当前时刻的量测信息确定似然概率密度,把先验概率密度和似然概率密度带入贝叶斯公式,得到当前潜器运动状态的后验概率密度;Step 4. Determine the likelihood probability density according to the measurement information at the current moment, and bring the prior probability density and the likelihood probability density into the Bayesian formula to obtain the posterior probability density of the current submersible motion state;

步骤五、判断仿真时间是否已到,若仿真时间未到,转步骤二继续执行;若仿真时间到达,则输出仿真结果,结束本次仿真。Step 5. Determine whether the simulation time is up. If the simulation time is not up, go to step 2 to continue execution; if the simulation time is up, output the simulation result and end the simulation.

本发明的优点与积极效果在于:(1)本发明滤波方法在保证图像平滑性的基础上,增加边缘锐度,同时有效的消除了原三次样条插值函数插值方法中,由于图像边缘两侧非连续状态像素互相干扰导致的边缘两侧虚像的问题;(2)本发明滤波方法充分利用了三次样条插值的特性,通过前向柯尔莫哥洛夫方程构造三次样条插值条件,在函数空间中对状态的先验概率密度函数进行分段逼近,再通过贝叶斯公式得到系统状态的后验概率密度,具有很高的估计精度、收敛速度和收敛光滑性,可以很好的跟踪系统状态的变化。The advantages and positive effects of the present invention are: (1) the filtering method of the present invention increases the edge sharpness on the basis of ensuring the smoothness of the image, and effectively eliminates the problem caused by both sides of the image edge in the original cubic spline interpolation function interpolation method at the same time. The problem of virtual images on both sides of the edge caused by the mutual interference of discontinuous state pixels; (2) the filtering method of the present invention makes full use of the characteristics of cubic spline interpolation, and constructs the cubic spline interpolation condition through the forward Kolmogorov equation. In the function space, the prior probability density function of the state is approximated in sections, and then the posterior probability density of the system state is obtained through the Bayesian formula, which has high estimation accuracy, convergence speed and smoothness of convergence, and can track well A change in the state of the system.

附图说明 Description of drawings

图1是本发明滤波方法的流程示意图;Fig. 1 is a schematic flow chart of the filtering method of the present invention;

图2中,(a)是本发明滤波方法在第1秒时的潜器运动状态的概率密度示意图;(b)是本发明滤波方法在第2秒时的潜器运动状态的概率密度示意图;(c)是本发明滤波方法在第31秒时的潜器运动状态的概率密度示意图;(d)是本发明滤波方法在第32秒时的潜器运动状态的概率密度示意图;(e)是本发明滤波方法在第33秒时的潜器运动状态的概率密度示意图;(f)是本发明滤波方法在第50秒时的潜器运动状态的概率密度示意图;Among Fig. 2, (a) is the probability density schematic diagram of the submersible motion state of the filtering method of the present invention in the 1st second; (b) is the probability density schematic diagram of the submersible motion state of the filtering method of the present invention in the 2nd second; (c) is a schematic diagram of the probability density of the submersible motion state of the filtering method of the present invention at the 31st second; (d) is a schematic diagram of the probability density of the submersible motion state of the filtering method of the present invention at the 32nd second; (e) is A schematic diagram of the probability density of the motion state of the submersible in the filtering method of the present invention at the 33rd second; (f) is a schematic diagram of the probability density of the motion state of the submersible in the 50th second of the filtering method of the present invention;

图3A是时间间隔为0.1秒时,本发明实施例中采用本发明方法与采用粒子滤波方法进行仿真得到的位置均值的对比示意图;Fig. 3A is a schematic diagram of the comparison of the position mean values obtained by simulation using the method of the present invention and the particle filter method in the embodiment of the present invention when the time interval is 0.1 second;

图3B是时间间隔为0.1秒时,本发明实施例中采用本发明方法与采用粒子滤波方法进行仿真得到的位置标准差的对比示意图;Fig. 3B is a schematic diagram of the comparison of position standard deviations obtained by using the method of the present invention and using the particle filter method for simulation in the embodiment of the present invention when the time interval is 0.1 second;

图4A是时间间隔为0.01秒时,本发明实施例中采用本发明方法与采用粒子滤波方法进行仿真得到的位置均值的对比示意图;Fig. 4A is a schematic diagram of the comparison of the position mean values obtained by simulation using the method of the present invention and the particle filter method in the embodiment of the present invention when the time interval is 0.01 second;

图4B是时间间隔为0.01秒时,本发明实施例中采用本发明方法与采用粒子滤波方法进行仿真得到的位置标准差的对比示意图;Fig. 4B is a schematic diagram of the comparison of the position standard deviation obtained by using the method of the present invention and using the particle filter method for simulation in the embodiment of the present invention when the time interval is 0.01 second;

图5A是本发明实施例中潜器运动状态均方根误差的对比示意图;Fig. 5A is a comparative schematic diagram of the root mean square error of the motion state of the submersible in the embodiment of the present invention;

图5B是本发明实施例中潜器运动状态的标准差的对比示意图。Fig. 5B is a comparative schematic diagram of the standard deviation of the motion state of the submersible in the embodiment of the present invention.

具体实施方式 Detailed ways

下面将结合附图和实施例对本发明作进一步的详细说明。The present invention will be further described in detail with reference to the accompanying drawings and embodiments.

本发明一种用于水下导航的非线性滤波方法,目的是利用基于贝叶斯估计的滤波方法的优点,提供一种三次样条插值分段逼近导航随机微分模型弱解的方法,从而有效地保证了其可以更好的跟踪系统状态的变化,本发明的非线性滤波方法具有很高的估计精度、收敛速度和收敛光滑性。The present invention is a kind of non-linear filter method for underwater navigation, purpose is to utilize the advantage of the filter method based on Bayesian estimation, provide a kind of cubic spline interpolation method of approaching the weak solution of navigation stochastic differential model in sections, thereby effectively It is ensured that it can better track the change of the system state, and the nonlinear filtering method of the present invention has high estimation accuracy, convergence speed and convergence smoothness.

以水下地形辅助导航系统为背景,潜器的运动状态可用随机过程x(t)表示,假设对于时间t∈[0,∞),所有的x(t)都定义在一个固定的概率空间(Ω,F,P),其中Ω是非空集合,称为样本空间,其元素称为样本,F是样本空间的幂集的一个非空子集,集合F必须是一个σ-代数,P是概率测度,简称概率。量测z(t)为概率空间中的一个代数域,z(t)是P可测的。简记

Figure BDA0000058244840000041
Taking the underwater terrain-assisted navigation system as the background, the motion state of the submersible can be represented by a random process x(t), assuming that for time t∈[0,∞), all x(t) are defined in a fixed probability space ( Ω, F, P), where Ω is a non-empty set called a sample space whose elements are called samples, F is a non-empty subset of the power set of the sample space, the set F must be a σ-algebra, and P is the probability measure , referred to as probability. The measurement z(t) is an algebraic field in the probability space, and z(t) is P-measurable. shorthand
Figure BDA0000058244840000041

与离散模型中状态和量测都由离散方程描述不同,在水下导航的随机微分模型中xt、zt随时间演变的过程可以用一个状态微分方程和一个量测离散方程来描述:Unlike the discrete model in which the state and measurement are both described by discrete equations, in the stochastic differential model of underwater navigation, the evolution process of x t and z t with time can be described by a state differential equation and a measurement discrete equation:

dxt=f(xt,t)dt+b(ut,t)dt+g(xt,t)dβt                (1)dx t = f(x t , t)dt+b(u t , t)dt+g(x t , t)dβ t (1)

zk=h(xk,tk)+ek                                       (2)z k =h(x k ,t k )+e k (2)

其中:

Figure BDA0000058244840000043
Figure BDA0000058244840000044
Figure BDA0000058244840000045
Figure BDA0000058244840000046
Figure BDA0000058244840000047
Figure BDA0000058244840000048
表示实数集,n、c、d、m都为正整数,
Figure BDA0000058244840000049
表示n×1维实数空间,表示c×1维实数空间,表示d×1维实数空间,
Figure BDA00000582448400000412
表示m×1维实数空间。in:
Figure BDA0000058244840000043
Figure BDA0000058244840000044
Figure BDA0000058244840000045
Figure BDA0000058244840000046
Figure BDA0000058244840000047
Figure BDA0000058244840000048
Represents a set of real numbers, n, c, d, m are all positive integers,
Figure BDA0000058244840000049
Represents an n×1-dimensional real number space, Represents a c×1-dimensional real number space, Represents a d×1-dimensional real number space,
Figure BDA00000582448400000412
Represents the m×1-dimensional real number space.

Figure BDA00000582448400000413
称作漂移函数;
Figure BDA00000582448400000414
称作控制函数;
Figure BDA00000582448400000413
is called the drift function;
Figure BDA00000582448400000414
is called the control function;

称作扩散系数;

Figure BDA0000058244840000052
是量测函数; is called the diffusion coefficient;
Figure BDA0000058244840000052
is the measurement function;

ut是c维控制向量,βt是d维布朗运动向量,E[d βt d βt T]=Q(t)dt,

Figure BDA0000058244840000053
ek是m维白噪声过程,E[ekek T]=R(k),
Figure BDA0000058244840000054
βt与ek相互独立,tk表示采样时间。Q(t)、R(k)分别表示为过程噪声和量测噪声的协方差,简记
Figure BDA0000058244840000055
u t is c-dimensional control vector, β t is d-dimensional Brownian motion vector, E[d β t d β t T ]=Q(t)dt,
Figure BDA0000058244840000053
e k is an m-dimensional white noise process, E[e k e k T ]=R(k),
Figure BDA0000058244840000054
β t and e k are independent of each other, and t k represents the sampling time. Q(t) and R(k) are respectively expressed as the covariance of process noise and measurement noise, and the abbreviation
Figure BDA0000058244840000055

随机微分方程的解作为随机过程,可以抽象地用一个泛函xt=J[x0,βt,t]表示。随机微分方程有强解和弱解两种,仅有一些类型的随机微分方程有强解的封闭解。弱解是连续函数空间中的一个概率,由转移函数决定,针对本发明方法,弱解就是指下面得到的先验概率。在系数μ(x,t)、σ(x,t)合适的条件下,潜器的运动状态的条件概率密度p(x,t|zt)满足前向柯尔莫哥洛夫方程:As a stochastic process, the solution of the stochastic differential equation can be expressed abstractly by a functional x t =J[x 0t ,t]. There are two kinds of stochastic differential equations, strong solutions and weak solutions, and only some types of stochastic differential equations have closed solutions of strong solutions. The weak solution is a probability in the continuous function space, which is determined by the transfer function. For the method of the present invention, the weak solution refers to the prior probability obtained below. Under the condition that the coefficients μ(x, t) and σ(x, t) are appropriate, the conditional probability density p(x, t|z t ) of the motion state of the submersible satisfies the forward Kolmogorov equation:

LL (( pp )) == &PartialD;&PartialD; pp &PartialD;&PartialD; tt == 11 22 &Sigma;&Sigma; rr ,, sthe s == 11 mm &PartialD;&PartialD; 22 (( gg (( xx ,, tt )) QQ (( tt )) gg TT (( xx ,, tt )) &CenterDot;&CenterDot; pp )) &PartialD;&PartialD; xx rr &PartialD;&PartialD; xx sthe s -- &Sigma;&Sigma; rr == 11 mm &PartialD;&PartialD; (( ff (( xx ,, tt )) &CenterDot;&Center Dot; pp )) &PartialD;&PartialD; xx rr -- -- -- (( 33 ))

其中:

Figure BDA0000058244840000057
m表示潜器运动状态空间的维数,f(x,t)表示潜器运动状态变化与潜器运动状态之间的关系,g(x,t)表示噪声扩散,xr与xs表示在m维空间中x向量的坐标。in:
Figure BDA0000058244840000057
m represents the dimension of the motion state space of the submersible, f(x, t) represents the relationship between the motion state change of the submersible and the motion state of the submersible, g(x, t) represents the noise diffusion, x r and x s represent the Coordinates of the x-vector in m-dimensional space.

其中初始条件为:where the initial conditions are:

p′(x0)=0,p′(xn)=0          (4)p'(x 0 )=0, p'(x n )=0 (4)

前向柯尔莫哥洛夫方程(3)和它的初始条件式(4)构成了一个微分方程边值问题。Ω是

Figure BDA0000058244840000058
空间中具光滑边界的区域,
Figure BDA0000058244840000059
是该边值问题的解。The forward Kolmogorov equation (3) and its initial condition (4) constitute a differential equation boundary value problem. Ω is
Figure BDA0000058244840000058
A region with a smooth boundary in space,
Figure BDA0000058244840000059
is the solution to the boundary value problem.

通过建立状态微分与量测离散方程可以得到由式(3)和式(4)组成的弱解方程,通过对弱解进行逼近来对潜器的运动状态进行估计。本发明的非线性滤波方法通过三次样条插值分段逼近导航随机微分模型弱解,从而得到潜器的运动状态。The weak solution equation composed of formula (3) and formula (4) can be obtained by establishing state differential and measurement discrete equations, and the motion state of the submersible is estimated by approximating the weak solution. The non-linear filtering method of the present invention approximates the weak solution of the navigation stochastic differential model in sections through cubic spline interpolation, thereby obtaining the motion state of the submersible.

本发明的非线性滤波方法具体如图1所示,包括以下步骤。The nonlinear filtering method of the present invention is specifically shown in FIG. 1 , and includes the following steps.

步骤1、设初始时刻的条件概率密度为正态分布,选定投影区间和分段区间,构造三次样条插值函数pi(x):Step 1. Set the conditional probability density at the initial moment as a normal distribution, select the projection interval and segment interval, and construct the cubic spline interpolation function p i (x):

p i ( x ) = M i - 1 ( x i - x ) 3 6 h i + M i ( x - x i - 1 ) 3 6 h i + A i ( x - x i - 1 ) + B i , x∈[xi-1,xi],i=1,2,…,n    (5) p i ( x ) = m i - 1 ( x i - x ) 3 6 h i + m i ( x - x i - 1 ) 3 6 h i + A i ( x - x i - 1 ) + B i , x∈[x i-1 , x i ], i=1, 2, ..., n (5)

Ai,Bi为关于时间的积分常数,系数Mi=p″(xi),n表示分段区间的个数,为大于0的整数,hi表示第i个分段区间的长度,hi=xi-xi-1A i , B i are integral constants about time, coefficient M i =p″(xi ) , n represents the number of segment intervals, which is an integer greater than 0, h i represents the length of the i-th segment interval, h i = xi −xi −1 .

设初始时刻的条件概率密度为正态分布,可作为初始时刻的后验概率密度。The conditional probability density at the initial moment is assumed to be a normal distribution, which can be used as the posterior probability density at the initial moment.

选定投影区间[a,b]和分段区间a=x0<x1<x2<…<xn=b,由三次样条插值函数p(x)定义得:在节点xi处的p(x)的二阶导数p″(xi)为:p″(xi)=Mi(i=0,1,2,…,n),在子区间上[xi-1,xi]上三次样条插值函数p(x)=pi(x),其是不高于三次的多项式,故其二阶导数必是线性函数或常数,由hi=xi-xi-1,于是三次样条插值函数p(x)的二阶导数p″(xi)为:The selected projection interval [a, b] and segment interval a=x 0 <x 1 <x 2 <...<x n =b are defined by the cubic spline interpolation function p(x): at node x i The second order derivative p″( xi ) of p(x) is: p″(xi ) =M i (i=0,1,2,…,n), on the subinterval [xi -1 , x i ] Cubic spline interpolation function p(x)=p i (x), which is a polynomial not higher than cubic, so its second order derivative must be a linear function or constant, by h i =xi - xi- 1 , so the second order derivative p″( xi ) of the cubic spline interpolation function p(x) is:

p &prime; &prime; ( x ) = M i - 1 x i - x h i + M i x - x i - 1 h i , x∈[xi-1,xi]              (6) p &prime; &prime; ( x ) = m i - 1 x i - x h i + m i x - x i - 1 h i , x∈[x i-1 ,x i ] (6)

将式(6)得到的二阶导数p″(xi)连续积分两次可以得到式(5)。Formula (5) can be obtained by continuously integrating the second derivative p″( xi ) obtained from formula (6) twice.

步骤2、通过上一个时刻的后验概率密度函数求得插值点的值,再利用前向柯尔莫哥洛夫方程构造当前时刻的三次样条插值函数的插值点,把插值点代入三次样条插值函数表达式(5),则可利用Mi,Mi-1把Ai,Bi表示出来,得到只含Mi(i=0,1,2,…,n)这n+1个未知数的先验概率密度函数。Step 2. Obtain the value of the interpolation point through the posterior probability density function at the previous moment, and then use the forward Kolmogorov equation to construct the interpolation point of the cubic spline interpolation function at the current moment, and substitute the interpolation point into the cubic spline The interpolation function expression (5), then can use M i , M i-1 to express A i , B i , get only containing M i (i=0,1,2,...,n) this n+1 The prior probability density function of unknowns.

由于p(xi),p(xi-1)满足前向柯尔莫哥洛夫方程(3):

Figure BDA0000058244840000062
Figure BDA0000058244840000063
简记
Figure BDA0000058244840000064
Figure BDA0000058244840000065
Since p( xi ), p(xi -1 ) satisfies the forward Kolmogorov equation (3):
Figure BDA0000058244840000062
Figure BDA0000058244840000063
shorthand
Figure BDA0000058244840000064
Figure BDA0000058244840000065

由于: &PartialD; ( gQg T &CenterDot; p ) &PartialD; x s = &PartialD; ( gQg T ) &PartialD; x s &CenterDot; p + gQg T &CenterDot; &PartialD; ( p ) &PartialD; x s , &PartialD; ( f &CenterDot; p ) &PartialD; x r = &PartialD; ( f ) &PartialD; x r &CenterDot; p + f &CenterDot; &PartialD; ( p ) &PartialD; x r , 则得:because: &PartialD; ( wxya T &Center Dot; p ) &PartialD; x the s = &PartialD; ( wxya T ) &PartialD; x the s &Center Dot; p + wxya T &Center Dot; &PartialD; ( p ) &PartialD; x the s , &PartialD; ( f &CenterDot; p ) &PartialD; x r = &PartialD; ( f ) &PartialD; x r &CenterDot; p + f &CenterDot; &PartialD; ( p ) &PartialD; x r , then:

&PartialD;&PartialD; 22 (( gQgwxya TT &CenterDot;&CenterDot; pp )) &PartialD;&PartialD; xx rr &PartialD;&PartialD; xx sthe s == &PartialD;&PartialD; 22 (( gQgwxya TT )) &PartialD;&PartialD; xx rr &PartialD;&PartialD; xx sthe s &CenterDot;&CenterDot; pp ++ 22 &CenterDot;&CenterDot; &PartialD;&PartialD; (( gQgwxya TT )) &PartialD;&PartialD; xx rr &CenterDot;&Center Dot; &PartialD;&PartialD; (( pp )) &PartialD;&PartialD; xx sthe s ++ gQgwxya TT &CenterDot;&Center Dot; &PartialD;&PartialD; 22 (( pp )) &PartialD;&PartialD; xx rr &PartialD;&PartialD; xx sthe s -- -- -- (( 77 ))

进一步可以得到:Further can get:

LL (( pp (( xx )) )) == &PartialD;&PartialD; pp &PartialD;&PartialD; tt == 11 22 &Sigma;&Sigma; rr ,, sthe s == 11 nno [[ &PartialD;&PartialD; 22 (( gQgwxya TT )) &PartialD;&PartialD; xx rr &PartialD;&PartialD; xx sthe s &CenterDot;&Center Dot; pp ++ 22 &CenterDot;&Center Dot; &PartialD;&PartialD; (( gQgwxya TT )) &PartialD;&PartialD; xx rr &CenterDot;&Center Dot; &PartialD;&PartialD; (( pp )) &PartialD;&PartialD; xx sthe s ++ gQgwxya TT &CenterDot;&Center Dot; &PartialD;&PartialD; 22 (( pp )) &PartialD;&PartialD; xx rr &PartialD;&PartialD; xx sthe s ]] -- &Sigma;&Sigma; rr == 11 nno [[ &PartialD;&PartialD; (( ff )) &PartialD;&PartialD; xx rr &CenterDot;&Center Dot; pp ++ ff &CenterDot;&Center Dot; &PartialD;&PartialD; (( pp )) &PartialD;&PartialD; xx rr ]] -- -- -- (( 88 ))

简记: 1 2 &Sigma; r , s = 1 n &PartialD; 2 ( gQg T ) &PartialD; x r &PartialD; x s - &Sigma; r = 1 n &PartialD; ( f ) &PartialD; x r = &Delta; &Delta; 1 , &Sigma; r = 1 n &PartialD; ( gQg T ) &PartialD; x r - f = &Delta; &Delta; 2 , gQg T = &Delta; &Delta; 3 , Short note: 1 2 &Sigma; r , the s = 1 no &PartialD; 2 ( wxya T ) &PartialD; x r &PartialD; x the s - &Sigma; r = 1 no &PartialD; ( f ) &PartialD; x r = &Delta; &Delta; 1 , &Sigma; r = 1 no &PartialD; ( wxya T ) &PartialD; x r - f = &Delta; &Delta; 2 , wxya T = &Delta; &Delta; 3 ,

若g,Q,f与时间无关,则Δ1,Δ2,Δ3与时间t无关,则:If g, Q, f are independent of time, then Δ 1 , Δ 2 , Δ 3 are independent of time t, then:

&Integral;&Integral; tt kk tt kk ++ 11 LL (( pp (( xx )) )) == &Integral;&Integral; tt kk tt kk ++ 11 &PartialD;&PartialD; pp &PartialD;&PartialD; tt dtdt == &Integral;&Integral; tt kk tt kk ++ 11 (( &Delta;&Delta; 11 pp ++ &Delta;&Delta; 22 &PartialD;&PartialD; pp &PartialD;&PartialD; xx ++ &Delta;&Delta; 33 &PartialD;&PartialD; 22 pp &PartialD;&PartialD; xx 22 )) dtdt -- -- -- (( 99 ))

进一步由积分中值定理得:Further, by the mean value theorem of integrals, we get:

pp tt kk ++ 11 (( xx )) == pp tt kk (( xx )) ++ (( &Delta;&Delta; 11 pp tt kk ++ &Delta;&Delta; 22 &PartialD;&PartialD; pp tt kk &PartialD;&PartialD; xx ++ &Delta;&Delta; 33 &PartialD;&PartialD; 22 pp tt kk &PartialD;&PartialD; xx 22 )) &CenterDot;&Center Dot; (( tt kk ++ 11 -- tt kk )) -- -- -- (( 1010 ))

其中,

Figure BDA00000582448400000616
分别表示在时刻tk+1、tk的三次样条插值函数。tk+1表示第k+1时刻,是当前时刻,tk表示第k时刻,是上一时刻。则根据式(10)可得到tk+1时刻在节点xi处以及节点xi-1处的三次样条插值函数的插值点:
Figure BDA00000582448400000617
Figure BDA00000582448400000618
in,
Figure BDA00000582448400000616
represent the cubic spline interpolation functions at time t k+1 and t k respectively. t k+1 represents the k+1th moment, which is the current moment, and t k represents the kth moment, which is the previous moment. Then, according to formula (10), the interpolation points of the cubic spline interpolation function at node x i and node x i-1 at time t k+1 can be obtained:
Figure BDA00000582448400000617
Figure BDA00000582448400000618

最后得到关于时间的积分常数:

Figure BDA00000582448400000619
Figure BDA00000582448400000620
Finally the integral constant with respect to time is obtained:
Figure BDA00000582448400000619
Figure BDA00000582448400000620

把Ai,Bi代入式(5)得到:Substitute A i and B i into formula (5) to get:

p i ( x ) = M i - 1 ( x i - x ) 3 6 h i + M i ( x - x i - 1 ) 3 6 h i + ( p i ( x i - 1 ) - h i 2 6 M i - 1 ) &CenterDot; x i - x h i + ( p i ( x i ) - h i 2 6 M i ) x - x i - 1 h i , x∈[xi-1,xi] p i ( x ) = m i - 1 ( x i - x ) 3 6 h i + m i ( x - x i - 1 ) 3 6 h i + ( p i ( x i - 1 ) - h i 2 6 m i - 1 ) &CenterDot; x i - x h i + ( p i ( x i ) - h i 2 6 m i ) x - x i - 1 h i , x∈[x i-1 , x i ]

其中,i=1,2,…,n。则只需确定Mi这n+1个未知数即可求得先验概率密度函数。Wherein, i=1, 2, . . . , n. Then it is only necessary to determine the n+1 unknowns of M i to obtain the prior probability density function.

步骤3、利用三次样条插值函数在每个节点处的一阶连续导数,和边界条件列出n+1方程组,用追赶法求出先验系数Mi,代入式(5)可得先验概率密度函数的表达式。Step 3. Use the first-order continuous derivative of the cubic spline interpolation function at each node and the boundary conditions to list n+1 equations, use the catch-up method to find the prior coefficient M i , and substitute it into formula (5) to get the first The expression of the test probability density function.

因三次样条插值函数的一阶导数在子区间节点xi上连续,可得边界条件:Because the first-order derivative of the cubic spline interpolation function is continuous on the subinterval node x i , the boundary conditions can be obtained:

pi′(xi-0)=pi+1′(xi+0)              (11)p i '(x i -0)=p i+1 '(x i +0) (11)

再由三次样条插值函数的一阶导数:Then by the first derivative of the cubic spline interpolation function:

p i &prime; ( x ) = - M i - 1 ( x i - x ) 2 h i + M i ( x - x i - 1 ) 2 h i + p i ( x i ) - p i ( x i - 1 ) h i - h i 6 ( M i - M i - 1 ) , x∈[xi-1,xi]           (12) p i &prime; ( x ) = - m i - 1 ( x i - x ) 2 h i + m i ( x - x i - 1 ) 2 h i + p i ( x i ) - p i ( x i - 1 ) h i - h i 6 ( m i - m i - 1 ) , x∈[xi -1xi ] (12)

由式(11)与(12),可得:From formulas (11) and (12), we can get:

hh ii 66 Mm ii -- 11 ++ hh ii ++ hh ii ++ 11 33 Mm ii ++ hh ii ++ 11 66 Mm ii ++ 11 == pp ii (( xx ii ++ 11 )) -- pp ii (( xx ii )) hh ii ++ 11 -- pp ii (( xx ii )) -- pp ii (( xx ii -- 11 )) hh ii -- -- -- (( 1313 ))

式(13)两边同时乘以

Figure BDA0000058244840000073
即得方程:Both sides of equation (13) are multiplied by
Figure BDA0000058244840000073
That is the equation:

h i h i + h i + 1 M i - 1 + 2 M i + h i + 1 h i + h i + 1 M i + 1 = 6 h i + h i + 1 ( p i ( x i + 1 ) - p i ( x i ) h i + 1 - p i ( x i ) - p i ( x i - 1 ) h i ) (i=1,2,…,n-1)    (14) h i h i + h i + 1 m i - 1 + 2 m i + h i + 1 h i + h i + 1 m i + 1 = 6 h i + h i + 1 ( p i ( x i + 1 ) - p i ( x i ) h i + 1 - p i ( x i ) - p i ( x i - 1 ) h i ) (i=1, 2, . . . , n-1) (14)

u i = h i h i + h i + 1 &lambda; i = h i + 1 h i + h i + 1 = 1 - u i g i = 6 h i + h i + 1 ( p i ( x i + 1 ) - p i ( x i ) h i + 1 - p i ( x i ) - p i ( x i - 1 ) h i ) set up u i = h i h i + h i + 1 &lambda; i = h i + 1 h i + h i + 1 = 1 - u i g i = 6 h i + h i + 1 ( p i ( x i + 1 ) - p i ( x i ) h i + 1 - p i ( x i ) - p i ( x i - 1 ) h i )

(i=1,2,…,n-1)(i=1, 2, . . . , n-1)

由边界条件p′(x0)=0,p′(xn)=0,得:From the boundary conditions p′(x 0 )=0, p′(x n )=0, we get:

pp &prime;&prime; (( xx 00 ++ 00 )) == pp 00 (( xx 11 )) -- pp 00 (( xx 00 )) hh 11 -- hh 11 66 Mm 11 -- hh 11 33 Mm 00 == 00

pp &prime;&prime; (( xx nno -- 00 )) == pp nno -- 11 (( xx nno )) -- pp nno -- 11 (( xx nno -- 11 )) hh nno ++ hh nno 66 Mm nno -- 11 ++ hh nno 33 Mm nno == 00

即得到两个式子:That is, two formulas are obtained:

22 Mm 11 ++ Mm 00 == 66 pp 00 (( xx 11 )) -- pp 00 (( xx 00 )) hh 11 22 -- -- -- (( 1515 ))

Mm nno -- 11 ++ 22 Mm nno == -- 66 pp nno -- 11 (( xx nno )) -- pp nno -- 11 (( xx nno -- 11 )) hh nno 22 -- -- -- (( 1616 ))

由式(14)、(15)和(16)组成的n+1个式子,可得:The n+1 formulas composed of formulas (14), (15) and (16) can be obtained:

Figure BDA0000058244840000081
Figure BDA0000058244840000081

由于非奇异,则方程组存在唯一解。because non-singular, then there is a unique solution to the system of equations.

利用追赶法可求出Mi,把Mi代入式(5)得到下式: Mi can be obtained by using the chasing method, and Mi can be substituted into formula (5) to obtain the following formula:

pp ii (( xx )) == Mm ii -- 11 (( xx ii -- xx )) 33 66 hh ii ++ Mm ii (( xx -- xx ii -- 11 )) 33 66 hh ii ++ (( pp ii (( xx ii -- 11 )) -- hh ii 22 66 Mm ii -- 11 )) &CenterDot;&CenterDot; (( xx ii -- xx )) hh ii -- -- -- (( 1616 ))

+ ( p i ( x i ) - h i 2 6 M i ) ( x - x i - 1 ) h i , x∈[xi-1,xi] + ( p i ( x i ) - h i 2 6 m i ) ( x - x i - 1 ) h i , x∈[x i-1 , x i ]

最后得到先验概率密度p(x)表达式:Finally, the prior probability density p(x) expression is obtained:

pp (( xx )) == pp ii (( xx )) ii == 1,21,2 ,, .. .. .. ,, nno -- -- -- (( 1717 ))

步骤4、根据当前时刻的量测信息计算似然概率密度,把先验概率和似然概率密度带入贝叶斯公式,求出当前k+1时刻潜器的运动状态的后验概率密度。Step 4. Calculate the likelihood probability density according to the measurement information at the current moment, bring the prior probability and the likelihood probability density into the Bayesian formula, and obtain the posterior probability density of the motion state of the submersible at the current k+1 time.

由贝叶斯公式: p ( x , t k + 1 / z k + 1 ) = p ( z k + 1 / x ) p ( x , t - k + 1 / z k ) &Integral; &Omega; p ( z k + 1 / x ) p ( x , t - k + 1 / z k ) dx By Bayes formula: p ( x , t k + 1 / z k + 1 ) = p ( z k + 1 / x ) p ( x , t - k + 1 / z k ) &Integral; &Omega; p ( z k + 1 / x ) p ( x , t - k + 1 / z k ) dx

其中,p(zk+1/x)表示似然概率密度,zk表示第k时刻的量测信息,zk+1表示第k+1时刻的量测信息,p(x,t- k+1/zk)表示第tk+1时刻的先验概率密度,p(x,tk+1/zk+1)表示第k+1时刻的潜器运动状态的后验概率密度。Among them, p(z k+1 /x) represents the likelihood probability density, z k represents the measurement information at the kth moment, z k+1 represents the measurement information at the k+1th moment, p(x, t - k +1 /z k ) represents the prior probability density at the t k+1th moment, and p(x, t k+1 /z k+1 ) represents the posterior probability density of the submersible’s motion state at the k+1th moment.

其中似然概率密度为:where the likelihood density is:

pp (( zz kk ++ 11 // xx )) == expexp {{ -- 11 22 (( zz kk -- hh (( xx ,, tt kk )) )) TT RR kk -- 11 (( zz kk -- hh (( xx ,, tt kk )) )) }} (( 22 &pi;&pi; )) mm detdet RR kk -- -- -- (( 1818 ))

m表示潜器运动状态空间的维数,Rk表示量测噪声的协方差,h(x,tk)表示量测函数。m represents the dimension of the submersible motion state space, R k represents the covariance of measurement noise, and h(x, t k ) represents the measurement function.

把式(16)与式(17)所示的先验概率密度代入贝叶斯公式得到当前潜器运动状态的后验概率密度p(x,tk+1/zk+1)的分段函数如下:Substituting the prior probability density shown in formula (16) and formula (17) into the Bayesian formula to obtain the subsection of the posterior probability density p(x, t k+1 /z k+1 ) of the current submarine motion state The function is as follows:

p i ( x , t k + 1 / z k + 1 ) = p ( z k + 1 / x ) p i ( x ) &Integral; &Omega; p ( z k + 1 / x ) p i ( x ) dx , x∈[xi-1,xi](i=1,2,…,n)           (19) p i ( x , t k + 1 / z k + 1 ) = p ( z k + 1 / x ) p i ( x ) &Integral; &Omega; p ( z k + 1 / x ) p i ( x ) dx , x∈[x i-1 , x i ] (i=1, 2,..., n) (19)

并得到当前时刻潜器的运动状态的均值Ex与方差

Figure BDA0000058244840000092
And get the mean value Ex and variance of the motion state of the submersible at the current moment
Figure BDA0000058244840000092

ExEx == &Sigma;&Sigma; ii == 00 nno -- 11 &Integral;&Integral; xx ii xx ii ++ 11 pp ii (( xx ,, tt kk ++ 11 // zz kk ++ 11 )) &CenterDot;&Center Dot; xdxxdx

covcov (( xx ^^ )) == EE. (( xx &CenterDot;&Center Dot; xx )) -- (( ExEx )) &CenterDot;&Center Dot; (( ExEx ))

步骤5、若仿真时间未结束,重返步骤2执行,获取下一个时刻的系统状态先验概率密度。若仿真时间已到达,给出跟踪系统状态的仿真结果,所述的仿真结果具体指步骤4中得到的后验概率密度的均值和方差,然后结束本次仿真。Step 5. If the simulation time is not over, return to step 2 to obtain the prior probability density of the system state at the next moment. If the simulation time has arrived, give the simulation result of the state of the tracking system, the simulation result specifically refers to the mean value and variance of the posterior probability density obtained in step 4, and then end the simulation.

下面本发明实施例中,通过水下地形辅助导航模型构造仿真模型,采用计算机matlab程序仿真实现本发明方法。In the following embodiments of the present invention, the simulation model is constructed through the underwater terrain-aided navigation model, and the method of the present invention is realized by computer matlab program simulation.

(1)利用matlab进行仿真实验,在一维状态空间评价本发明方法的性能。实验中使用的水下地形辅助导航系统模型为:(1) Utilize matlab to carry out simulation experiment, evaluate the performance of the inventive method in one-dimensional state space. The underwater terrain aided navigation system model used in the experiment is:

xx &CenterDot;&Center Dot; (( tt )) == sinsin (( xx // 22 )) ++ ww (( tt ))

z(k)=h(xk,tk)+e(k)z(k)=h(x k ,t k )+e(k)

其中:E[wwT]=0.0012,E[eeT]=0.52,h(xk,tk)=xkWhere: E[ww T ]=0.001 2 , E[ee T ]=0.5 2 , h(x k , t k )=x k .

选定投影区间[-4,4]和分段区间xi=-4+i/5,i=0,1,2,...,40,初始状态为正态分布,初始状态x0=0.5,P0=1,取粒子数500,仿真时间times=50次,时间间隔Δt=0.1秒。Select the projection interval [-4, 4] and segment interval x i =-4+i/5, i=0, 1, 2, ..., 40, the initial state is a normal distribution, the initial state x 0 = 0.5, P 0 =1, the number of particles is 500, the simulation time times=50 times, and the time interval Δt=0.1 second.

本发明实施例中采用本发明方法求解水下地形导航随机微分模型,部分实验过程如图2和表1所示:In the embodiment of the present invention, the method of the present invention is used to solve the stochastic differential model of underwater terrain navigation, and part of the experimental process is shown in Figure 2 and Table 1:

表1实验中的部分概率密度的积分值Integral values of some probability densities in the experiment in Table 1

Figure BDA0000058244840000096
Figure BDA0000058244840000096

由图2和表1中仿真结果显示,本发明的滤波方法可以逼近一维空间中系统潜器运动状态的先验概率密度。图2中,spline表示本发明方法,对比方法为粒子滤波方法(PF),spline和PF都是求解递推贝叶斯估计的方法,一个是在函数空间中对潜器运动状态概率密度函数进行分段逼近,一个是在潜器运动状态空间中对状态分布进行逼近,本发明实施例中分别对本发明方法和粒子滤波方法进行仿真,由于考虑仿真时间与两种方法比对分析的实验效果,以水下潜器地形辅助导航系统为背景,位置校正信息采用单波速测量得到位置误差与标准差曲线。在图2中(d)中可看出在位置1处附近发生小变动,原因可能有:(一)本发明方法中三次样条插值点的选取有偏差;(二)可能与三次样条要求满足二阶连续可导的性质有关;(三)投影区间范围选取的不合适,致使曲线呈凹凸状。从表1上看,采用本发明方法逼近系统的概率密度基本上是可行的。系统的概率密度是以后验概率密度为准的,比较的基准是其满足概率密度的积分性质。The simulation results in Fig. 2 and Table 1 show that the filtering method of the present invention can approximate the prior probability density of the motion state of the system submersible in one-dimensional space. Among Fig. 2, spline represents the method of the present invention, and contrasting method is particle filter method (PF), and spline and PF all are the method for solving recursive Bayesian estimation, and one is to carry out in function space to submersible motion state probability density function Segmental approximation, one is to approximate the state distribution in the motion state space of the submersible. In the embodiment of the present invention, the method of the present invention and the particle filter method are respectively simulated. Due to the consideration of the simulation time and the experimental results of the comparative analysis of the two methods, With the underwater vehicle topographic aided navigation system as the background, the position correction information is measured by single wave velocity to obtain the position error and standard deviation curve. In (d) in Fig. 2, it can be seen that a small change occurs near position 1, and the reasons may have: (one) the selection of the cubic spline interpolation point in the method of the present invention has deviation; (two) may be different from the requirements of the cubic spline It is related to satisfying the property of second-order continuous derivability; (3) The selection of the projection interval is inappropriate, resulting in a concave-convex curve. From Table 1, it is basically feasible to adopt the method of the present invention to approximate the probability density of the system. The probability density of the system is based on the posterior probability density, and the benchmark for comparison is that it satisfies the integral property of the probability density.

如图3A和图3B所示,时间间隔取Δt=0.1秒,仿真次数ST=50次,采用本发明方法与采用粒子滤波方法进行仿真而得到的位置均值和位置标准差的对比示意图。如图4A和图4B所示,时间间隔取Δt=0.01秒,仿真次数ST=50次,采用本发明方法与采用粒子滤波方法进行仿真而得到的位置均值和位置标准差的对比示意图。由图3A和图4A可看出两种方法整体的概率分布都比较逼近真实情况,当选取不同的时间间隔时,效果变化不大,由此可见,本发明的方法可以跟踪潜器运动状态的演变。由图3B与图4B可见本发明方法所描述的位置标准差收敛,而且收敛速度和收敛光滑性与粒子滤波方法相比较好。As shown in FIG. 3A and FIG. 3B , the time interval is Δt=0.1 second, the number of simulations ST=50 times, and the comparison schematic diagram of the position mean value and position standard deviation obtained by using the method of the present invention and the particle filter method for simulation. As shown in Figure 4A and Figure 4B, the time interval is Δt = 0.01 seconds, the number of simulations ST = 50 times, the schematic diagram of the comparison of the position mean value and position standard deviation obtained by using the method of the present invention and the particle filter method for simulation. It can be seen from Fig. 3A and Fig. 4A that the overall probability distribution of the two methods is closer to the real situation. When different time intervals are selected, the effect changes little. It can be seen that the method of the present invention can track the motion state of the submersible. evolve. It can be seen from Fig. 3B and Fig. 4B that the position standard deviation described by the method of the present invention converges, and the convergence speed and convergence smoothness are better than those of the particle filter method.

如图5A与图5B所示,为本发明实施例中采用两种方法的整体对比图。如图5A所示,为两种方法的潜器运动状态均方根误差的对比示意图,图中所示本发明方法所获得的观测点的离散程度与粒子滤波方法获得的离散程度相差不多。图5B为两种方法的潜器运动状态标准差的对比示意图,图中所示可知,本发明方法估计值偏离真实值的程度与粒子滤波方法相比较好。As shown in FIG. 5A and FIG. 5B , it is an overall comparison diagram of the two methods adopted in the embodiment of the present invention. As shown in Figure 5A, it is a schematic diagram of the comparison of the root mean square error of the submersible motion state of the two methods. The degree of dispersion of the observation points obtained by the method of the present invention shown in the figure is similar to that obtained by the particle filter method. Figure 5B is a schematic diagram of the comparison of the standard deviation of the motion state of the submersible by the two methods. As shown in the figure, it can be seen that the degree of deviation of the estimated value of the method of the present invention from the true value is better than that of the particle filter method.

上述实施例说明了本发明方法采用三次样条插值逼近导航随机微分模型的解具有很高的估计精度、收敛速度和收敛光滑性,且本发明的滤波方法可以更好的跟踪潜器运动状态的变化。The above-mentioned embodiment has illustrated that the method of the present invention adopts cubic spline interpolation to approximate the solution of the navigation stochastic differential model with high estimation accuracy, convergence speed and smoothness of convergence, and the filtering method of the present invention can better track the motion state of the submersible Variety.

Claims (5)

1. A nonlinear filtering method for underwater navigation is characterized in that a state differential and measurement discrete equation is established for an underwater terrain aided navigation system, a weak solution equation used for representing the motion state of a submersible vehicle is obtained, and then the motion state of the submersible vehicle is estimated by approximating the weak solution equation through the following steps:
step one, taking the conditional probability density of the initial time as normal distribution, and selecting a projection interval [ a, b ]]And a segmentation interval a ═ x0<x1<x2<...<xnB, constructing triplicate samplesStripe interpolation function pi(x):
<math> <mrow> <msub> <mi>p</mi> <mi>i</mi> </msub> <mrow> <mo>(</mo> <mi>x</mi> <mo>)</mo> </mrow> <mo>=</mo> <msub> <mi>M</mi> <mrow> <mi>i</mi> <mo>-</mo> <mn>1</mn> </mrow> </msub> <mfrac> <msup> <mrow> <mo>(</mo> <msub> <mi>x</mi> <mi>i</mi> </msub> <mo>-</mo> <mi>x</mi> <mo>)</mo> </mrow> <mn>3</mn> </msup> <msub> <mrow> <mn>6</mn> <mi>h</mi> </mrow> <mi>i</mi> </msub> </mfrac> <mo>+</mo> <msub> <mi>M</mi> <mi>i</mi> </msub> <mfrac> <msup> <mrow> <mo>(</mo> <mi>x</mi> <mo>-</mo> <msub> <mi>x</mi> <mrow> <mi>i</mi> <mo>-</mo> <mn>1</mn> </mrow> </msub> <mo>)</mo> </mrow> <mn>3</mn> </msup> <msub> <mrow> <mn>6</mn> <mi>h</mi> </mrow> <mi>i</mi> </msub> </mfrac> <mo>+</mo> <msub> <mi>A</mi> <mi>i</mi> </msub> <mrow> <mo>(</mo> <mi>x</mi> <mo>-</mo> <msub> <mi>x</mi> <mrow> <mi>i</mi> <mo>-</mo> <mn>1</mn> </mrow> </msub> <mo>)</mo> </mrow> <mo>+</mo> <msub> <mi>B</mi> <mi>i</mi> </msub> <mo>,</mo> <mi>x</mi> <mo>&Element;</mo> <mo>[</mo> <msub> <mi>x</mi> <mrow> <mi>i</mi> <mo>-</mo> <mn>1</mn> </mrow> </msub> <mo>,</mo> <msub> <mi>x</mi> <mi>i</mi> </msub> <mo>]</mo> <mo>,</mo> <mi>i</mi> <mo>=</mo> <mn>1,2</mn> <mo>,</mo> <mo>&CenterDot;</mo> <mo>&CenterDot;</mo> <mo>&CenterDot;</mo> <mo>,</mo> <mi>n</mi> <mo>-</mo> <mo>-</mo> <mo>-</mo> <mrow> <mo>(</mo> <mn>1</mn> <mo>)</mo> </mrow> </mrow> </math>
Wherein A isi,BiAs an integral constant with respect to time, a priori coefficient Mi=p″(xi),p″(xi) Interpolating the function p (x) at node x for a cubic splineiThe second derivative of (a), n represents the number of segment intervals and is an integer greater than 0, hiDenotes the length of the i-th segmentation interval, hi=xi-xi-1
The conditional probability density satisfies the forward kolmogorov equation:
<math> <mrow> <mi>L</mi> <mrow> <mo>(</mo> <mi>p</mi> <mo>)</mo> </mrow> <mo>=</mo> <mfrac> <mrow> <mo>&PartialD;</mo> <mi>p</mi> </mrow> <mrow> <mo>&PartialD;</mo> <mi>t</mi> </mrow> </mfrac> <mo>=</mo> <mfrac> <mn>1</mn> <mn>2</mn> </mfrac> <munderover> <mi>&Sigma;</mi> <mrow> <mi>r</mi> <mo>,</mo> <mi>s</mi> <mo>=</mo> <mn>1</mn> </mrow> <mi>m</mi> </munderover> <mfrac> <mrow> <msup> <mo>&PartialD;</mo> <mn>2</mn> </msup> <mrow> <mo>(</mo> <mi>g</mi> <mrow> <mo>(</mo> <mi>x</mi> <mo>,</mo> <mi>t</mi> <mo>)</mo> </mrow> <mi>Q</mi> <mrow> <mo>(</mo> <mi>t</mi> <mo>)</mo> </mrow> <msup> <mi>g</mi> <mi>T</mi> </msup> <mrow> <mo>(</mo> <mi>x</mi> <mo>,</mo> <mi>t</mi> <mo>)</mo> </mrow> <mo>&CenterDot;</mo> <mi>p</mi> <mo>)</mo> </mrow> </mrow> <mrow> <mo>&PartialD;</mo> <msub> <mi>x</mi> <mi>r</mi> </msub> <mo>&PartialD;</mo> <msub> <mi>x</mi> <mi>s</mi> </msub> </mrow> </mfrac> <mo>-</mo> <munderover> <mi>&Sigma;</mi> <mrow> <mi>r</mi> <mo>=</mo> <mn>1</mn> </mrow> <mi>m</mi> </munderover> <mfrac> <mrow> <mo>&PartialD;</mo> <mrow> <mo>(</mo> <mi>f</mi> <mrow> <mo>(</mo> <mi>x</mi> <mo>,</mo> <mi>t</mi> <mo>)</mo> </mrow> <mo>&CenterDot;</mo> <mi>p</mi> <mo>)</mo> </mrow> </mrow> <mrow> <mo>&PartialD;</mo> <msub> <mi>x</mi> <mi>r</mi> </msub> </mrow> </mfrac> <mo>-</mo> <mo>-</mo> <mo>-</mo> <mrow> <mo>(</mo> <mn>2</mn> <mo>)</mo> </mrow> </mrow> </math>
wherein p represents conditional probability density, t represents time, f (x, t) represents the relation between the change of the motion state of the submersible vehicle and the motion state of the submersible vehicle, g (x, t) represents noise diffusion, Q (t) is covariance of process noise, m represents the dimension of the motion state space of the submersible vehicle, and x represents the dimension of the motion state space of the submersible vehiclerAnd xsCoordinates representing an x-vector in an m-dimensional space; l (p) represents the forward Kolmogoroff operator;
step two, obtaining the value of an interpolation point through a posterior probability density function of the previous moment, constructing the interpolation point of a cubic spline interpolation function of the current moment by utilizing a forward Kolmogorov equation, and substituting the interpolation point into a formula (1) to obtain a formula Mi,Mi-1Integral constant A of expressioni,BiThereby obtaining a product containing onlyA prior probability density function of the coefficients is examined;
step three, listing n +1 equation sets by utilizing the first-order continuous derivative and boundary conditions of the cubic spline interpolation function at each node, and solving the prior coefficient M by using a pursuit methodiA priori coefficient MiAfter the formula (1) is substituted, obtaining the prior probability density of the current moment;
determining likelihood probability density according to the measurement information of the current moment, and substituting the prior probability density and the likelihood probability density into a Bayes formula to obtain the posterior probability density of the motion state of the submersible vehicle at the current moment;
step five, judging whether the simulation time is up, if not, turning to the step two to continue execution; if the simulation time is up, the simulation result is output, and the simulation is finished.
2. The nonlinear filtering method for underwater navigation according to claim 1, wherein the second step is specifically:
first, at node xi、xi-1A cubic spline interpolation function p (x)i)、p(xi-1) Satisfies the forward kolmogorov equation: <math> <mrow> <mi>L</mi> <mrow> <mo>(</mo> <mi>p</mi> <mrow> <mo>(</mo> <msub> <mi>x</mi> <mi>i</mi> </msub> <mo>)</mo> </mrow> <mo>)</mo> </mrow> <mo>=</mo> <mfrac> <mrow> <mo>&PartialD;</mo> <mi>p</mi> <mrow> <mo>(</mo> <mi>x</mi> <mo>)</mo> </mrow> </mrow> <mrow> <mo>&PartialD;</mo> <mi>t</mi> </mrow> </mfrac> <msub> <mo>|</mo> <mrow> <mi>x</mi> <mo>=</mo> <msub> <mi>x</mi> <mi>i</mi> </msub> </mrow> </msub> <mo>,</mo> <mi>L</mi> <mrow> <mo>(</mo> <mi>p</mi> <mrow> <mo>(</mo> <msub> <mi>x</mi> <mrow> <mi>i</mi> <mo>-</mo> <mn>1</mn> </mrow> </msub> <mo>)</mo> </mrow> <mo>)</mo> </mrow> <mo>=</mo> <mfrac> <mrow> <mo>&PartialD;</mo> <mi>p</mi> <mrow> <mo>(</mo> <mi>x</mi> <mo>)</mo> </mrow> </mrow> <mrow> <mo>&PartialD;</mo> <mi>t</mi> </mrow> </mfrac> <msub> <mo>|</mo> <mrow> <mi>x</mi> <mo>=</mo> <msub> <mi>x</mi> <mrow> <mi>i</mi> <mo>-</mo> <mn>1</mn> </mrow> </msub> </mrow> </msub> <mo>,</mo> </mrow> </math> simple notes <math> <mrow> <mi>g</mi> <mrow> <mo>(</mo> <mi>x</mi> <mo>,</mo> <mi>t</mi> <mo>)</mo> </mrow> <mover> <mo>=</mo> <mi>&Delta;</mi> </mover> <mi>g</mi> <mo>,</mo> <mi>Q</mi> <mrow> <mo>(</mo> <mi>t</mi> <mo>)</mo> </mrow> <mover> <mo>=</mo> <mi>&Delta;</mi> </mover> <mi>Q</mi> <mo>,</mo> <mi>f</mi> <mrow> <mo>(</mo> <mi>x</mi> <mo>,</mo> <mi>t</mi> <mo>)</mo> </mrow> <mover> <mo>=</mo> <mi>&Delta;</mi> </mover> <mi>f</mi> <mo>,</mo> </mrow> </math> Comprises the following steps:
<math> <mrow> <mfrac> <mrow> <mo>&PartialD;</mo> <mrow> <mo>(</mo> <mi>gQ</mi> <msup> <mi>g</mi> <mi>T</mi> </msup> <mo>&CenterDot;</mo> <mi>p</mi> <mo>)</mo> </mrow> </mrow> <mrow> <mo>&PartialD;</mo> <msub> <mi>x</mi> <mi>s</mi> </msub> </mrow> </mfrac> <mo>=</mo> <mfrac> <mrow> <mo>&PartialD;</mo> <mrow> <mo>(</mo> <mi>gQ</mi> <msup> <mi>g</mi> <mi>T</mi> </msup> <mo>)</mo> </mrow> </mrow> <mrow> <mo>&PartialD;</mo> <msub> <mi>x</mi> <mi>s</mi> </msub> </mrow> </mfrac> <mo>&CenterDot;</mo> <mi>p</mi> <mo>+</mo> <mi>gQ</mi> <msup> <mi>g</mi> <mi>T</mi> </msup> <mo>&CenterDot;</mo> <mfrac> <mrow> <mo>&PartialD;</mo> <mrow> <mo>(</mo> <mi>p</mi> <mo>)</mo> </mrow> </mrow> <mrow> <mo>&PartialD;</mo> <msub> <mi>x</mi> <mi>s</mi> </msub> </mrow> </mfrac> <mo>,</mo> </mrow> </math> <math> <mrow> <mfrac> <mrow> <mo>&PartialD;</mo> <mrow> <mo>(</mo> <mi>f</mi> <mo>&CenterDot;</mo> <mi>p</mi> <mo>)</mo> </mrow> </mrow> <mrow> <mo>&PartialD;</mo> <msub> <mi>x</mi> <mi>r</mi> </msub> </mrow> </mfrac> <mo>=</mo> <mfrac> <mrow> <mo>&PartialD;</mo> <mrow> <mo>(</mo> <mi>f</mi> <mo>)</mo> </mrow> </mrow> <mrow> <mo>&PartialD;</mo> <msub> <mi>x</mi> <mi>r</mi> </msub> </mrow> </mfrac> <mo>&CenterDot;</mo> <mi>p</mi> <mo>+</mo> <mi>f</mi> <mo>&CenterDot;</mo> <mfrac> <mrow> <mo>&PartialD;</mo> <mrow> <mo>(</mo> <mi>p</mi> <mo>)</mo> </mrow> </mrow> <mrow> <mo>&PartialD;</mo> <msub> <mi>x</mi> <mi>r</mi> </msub> </mrow> </mfrac> <mo>,</mo> </mrow> </math>
then, the following steps are obtained:
<math> <mrow> <mfrac> <mrow> <msup> <mo>&PartialD;</mo> <mn>2</mn> </msup> <mrow> <mo>(</mo> <mi>gQ</mi> <msup> <mi>g</mi> <mi>T</mi> </msup> <mo>&CenterDot;</mo> <mi>p</mi> <mo>)</mo> </mrow> </mrow> <mrow> <mo>&PartialD;</mo> <msub> <mi>x</mi> <mi>r</mi> </msub> <mo>&PartialD;</mo> <msub> <mi>x</mi> <mi>s</mi> </msub> </mrow> </mfrac> <mo>=</mo> <mfrac> <mrow> <msup> <mo>&PartialD;</mo> <mn>2</mn> </msup> <mrow> <mo>(</mo> <mi>gQ</mi> <msup> <mi>g</mi> <mi>T</mi> </msup> <mo>)</mo> </mrow> </mrow> <mrow> <mo>&PartialD;</mo> <msub> <mi>x</mi> <mi>r</mi> </msub> <mo>&PartialD;</mo> <msub> <mi>x</mi> <mi>s</mi> </msub> </mrow> </mfrac> <mo>&CenterDot;</mo> <mi>p</mi> <mo>+</mo> <mn>2</mn> <mo>&CenterDot;</mo> <mfrac> <mrow> <mo>&PartialD;</mo> <mrow> <mo>(</mo> <mi>gQ</mi> <msup> <mi>g</mi> <mi>T</mi> </msup> <mo>)</mo> </mrow> </mrow> <mrow> <mo>&PartialD;</mo> <msub> <mi>x</mi> <mi>r</mi> </msub> </mrow> </mfrac> <mo>&CenterDot;</mo> <mfrac> <mrow> <mo>&PartialD;</mo> <mrow> <mo>(</mo> <mi>p</mi> <mo>)</mo> </mrow> </mrow> <mrow> <mo>&PartialD;</mo> <msub> <mi>x</mi> <mi>s</mi> </msub> </mrow> </mfrac> <mo>+</mo> <mi>gQ</mi> <msup> <mi>g</mi> <mi>T</mi> </msup> <mo>&CenterDot;</mo> <mfrac> <mrow> <msup> <mo>&PartialD;</mo> <mn>2</mn> </msup> <mrow> <mo>(</mo> <mi>p</mi> <mo>)</mo> </mrow> </mrow> <mrow> <mo>&PartialD;</mo> <msub> <mi>x</mi> <mi>r</mi> </msub> <mo>&PartialD;</mo> <msub> <mi>x</mi> <mi>s</mi> </msub> </mrow> </mfrac> <mo>-</mo> <mo>-</mo> <mo>-</mo> <mrow> <mo>(</mo> <mn>3</mn> <mo>)</mo> </mrow> </mrow> </math>
further obtained by formula (3):
<math> <mrow> <mi>L</mi> <mrow> <mo>(</mo> <mi>p</mi> <mrow> <mo>(</mo> <mi>x</mi> <mo>)</mo> </mrow> <mo>)</mo> </mrow> <mo>=</mo> <mfrac> <mrow> <mo>&PartialD;</mo> <mi>p</mi> </mrow> <mrow> <mo>&PartialD;</mo> <mi>t</mi> </mrow> </mfrac> <mo>=</mo> <mfrac> <mn>1</mn> <mn>2</mn> </mfrac> <munderover> <mi>&Sigma;</mi> <mrow> <mi>r</mi> <mo>,</mo> <mi>s</mi> <mo>=</mo> <mn>1</mn> </mrow> <mi>n</mi> </munderover> <mo>[</mo> <mfrac> <mrow> <msup> <mo>&PartialD;</mo> <mn>2</mn> </msup> <mrow> <mo>(</mo> <mi>gQ</mi> <msup> <mi>g</mi> <mi>T</mi> </msup> <mo>)</mo> </mrow> </mrow> <mrow> <mo>&PartialD;</mo> <msub> <mi>x</mi> <mi>r</mi> </msub> <mo>&PartialD;</mo> <msub> <mi>x</mi> <mi>s</mi> </msub> </mrow> </mfrac> <mo>&CenterDot;</mo> <mi>p</mi> <mo>+</mo> <mn>2</mn> <mo>&CenterDot;</mo> <mfrac> <mrow> <mo>&PartialD;</mo> <mrow> <mo>(</mo> <mi>gQ</mi> <msup> <mi>g</mi> <mi>T</mi> </msup> <mo>)</mo> </mrow> </mrow> <mrow> <mo>&PartialD;</mo> <msub> <mi>x</mi> <mi>r</mi> </msub> </mrow> </mfrac> <mo>&CenterDot;</mo> <mfrac> <mrow> <mo>&PartialD;</mo> <mrow> <mo>(</mo> <mi>P</mi> <mo>)</mo> </mrow> </mrow> <mrow> <mo>&PartialD;</mo> <msub> <mi>x</mi> <mi>s</mi> </msub> </mrow> </mfrac> <mo>+</mo> <mi>gQ</mi> <msup> <mi>g</mi> <mi>T</mi> </msup> <mo>&CenterDot;</mo> <mfrac> <mrow> <msup> <mo>&PartialD;</mo> <mn>2</mn> </msup> <mrow> <mo>(</mo> <mi>p</mi> <mo>)</mo> </mrow> </mrow> <mrow> <mo>&PartialD;</mo> <msub> <mi>x</mi> <mi>r</mi> </msub> <mo>&PartialD;</mo> <msub> <mi>x</mi> <mi>s</mi> </msub> </mrow> </mfrac> <mo>]</mo> <mo>-</mo> <munderover> <mi>&Sigma;</mi> <mrow> <mi>r</mi> <mo>=</mo> <mn>1</mn> </mrow> <mi>n</mi> </munderover> <mo>[</mo> <mfrac> <mrow> <mo>&PartialD;</mo> <mrow> <mo>(</mo> <mi>f</mi> <mo>)</mo> </mrow> </mrow> <mrow> <mo>&PartialD;</mo> <msub> <mi>x</mi> <mi>r</mi> </msub> </mrow> </mfrac> <mo>&CenterDot;</mo> <mi>p</mi> <mo>+</mo> <mi>f</mi> <mo>&CenterDot;</mo> <mfrac> <mrow> <mo>&PartialD;</mo> <mrow> <mo>(</mo> <mi>p</mi> <mo>)</mo> </mrow> </mrow> <mrow> <mo>&PartialD;</mo> <msub> <mi>x</mi> <mi>r</mi> </msub> </mrow> </mfrac> <mo>]</mo> <mo>-</mo> <mo>-</mo> <mo>-</mo> <mrow> <mo>(</mo> <mn>4</mn> <mo>)</mo> </mrow> </mrow> </math>
for brevity, the following notes: <math> <mrow> <mfrac> <mn>1</mn> <mn>2</mn> </mfrac> <munderover> <mi>&Sigma;</mi> <mrow> <mi>r</mi> <mo>,</mo> <mi>s</mi> <mo>=</mo> <mn>1</mn> </mrow> <mi>n</mi> </munderover> <mfrac> <mrow> <msup> <mo>&PartialD;</mo> <mn>2</mn> </msup> <mrow> <mo>(</mo> <mi>gQ</mi> <msup> <mi>g</mi> <mi>T</mi> </msup> <mo>)</mo> </mrow> </mrow> <mrow> <mo>&PartialD;</mo> <msub> <mi>x</mi> <mi>r</mi> </msub> <mo>&PartialD;</mo> <msub> <mi>x</mi> <mi>s</mi> </msub> </mrow> </mfrac> <mo>-</mo> <munderover> <mi>&Sigma;</mi> <mrow> <mi>r</mi> <mo>=</mo> <mn>1</mn> </mrow> <mi>n</mi> </munderover> <mfrac> <mrow> <mo>&PartialD;</mo> <mrow> <mo>(</mo> <mi>f</mi> <mo>)</mo> </mrow> </mrow> <mrow> <mo>&PartialD;</mo> <msub> <mi>x</mi> <mi>r</mi> </msub> </mrow> </mfrac> <mover> <mo>=</mo> <mi>&Delta;</mi> </mover> <msub> <mi>&Delta;</mi> <mn>1</mn> </msub> <mo>,</mo> </mrow> </math> <math> <mrow> <munderover> <mi>&Sigma;</mi> <mrow> <mi>r</mi> <mo>,</mo> <mi>s</mi> <mo>=</mo> <mn>1</mn> </mrow> <mi>n</mi> </munderover> <mfrac> <mrow> <mo>&PartialD;</mo> <mrow> <mo>(</mo> <mi>gQ</mi> <msup> <mi>g</mi> <mi>T</mi> </msup> <mo>)</mo> </mrow> </mrow> <mrow> <mo>&PartialD;</mo> <msub> <mi>x</mi> <mi>r</mi> </msub> </mrow> </mfrac> <mo>-</mo> <mi>f</mi> <mover> <mo>=</mo> <mi>&Delta;</mi> </mover> <msub> <mi>&Delta;</mi> <mn>2</mn> </msub> <mo>,</mo> </mrow> </math> <math> <mrow> <mi>gQ</mi> <msup> <mi>g</mi> <mi>T</mi> </msup> <mover> <mo>=</mo> <mi>&Delta;</mi> </mover> <msub> <mi>&Delta;</mi> <mn>3</mn> </msub> <mo>,</mo> </mrow> </math>
then, when g, Q, f are independent of time t, then Δ123Also independent of time t, formula (5) is obtained:
<math> <mrow> <msubsup> <mo>&Integral;</mo> <msub> <mi>t</mi> <mi>k</mi> </msub> <msub> <mi>t</mi> <mrow> <mi>k</mi> <mo>+</mo> <mn>1</mn> </mrow> </msub> </msubsup> <mi>L</mi> <mrow> <mo>(</mo> <mi>p</mi> <mrow> <mo>(</mo> <mi>x</mi> <mo>)</mo> </mrow> <mo>)</mo> </mrow> <mo>=</mo> <msubsup> <mo>&Integral;</mo> <msub> <mi>t</mi> <mi>k</mi> </msub> <msub> <mi>t</mi> <mrow> <mi>k</mi> <mo>+</mo> <mn>1</mn> </mrow> </msub> </msubsup> <mfrac> <mrow> <mo>&PartialD;</mo> <mi>p</mi> </mrow> <mrow> <mo>&PartialD;</mo> <mi>t</mi> </mrow> </mfrac> <mi>dt</mi> <mo>=</mo> <msubsup> <mo>&Integral;</mo> <msub> <mi>t</mi> <mi>k</mi> </msub> <msub> <mi>t</mi> <mrow> <mi>k</mi> <mo>+</mo> <mn>1</mn> </mrow> </msub> </msubsup> <mrow> <mo>(</mo> <msub> <mi>&Delta;</mi> <mn>1</mn> </msub> <mi>p</mi> <mo>+</mo> <msub> <mi>&Delta;</mi> <mn>2</mn> </msub> <mfrac> <mrow> <mo>&PartialD;</mo> <mi>p</mi> </mrow> <mrow> <mo>&PartialD;</mo> <mi>x</mi> </mrow> </mfrac> <mo>+</mo> <msub> <mi>&Delta;</mi> <mn>3</mn> </msub> <mfrac> <mrow> <msup> <mo>&PartialD;</mo> <mn>2</mn> </msup> <mi>p</mi> </mrow> <mrow> <mo>&PartialD;</mo> <msup> <mi>x</mi> <mn>2</mn> </msup> </mrow> </mfrac> <mo>)</mo> </mrow> <mi>dt</mi> <mo>-</mo> <mo>-</mo> <mo>-</mo> <mrow> <mo>(</mo> <mn>5</mn> <mo>)</mo> </mrow> </mrow> </math>
further, formula (6) is obtained from the median theorem of integration:
<math> <mrow> <msup> <mi>p</mi> <msub> <mi>t</mi> <mrow> <mi>k</mi> <mo>+</mo> <mn>1</mn> </mrow> </msub> </msup> <mrow> <mo>(</mo> <mi>x</mi> <mo>)</mo> </mrow> <mo>=</mo> <msup> <mi>p</mi> <msub> <mi>t</mi> <mi>k</mi> </msub> </msup> <mrow> <mo>(</mo> <mi>x</mi> <mo>)</mo> </mrow> <mo>+</mo> <mrow> <mo>(</mo> <msub> <mi>&Delta;</mi> <mn>1</mn> </msub> <msup> <mi>p</mi> <msub> <mi>t</mi> <mi>k</mi> </msub> </msup> <mo>+</mo> <msub> <mi>&Delta;</mi> <mn>2</mn> </msub> <mfrac> <mrow> <mo>&PartialD;</mo> <msup> <mi>p</mi> <msub> <mi>t</mi> <mi>k</mi> </msub> </msup> </mrow> <mrow> <mo>&PartialD;</mo> <mi>x</mi> </mrow> </mfrac> <mo>+</mo> <msub> <mi>&Delta;</mi> <mn>3</mn> </msub> <mfrac> <mrow> <msup> <mo>&PartialD;</mo> <mn>2</mn> </msup> <msup> <mi>p</mi> <msub> <mi>t</mi> <mi>k</mi> </msub> </msup> </mrow> <mrow> <mo>&PartialD;</mo> <msup> <mi>x</mi> <mn>2</mn> </msup> </mrow> </mfrac> <mo>)</mo> </mrow> <mo>&CenterDot;</mo> <mrow> <mo>(</mo> <msub> <mi>t</mi> <mrow> <mi>k</mi> <mo>+</mo> <mn>1</mn> </mrow> </msub> <mo>-</mo> <msub> <mi>t</mi> <mi>k</mi> </msub> <mo>)</mo> </mrow> <mo>-</mo> <mo>-</mo> <mo>-</mo> <mrow> <mo>(</mo> <mn>6</mn> <mo>)</mo> </mrow> </mrow> </math>
wherein,
Figure FDA000018920246000210
respectively, at time tk+1、tkThe cubic spline interpolation function of, said tk+1Represents the k +1 th time, which is the current time, tkIndicating that the kth time is the last time; then t is obtained according to equation (6)k+1At node x at timeiAnd node xi-1Interpolation point of the cubic spline interpolation function of (1):
Figure FDA000018920246000211
finally, the interpolation points are substituted in equation (1) to obtain the integration constant with respect to time:
A i = p i ( x i ) - p i ( x i - 1 ) h i - h i 6 ( M i - M i - 1 ) , B i = p i ( x i - 1 ) - h i 2 6 M i - 1 ;
integrating constant Ai,BiSubstituting formula (1) to obtain the product containing only prior coefficient Mi,Mi-1Prior probability density function of (a):
<math> <mrow> <msub> <mi>p</mi> <mi>i</mi> </msub> <mrow> <mo>(</mo> <mi>x</mi> <mo>)</mo> </mrow> <mo>=</mo> <msub> <mi>M</mi> <mrow> <mi>i</mi> <mo>-</mo> <mn>1</mn> </mrow> </msub> <mfrac> <msup> <mrow> <mo>(</mo> <msub> <mi>x</mi> <mi>i</mi> </msub> <mo>-</mo> <mi>x</mi> <mo>)</mo> </mrow> <mn>3</mn> </msup> <msub> <mrow> <mn>6</mn> <mi>h</mi> </mrow> <mi>i</mi> </msub> </mfrac> <mo>+</mo> <msub> <mi>M</mi> <mrow> <mi>i</mi> <mo>-</mo> <mn>1</mn> </mrow> </msub> <mfrac> <msup> <mrow> <mo>(</mo> <mi>x</mi> <mo>-</mo> <msub> <mi>x</mi> <mrow> <mi>i</mi> <mo>-</mo> <mn>1</mn> </mrow> </msub> <mo>)</mo> </mrow> <mn>3</mn> </msup> <msub> <mrow> <mn>6</mn> <mi>h</mi> </mrow> <mi>i</mi> </msub> </mfrac> <mo>+</mo> <mrow> <mo>(</mo> <msub> <mi>p</mi> <mi>i</mi> </msub> <mrow> <mo>(</mo> <msub> <mi>x</mi> <mrow> <mi>i</mi> <mo>-</mo> <mn>1</mn> </mrow> </msub> <mo>)</mo> </mrow> <mo>-</mo> <mfrac> <msubsup> <mi>h</mi> <mi>i</mi> <mn>2</mn> </msubsup> <mn>6</mn> </mfrac> <msub> <mi>M</mi> <mrow> <mi>i</mi> <mo>-</mo> <mn>1</mn> </mrow> </msub> <mo>)</mo> </mrow> <mo>&CenterDot;</mo> <mfrac> <msub> <mi>x</mi> <mrow> <mi>i</mi> <mo>-</mo> <mi>x</mi> </mrow> </msub> <msub> <mi>h</mi> <mi>i</mi> </msub> </mfrac> <mo>+</mo> <mrow> <mo>(</mo> <msub> <mi>p</mi> <mi>i</mi> </msub> <mrow> <mo>(</mo> <msub> <mi>x</mi> <mi>i</mi> </msub> <mo>)</mo> </mrow> <mo>-</mo> <mfrac> <msubsup> <mi>h</mi> <mi>i</mi> <mn>2</mn> </msubsup> <mn>6</mn> </mfrac> <msub> <mi>M</mi> <mi>i</mi> </msub> <mo>)</mo> </mrow> <mfrac> <mrow> <mi>x</mi> <mo>-</mo> <msub> <mi>x</mi> <mrow> <mi>i</mi> <mo>-</mo> <mn>1</mn> </mrow> </msub> </mrow> <msub> <mi>h</mi> <mi>i</mi> </msub> </mfrac> <mo>,</mo> <mi>x</mi> <mo>&Element;</mo> <mo>[</mo> <msub> <mi>x</mi> <mrow> <mi>i</mi> <mo>-</mo> <mn>1</mn> </mrow> </msub> <mo>,</mo> <msub> <mi>x</mi> <mi>i</mi> </msub> <mo>]</mo> <mo>-</mo> <mo>-</mo> <mo>-</mo> <mrow> <mo>(</mo> <mn>7</mn> <mo>)</mo> </mrow> </mrow> </math>
wherein i is 1,2, …, n.
3. The nonlinear filtering method for underwater navigation according to claim 1, wherein the n +1 equation sets in step three are specifically:
<math> <mrow> <mfrac> <msub> <mi>h</mi> <mi>i</mi> </msub> <mrow> <msub> <mi>h</mi> <mi>i</mi> </msub> <mo>+</mo> <msub> <mi>h</mi> <mrow> <mi>i</mi> <mo>+</mo> <mn>1</mn> </mrow> </msub> </mrow> </mfrac> <msub> <mi>M</mi> <mrow> <mi>i</mi> <mo>-</mo> <mn>1</mn> </mrow> </msub> <mo>+</mo> <msub> <mrow> <mn>2</mn> <mi>M</mi> </mrow> <mi>i</mi> </msub> <mo>+</mo> <mfrac> <msub> <mi>h</mi> <mrow> <mi>i</mi> <mo>+</mo> <mn>1</mn> </mrow> </msub> <mrow> <msub> <mi>h</mi> <mi>i</mi> </msub> <mo>+</mo> <msub> <mi>h</mi> <mrow> <mi>i</mi> <mo>+</mo> <mn>1</mn> </mrow> </msub> </mrow> </mfrac> <msub> <mi>M</mi> <mrow> <mi>i</mi> <mo>+</mo> <mn>1</mn> </mrow> </msub> <mo>=</mo> <mfrac> <mn>6</mn> <mrow> <msub> <mi>h</mi> <mi>i</mi> </msub> <mo>+</mo> <msub> <mi>h</mi> <mrow> <mi>i</mi> <mo>+</mo> <mn>1</mn> </mrow> </msub> </mrow> </mfrac> <mrow> <mo>(</mo> <mfrac> <mrow> <msub> <mi>p</mi> <mi>i</mi> </msub> <mrow> <mo>(</mo> <msub> <mi>x</mi> <mrow> <mi>i</mi> <mo>+</mo> <mn>1</mn> </mrow> </msub> <mo>)</mo> </mrow> <mo>-</mo> <msub> <mi>p</mi> <mi>i</mi> </msub> <mrow> <mo>(</mo> <msub> <mi>x</mi> <mi>i</mi> </msub> <mo>)</mo> </mrow> </mrow> <msub> <mi>h</mi> <mrow> <mi>i</mi> <mo>+</mo> <mn>1</mn> </mrow> </msub> </mfrac> <mo>-</mo> <mfrac> <mrow> <msub> <mi>p</mi> <mi>i</mi> </msub> <mrow> <mo>(</mo> <msub> <mi>x</mi> <mi>i</mi> </msub> <mo>)</mo> </mrow> <msub> <mrow> <mo>-</mo> <mi>p</mi> </mrow> <mi>i</mi> </msub> <mrow> <mo>(</mo> <msub> <mi>x</mi> <mrow> <mi>i</mi> <mo>-</mo> <mn>1</mn> </mrow> </msub> <mo>)</mo> </mrow> </mrow> <msub> <mi>h</mi> <mi>i</mi> </msub> </mfrac> <mo>)</mo> </mrow> <mrow> <mo>(</mo> <mi>i</mi> <mo>=</mo> <mn>1,2</mn> <mo>,</mo> <mo>&CenterDot;</mo> <mo>&CenterDot;</mo> <mo>&CenterDot;</mo> <mo>,</mo> <mi>n</mi> <mo>-</mo> <mn>1</mn> <mo>)</mo> </mrow> <mo>-</mo> <mo>-</mo> <mo>-</mo> <mrow> <mo>(</mo> <mn>8</mn> <mo>)</mo> </mrow> </mrow> </math>
2 M 1 + M 0 = 6 p 0 ( x 1 ) - p 0 ( x 0 ) h 1 2 - - - ( 9 )
M n - 1 + 2 M n = - 6 p n - 1 ( x n ) - p n - 1 ( x n - 1 ) h n 2 - - - ( 10 )
wherein p isi(xi+1)、pi(xi) Respectively represent tk+1At node x at timei+1And node xiA cubic spline interpolation function of (1); obtaining prior coefficient M by using n +1 equation sets through a catch-up methodiThen, the further obtained prior probability density function is:
<math> <mrow> <msub> <mi>p</mi> <mi>i</mi> </msub> <mrow> <mo>(</mo> <mi>x</mi> <mo>)</mo> </mrow> <mo>=</mo> <msub> <mi>M</mi> <mrow> <mi>i</mi> <mo>-</mo> <mn>1</mn> </mrow> </msub> <mfrac> <msup> <mrow> <mo>(</mo> <msub> <mi>x</mi> <mi>i</mi> </msub> <mo>-</mo> <mi>x</mi> <mo>)</mo> </mrow> <mn>3</mn> </msup> <msub> <mrow> <mn>6</mn> <mi>h</mi> </mrow> <mi>i</mi> </msub> </mfrac> <mo>+</mo> <msub> <mi>M</mi> <mi>i</mi> </msub> <mfrac> <msup> <mrow> <mo>(</mo> <mi>x</mi> <mo>-</mo> <msub> <mi>x</mi> <mrow> <mi>i</mi> <mo>-</mo> <mn>1</mn> </mrow> </msub> <mo>)</mo> </mrow> <mn>3</mn> </msup> <msub> <mrow> <mn>6</mn> <mi>h</mi> </mrow> <mi>i</mi> </msub> </mfrac> <mo>+</mo> <mrow> <mo>(</mo> <msub> <mi>p</mi> <mi>i</mi> </msub> <mrow> <mo>(</mo> <msub> <mi>x</mi> <mrow> <mi>i</mi> <mo>-</mo> <mn>1</mn> </mrow> </msub> <mo>)</mo> </mrow> <mo>-</mo> <mfrac> <msubsup> <mi>h</mi> <mi>i</mi> <mn>2</mn> </msubsup> <mn>6</mn> </mfrac> <msub> <mi>M</mi> <mrow> <mi>i</mi> <mo>-</mo> <mn>1</mn> </mrow> </msub> <mo>)</mo> </mrow> <mo>&CenterDot;</mo> <mfrac> <msub> <mi>x</mi> <mrow> <mi>i</mi> <mo>-</mo> <mi>x</mi> </mrow> </msub> <msub> <mi>h</mi> <mi>i</mi> </msub> </mfrac> <mo>-</mo> <mo>-</mo> <mo>-</mo> <mrow> <mo>(</mo> <mn>11</mn> <mo>)</mo> </mrow> </mrow> </math>
<math> <mrow> <mo>+</mo> <mrow> <mo>(</mo> <msub> <mi>p</mi> <mi>i</mi> </msub> <mrow> <mo>(</mo> <msub> <mi>x</mi> <mi>i</mi> </msub> <mo>)</mo> </mrow> <mo>-</mo> <mfrac> <msubsup> <mi>h</mi> <mi>i</mi> <mn>2</mn> </msubsup> <mn>6</mn> </mfrac> <msub> <mi>M</mi> <mi>i</mi> </msub> <mo>)</mo> </mrow> <mfrac> <mrow> <mi>x</mi> <mo>-</mo> <msub> <mi>x</mi> <mrow> <mi>i</mi> <mo>-</mo> <mn>1</mn> </mrow> </msub> </mrow> <msub> <mi>h</mi> <mi>i</mi> </msub> </mfrac> <mo>,</mo> <mi>x</mi> <mo>&Element;</mo> <mo>[</mo> <msub> <mi>x</mi> <mrow> <mi>i</mi> <mo>-</mo> <mn>1</mn> </mrow> </msub> <mo>,</mo> <msub> <mi>x</mi> <mi>i</mi> </msub> <mo>]</mo> </mrow> </math>
equation (11) is the piecewise function of the prior probability density of the motion state of the submersible vehicle at the current moment.
4. The nonlinear filtering method for underwater navigation according to claim 1, wherein the fourth step is specifically:
first, a likelihood probability density p (z) of the current time is determinedk+1The/x) is:
<math> <mrow> <mi>p</mi> <mrow> <mo>(</mo> <msub> <mi>z</mi> <mrow> <mi>k</mi> <mo>+</mo> <mn>1</mn> </mrow> </msub> <mo>/</mo> <mi>x</mi> <mo>)</mo> </mrow> <mo>=</mo> <mfrac> <mrow> <mi>exp</mi> <mo>{</mo> <mo>-</mo> <mfrac> <mn>1</mn> <mn>2</mn> </mfrac> <msup> <mrow> <mo>(</mo> <msub> <mi>z</mi> <mi>k</mi> </msub> <mo>-</mo> <mi>h</mi> <mrow> <mo>(</mo> <mi>x</mi> <mo>,</mo> <msub> <mi>t</mi> <mi>k</mi> </msub> <mo>)</mo> </mrow> <mo>)</mo> </mrow> <mi>T</mi> </msup> <msup> <msub> <mi>R</mi> <mi>k</mi> </msub> <mrow> <mo>-</mo> <mn>1</mn> </mrow> </msup> <mrow> <mo>(</mo> <msub> <mi>z</mi> <mi>k</mi> </msub> <mo>-</mo> <mi>h</mi> <mrow> <mo>(</mo> <mi>x</mi> <mo>,</mo> <msub> <mi>t</mi> <mi>k</mi> </msub> <mo>)</mo> </mrow> <mo>)</mo> </mrow> <mo>}</mo> </mrow> <msqrt> <msup> <mrow> <mo>(</mo> <mn>2</mn> <mi>&pi;</mi> <mo>)</mo> </mrow> <mi>m</mi> </msup> <mi>det</mi> <msub> <mi>R</mi> <mi>k</mi> </msub> </msqrt> </mfrac> <mo>-</mo> <mo>-</mo> <mo>-</mo> <mrow> <mo>(</mo> <mn>12</mn> <mo>)</mo> </mrow> </mrow> </math>
wherein m represents the dimension of the motion state space of the submersible vehicle, RkRepresents the covariance of the metrology noise, h (x, t)k) Representing a measurement function, tk+1Represents the k +1 th time and is the current time;
then the obtained prior probability density and likelihood probability densitySubstituting into Bayes formula to obtain the posterior probability density of the current time, which is the segment function pi(x,tk+1/zk+1):
<math> <mrow> <msub> <mi>p</mi> <mi>i</mi> </msub> <mrow> <mo>(</mo> <mi>x</mi> <mo>,</mo> <msub> <mi>t</mi> <mrow> <mi>k</mi> <mo>+</mo> <mn>1</mn> </mrow> </msub> <mo>/</mo> <msub> <mi>z</mi> <mrow> <mi>k</mi> <mo>+</mo> <mn>1</mn> </mrow> </msub> <mo>)</mo> </mrow> <mo>=</mo> <mfrac> <mrow> <mi>p</mi> <mrow> <mo>(</mo> <msub> <mi>z</mi> <mrow> <mi>k</mi> <mo>+</mo> <mn>1</mn> </mrow> </msub> <mo>/</mo> <mi>x</mi> <mo>)</mo> </mrow> <msub> <mi>p</mi> <mi>i</mi> </msub> <mrow> <mo>(</mo> <mi>x</mi> <mo>)</mo> </mrow> </mrow> <mrow> <msub> <mo>&Integral;</mo> <mi>&Omega;</mi> </msub> <mi>p</mi> <mrow> <mo>(</mo> <msub> <mi>z</mi> <mrow> <mi>k</mi> <mo>+</mo> <mn>1</mn> </mrow> </msub> <mo>/</mo> <mi>x</mi> <mo>)</mo> </mrow> <msub> <mi>p</mi> <mi>i</mi> </msub> <mrow> <mo>(</mo> <mi>x</mi> <mo>)</mo> </mrow> <mi>dx</mi> </mrow> </mfrac> <mo>,</mo> <mi>x</mi> <mo>&Element;</mo> <mo>[</mo> <msub> <mi>x</mi> <mrow> <mi>i</mi> <mo>-</mo> <mn>1</mn> </mrow> </msub> <mo>,</mo> <msub> <mi>x</mi> <mi>i</mi> </msub> <mo>]</mo> <mrow> <mo>(</mo> <mi>i</mi> <mo>=</mo> <mn>1,2</mn> <mo>,</mo> <mo>&CenterDot;</mo> <mo>&CenterDot;</mo> <mo>&CenterDot;</mo> <mo>,</mo> <mi>n</mi> <mo>)</mo> </mrow> <mo>-</mo> <mo>-</mo> <mo>-</mo> <mrow> <mo>(</mo> <mn>13</mn> <mo>)</mo> </mrow> </mrow> </math>
Wherein z iskIndicating measurement information at the k-th time, zk+1Measurement information indicating the k +1 th time; Ω is the sample space.
5. The nonlinear filtering method for underwater navigation according to claim 1, wherein the simulation result in the fifth step is the mean and variance of the posterior probability density of the motion state of the submersible vehicle obtained in the fourth step:
the mean value Ex of the posterior probability density is as follows:
Figure FDA00001892024600035
wherein n represents the number of segment intervals, pi(x,tk+1/zk+1) Is a posterior probability density piecewise function;
the variance of the posterior probability density
Figure FDA00001892024600036
Comprises the following steps: <math> <mrow> <mi>cov</mi> <mrow> <mo>(</mo> <mover> <mi>x</mi> <mo>^</mo> </mover> <mo>)</mo> </mrow> <mo>=</mo> <mi>E</mi> <mrow> <mo>(</mo> <mi>x</mi> <mo>&CenterDot;</mo> <mi>x</mi> <mo>)</mo> </mrow> <mo>-</mo> <mrow> <mo>(</mo> <mi>Ex</mi> <mo>)</mo> </mrow> <mo>&CenterDot;</mo> <mrow> <mo>(</mo> <mi>Ex</mi> <mo>)</mo> </mrow> <mo>.</mo> </mrow> </math>
CN201110108952A 2011-04-28 2011-04-28 A Nonlinear Filtering Method for Underwater Navigation Expired - Fee Related CN102252672B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201110108952A CN102252672B (en) 2011-04-28 2011-04-28 A Nonlinear Filtering Method for Underwater Navigation

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201110108952A CN102252672B (en) 2011-04-28 2011-04-28 A Nonlinear Filtering Method for Underwater Navigation

Publications (2)

Publication Number Publication Date
CN102252672A CN102252672A (en) 2011-11-23
CN102252672B true CN102252672B (en) 2012-10-10

Family

ID=44980089

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201110108952A Expired - Fee Related CN102252672B (en) 2011-04-28 2011-04-28 A Nonlinear Filtering Method for Underwater Navigation

Country Status (1)

Country Link
CN (1) CN102252672B (en)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104021289B (en) * 2014-06-04 2017-04-26 山西大学 Non-Gaussian unsteady-state noise modeling method
CN105157704A (en) * 2015-06-03 2015-12-16 北京理工大学 Bayesian estimation-based particle filter gravity-assisted inertial navigation matching method
CN105513091A (en) * 2015-11-26 2016-04-20 哈尔滨工程大学 Dual-Bayesian estimation-based motion state estimation method for underwater motion body
CN114839866B (en) * 2022-03-21 2024-08-02 哈尔滨工程大学 Curve path tracking control method for underwater snake-shaped robot
CN114462458B (en) * 2022-04-11 2022-07-08 自然资源部第一海洋研究所 Ship underwater signal noise reduction and target enhancement method
CN118915175B (en) * 2024-10-12 2024-12-20 中国船舶集团有限公司第七〇七研究所 Error elimination method and system for external information of underwater gravity measurement

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5991525A (en) * 1997-08-22 1999-11-23 Voyan Technology Method for real-time nonlinear system state estimation and control
US7526414B2 (en) * 2003-07-25 2009-04-28 Siemens Corporate Research, Inc. Density morphing and mode propagation for Bayesian filtering
CN101226630B (en) * 2007-09-27 2010-08-25 四川虹微技术有限公司 Interpolation method based on cubic spline function

Non-Patent Citations (4)

* Cited by examiner, † Cited by third party
Title
N.J. Gordon等.novel approach to nonlinear non-Gaussian Bayesian state estimation.《IEE PROCEEDINGS-F》.1993,第140卷(第2期),第107-113页.
novel approach to nonlinear non-Gaussian Bayesian state estimation;N.J. Gordon等;《IEE PROCEEDINGS-F》;19930430;第140卷(第2期);第107-113页 *
张共愿等.粒子滤波及其在导航系统中的应用综述.《中国惯性技术学报》.2006,第14卷(第6期),第91-94页.
粒子滤波及其在导航系统中的应用综述;张共愿等;《中国惯性技术学报》;20061231;第14卷(第6期);第91-94页 *

Also Published As

Publication number Publication date
CN102252672A (en) 2011-11-23

Similar Documents

Publication Publication Date Title
CN102252672B (en) A Nonlinear Filtering Method for Underwater Navigation
CN106054170B (en) A Maneuvering Target Tracking Method Under Constrained Conditions
CN104318059B (en) Method for tracking target and tracking system for non-linear Gaussian Systems
CN104021289B (en) Non-Gaussian unsteady-state noise modeling method
CN106443661A (en) Maneuvering extended target tracking method based on unscented Kalman filter
CN105652250B (en) A kind of maneuvering target tracking technology based on double-deck expectation maximization
CN105678047B (en) Merge empirical mode decomposition noise reduction and the wind field characterizing method of Complex Networks Analysis
CN105354860A (en) Box particle filtering based extension target CBMeMBer tracking method
CN110501686A (en) State estimation method based on a novel adaptive high-order unscented Kalman filter
CN111047627A (en) Smooth constraint unscented Kalman filtering method and target tracking method
CN111291319B (en) A State Estimation Method for Mobile Robots in Non-Gaussian Noise Environment
CN104166989A (en) Rapid ICP method for two-dimensional laser radar point cloud matching
CN110209180A (en) A kind of UAV navigation method for tracking target based on HuberM-Cubature Kalman filtering
CN108871365A (en) Method for estimating state and system under a kind of constraint of course
CN110989341B (en) Constraint auxiliary particle filtering method and target tracking method
CN103390107B (en) A kind of method for tracking target based on dirac weighted sum and Target Tracking System
CN105701292B (en) A kind of parsing discrimination method of maneuvering target turning rate
CN108344975A (en) A kind of joint cluster scaling method declined using gradient with included angle cosine
CN103424742A (en) Target tracking method and target tracking system of sequential processing measurement data
CN105842686A (en) Fast TBD detection method based on particle smoothness
CN105353353B (en) Multiple Search Particle Probability Hypothesis Density Filtering Method for Multiple Target Tracking
CN111896946A (en) A Continuous Time Target Tracking Method Based on Track Fitting
CN113030945B (en) Phased array radar target tracking method based on linear sequential filtering
CN104270119B (en) Two-stage cubature kalman filtering method based on nonlinearity unknown random deviation
CN101826856A (en) Particle filtering method based on spherical simplex unscented Kalman filter

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C14 Grant of patent or utility model
GR01 Patent grant
CF01 Termination of patent right due to non-payment of annual fee
CF01 Termination of patent right due to non-payment of annual fee

Granted publication date: 20121010