CN102226591A - 太阳能空气集热器 - Google Patents

太阳能空气集热器 Download PDF

Info

Publication number
CN102226591A
CN102226591A CN 201110141043 CN201110141043A CN102226591A CN 102226591 A CN102226591 A CN 102226591A CN 201110141043 CN201110141043 CN 201110141043 CN 201110141043 A CN201110141043 A CN 201110141043A CN 102226591 A CN102226591 A CN 102226591A
Authority
CN
China
Prior art keywords
shell
air
vacuum glass
heat collector
collector
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN 201110141043
Other languages
English (en)
Inventor
张欢
由世俊
李宪莉
高煜
李博佳
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tianjin University
Original Assignee
Tianjin University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tianjin University filed Critical Tianjin University
Priority to CN 201110141043 priority Critical patent/CN102226591A/zh
Publication of CN102226591A publication Critical patent/CN102226591A/zh
Pending legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/40Solar thermal energy, e.g. solar towers

Landscapes

  • Building Environments (AREA)

Abstract

本发明公开了太阳能空气集热器,它包括外壳,在所述的外壳内镶嵌有隔热层,在所述的外壳的开口端盖有真空玻璃盖板,在所述的外壳的下端开有进风口,在所述的外壳的顶部设置有出风口,在所述的外壳和真空玻璃盖板构成的空间内安装有冲缝型吸热板,真空玻璃盖板与冲缝型吸热板之间以及冲缝型吸热板与外壳之间分别形成流道。真空玻璃具有透过率高、传热系数小、抗压能力强等优点,它的应用可以有效地减小集热器的热损失。采用本集热器增加了吸热板与空气之间的对流换热面积,增大了气流扰动,提高了空气与吸热板的对流换热系数,增强了辐射、对流换热能力。

Description

太阳能空气集热器
技术领域
本发明涉及空气集热器,具体涉及太阳能空气集热器。
背景技术
平板型集热器对太阳直接辐射和漫射辐射均能吸收,该种集热器具有投资小,结构简单,故障少,维护管理方便,易与建筑结合等优点,因此,相对于真空管集热器来说,该集热器在村镇建筑中的应用空间更大。
然而,该种集热器的集热效率较低,国内外许多学者已经从增强吸热板与空气之间换热、增大换热面积和减小热损等几方面对其进行改善,如吸热板加装隔板、隔板上附加翅片、倒角、金属丝网及起皱模块等等,并由此开发了许多类型的空气集热器,如:[1]H M Yeh,C D Ho.Collector efficiency of double-flow solar air heaters with fins attached[J].Energy,2002,27(8):715-727.(翅片式双流程太阳能空气集热器的集热性能研究)[2]Cengiz Yildiz,I T Togrul. Thermal efficiency of an air solar collector with extended absorption surface and increa sed convect
发明内容
本发明的目的在于克服现有技术的不足,提供一种结构简单,造价低,集热效率高以及安装方便的太阳能空气集热器。
本发明的太阳能空气集热器,它包括外壳,在所述的外壳内镶嵌有隔热层,在所述的外壳的开口端盖有真空玻璃盖板,在所述的外壳的下端开有进风口,在所述的外壳的顶部设置有出风口,在所述的外壳和真空玻璃盖板构成的空间内安装有冲缝型吸热板,真空玻璃盖板与冲缝型吸热板之间以及冲缝型吸热板与外壳之间分别形成流道。
本发明的突出优点是:
真空玻璃具有透过率高、传热系数小、抗压能力强等优点,它的应用可以有效地减小集热器的热损失。冲缝型吸热板增加了吸热板与空气之间的对流换热面积,增大了气流扰动,提高了空气与吸热板的对流换热系数,增强了辐射、对流换热能力,从而实现了结构简单,造价低和集热效率高的目的。该集热器保温和密封性能好,安装方便,有效解决了其与太阳能建筑的一体化问题,实现了技术与艺术的有机结合。
附图说明
图1是本发明的太阳能空气集热器的主视图;
图2是图1所示的集热器的1-1剖面图;
图3是图1所示的集热器的俯视图;
图4是图2所示的集热器的冲缝吸热板主视图;
图5是图4所示的冲缝吸热板的冲缝作法大样图;
图6是图1所示的集热器的后视图;
图7是本发明的太阳能空气集热器的工作原理图;
图8是实施例1中测试日太阳辐射强度变化;
图9是实施例1中测试日环境温度变化;
图10是实施例1中测试日空气进口温度变化;
图11是实施例1中测试日室外风速变化;
图12是实施例1中采用的本发明的集热器空气出口温度的实验值与模拟值对比;
图13是室外风速对实施例1中采用的本发明的集热器的有效效率的影响;
图14是环境温度对实施例1中采用的本发明的集热器的有效效率的影响;
图15是空气进口温度对实施例1中采用的本发明的集热器的有效效率的影响。
具体实施方式
下面结合具体的实施例,并参照附图,对本发明技术做进一步的说明:
如图1-7所示的本发明太阳能空气集热器,它包括外壳1,在所述的外壳1内镶嵌有隔热层2,在所述的外壳1的开口端盖有真空玻璃盖板3,在所述的外壳1的下端开有进风口6,在所述的外壳1的顶部设置有出风口5,在所述的外壳和真空玻璃盖板3构成的空间内安装有冲缝型吸热板4,真空玻璃盖板3与冲缝型吸热板4之间以及冲缝型吸热板4与外壳1之间分别形成流道。透明盖板3可以采用真空玻璃或单层玻璃,由此减小了辐射损失和对流损失。冲缝型吸热板4是在其表面开有多条缝隙的板。
本发明装置的工作原理如下:
如图7所示,冲缝板型太阳能空气集热器在太阳光8的照射下开始工作。真空玻璃盖板3与冲缝型吸热板4、冲缝型吸热板4与外壳1之间分别形成流道,室内空气在风机7作用下,经进风口6流入集热器,一部分空气沿外壳1表面上升,在冲缝型吸热板4与外壳1之间的流道中被加热,另一部分空气穿越冲缝型吸热板4,在此过程中与吸热板4发生换热,之后进入盖板3与冲缝型吸热板4之间的流道,沿冲缝型吸热板4表面上升,继续被加热,最后这两部分空气在集热器最高处混合,经出风口5送入室内。
实施例1
为了获得冲缝板型太阳能空气集热器的性能,采用数学模拟和实际测试相结合的方法对其进行研究。其中,测量参数包括太阳辐射强度、温度和风速,测量仪器分别采用TRT-2总辐射表、T-型热电偶以及Fluke自动读取和保存设备、ZRQF系列智能风速计和KANOMAX KA22热线风速仪。
测量当日的太阳辐射强度、环境温度、空气进口温度和室外风速变化分别如图8-图11所示。由图8-图11可以看出,环境温度和辐射强度随时间增长先升高后降低,分别在14:00和12:20左右,两者达到最高值,296.31K和431.3W/m2,全天环境温度和辐射强度的平均值为293.90K和364.4W/m2。而空气进口温度达到最高值的时间有所推迟,在下午14:40左右,达到最大值为298.31K。另外,室外风速小于0.5m/s,微风,为良好的测试条件。
如图12所示,为测试日集热器空气出口温度的模拟值和实验值,其中,风机全天运行,且风量保持为120m3/h。从图中可以看出,随着太阳辐射强度的增大和室外气温的升高,集热器空气出口温度也迅速升高,下午14:00时刻左右,模拟值达到最大为302.32K,而实验值在14:20时刻达到最大为302.1K。
受实验条件限制,冲缝板型集热器空气出口温度的模拟值与实验值存在偏差,但总体来说,该数学模型能够反映集热器温度的变化,可以用来预测集热器在冬季的使用状况。因此,以有效效率(见公式(1))为目标函数,对冲缝板型太阳能空气集热器进行数学模拟。
η rh = q u - ( W p / C f ) I c A = η - Q g Δp g / ( η pm C f ) 3600 I c A - - - ( 1 )
式中,ηrh-有效效率;
qu-集热器获得的有效能量,W;
Wp-风机耗功,W;
Cf、ηpm-热能-机械能转换因子和风机效率(Cf=0.02和ηpm=0.85)。
基础数据:太阳辐射强度为350W/m2,集热器总流量为80m3/h(单位集热面积的流速为0.025m/s),环境温度为273K,集热器进口温度为293K,室外风速为0.4m/s。
如图13、14和15所示,分别为室外风速变化、环境温度变化和空气进口温度变化对冲缝板型太阳能空气集热器有效效率的影响。
由图13可以看出,当室外风速变大时,集热器的有效效率下降,从47.9%降低到47.4%,平均效率为47.6%。
由图14可以看出,当环境温度变大时,集热器的有效效率升高,从43.5%升高到58.2%,平均效率为50.5%。
由图15可以看出,当空气进口温度变大时,集热器的有效效率下降,从59.3%降低到47.9%,平均效率为53.7%。
因此,可以得到,冲缝板型集热器的热性能是相当好的。另外,该集热器还具有结构简单,热损失小,造价低,易与建筑结合等优点,宜广泛应用于采暖建筑中。

Claims (1)

1.太阳能空气集热器,它包括外壳,其特征在于:在所述的外壳内镶嵌有隔热层,在所述的外壳的开口端盖有真空玻璃盖板,在所述的外壳的下端开有进风口,在所述的外壳的顶部设置有出风口,在所述的外壳和真空玻璃盖板构成的空间内安装有冲缝型吸热板,真空玻璃盖板与冲缝型吸热板之间以及冲缝型吸热板与外壳之间分别形成流道。
CN 201110141043 2011-05-27 2011-05-27 太阳能空气集热器 Pending CN102226591A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN 201110141043 CN102226591A (zh) 2011-05-27 2011-05-27 太阳能空气集热器

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN 201110141043 CN102226591A (zh) 2011-05-27 2011-05-27 太阳能空气集热器

Publications (1)

Publication Number Publication Date
CN102226591A true CN102226591A (zh) 2011-10-26

Family

ID=44807578

Family Applications (1)

Application Number Title Priority Date Filing Date
CN 201110141043 Pending CN102226591A (zh) 2011-05-27 2011-05-27 太阳能空气集热器

Country Status (1)

Country Link
CN (1) CN102226591A (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102519150A (zh) * 2011-12-14 2012-06-27 镇江新梦溪能源科技有限公司 波形板太阳能空气集热器
CN107576074A (zh) * 2017-09-15 2018-01-12 天津大学 一种冲缝波纹板型太阳能空气集热器

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN200996736Y (zh) * 2006-12-29 2007-12-26 苏文佳 太阳能v型板式双行程蜂窝结构空气集热器
CN201050898Y (zh) * 2007-05-31 2008-04-23 殷红波 太阳能空气集热瓦
CN201322459Y (zh) * 2008-07-15 2009-10-07 赵贵 一种单层波浪型孔板式平板太阳能空气集热器
CN201637145U (zh) * 2010-04-08 2010-11-17 北京建筑工程学院 开孔折板型双通道太阳能空气集热装置

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN200996736Y (zh) * 2006-12-29 2007-12-26 苏文佳 太阳能v型板式双行程蜂窝结构空气集热器
CN201050898Y (zh) * 2007-05-31 2008-04-23 殷红波 太阳能空气集热瓦
CN201322459Y (zh) * 2008-07-15 2009-10-07 赵贵 一种单层波浪型孔板式平板太阳能空气集热器
CN201637145U (zh) * 2010-04-08 2010-11-17 北京建筑工程学院 开孔折板型双通道太阳能空气集热装置

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102519150A (zh) * 2011-12-14 2012-06-27 镇江新梦溪能源科技有限公司 波形板太阳能空气集热器
CN107576074A (zh) * 2017-09-15 2018-01-12 天津大学 一种冲缝波纹板型太阳能空气集热器

Similar Documents

Publication Publication Date Title
Baljit et al. Review of building integrated applications of photovoltaic and solar thermal systems
Li et al. Operational performance study on a photovoltaic loop heat pipe/solar assisted heat pump water heating system
Wang et al. Thermal performance of integrated collector storage solar air heater with evacuated tube and lap joint-type flat micro-heat pipe arrays
Corbin et al. Experimental and numerical investigation on thermal and electrical performance of a building integrated photovoltaic–thermal collector system
Omer et al. Experimental investigation of PV/thermal collector with theoretical analysis
Delisle et al. A novel approach to compare building-integrated photovoltaics/thermal air collectors to side-by-side PV modules and solar thermal collectors
Chabane et al. Collector efficiency by single pass of solar air heaters with and without using fins
Avezov et al. A review on photovoltaic-thermal (PV-T) air and water collectors
Pathak et al. Energy, exergy, economic and environmental analyses of solar air heating systems with and without thermal energy storage for sustainable development: A systematic review
Li et al. A hybrid photovoltaic and water/air based thermal (PVT) solar energy collector with integrated PCM for building application
Şevik et al. Thermal performance of flexible air duct using a new absorber construction in a solar air collector
Yuan et al. Experimental and numerical investigation on a solar direct-expansion heat pump system employing PV/T & solar thermal collector as evaporator
Shalaby et al. Improvement of the thermal performance of the v-corrugated plate solar air heater with PCM by using insulated upper cover during night
Li et al. Optimal turbine pressure drop for solar chimney-aided dry cooling system in coal-fired power plants
Wen et al. Performance characterization of a PV/T system employing micro-channel heat pipes and thermoelectric generators: An experimental and numerical study
Abbas et al. Experimental and analytical analysis of the impact of different base plate materials and design parameters on the performance of the photovoltaic/thermal system
Liu et al. The performance optimization of DX-PVT heat pump system for residential heating
Wang et al. Experimental and numerical investigation of a multi-functional photovoltaic/thermal wall: A practical application in the civil building
Abdelrazik et al. ANSYS-Fluent numerical modeling of the solar thermal and hybrid photovoltaic-based solar harvesting systems
CN103884064A (zh) 一种作为辅助冷源的太空辐射制冷器及传热建模方法
Zhou et al. Performance analysis on the concentrated photovoltaic/thermal air collector with phase change material and vacuum double-glazing for temperature regulation
Hussein et al. Assessment of the performance for a hybrid PV/solar chimney
CN102226591A (zh) 太阳能空气集热器
Algburi et al. Comparative assessment of PV/Trombe wall performance: Compound influence of paraffin wax and reflective mirrors
Srinivas et al. Investigations on the performance of a double pass, hybrid-type (PV/T) solar air heater

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C12 Rejection of a patent application after its publication
RJ01 Rejection of invention patent application after publication

Application publication date: 20111026