CN102218316A - Preparation method of nanometer zinc oxide photochemical catalyst with visible light photocatalytic activity - Google Patents

Preparation method of nanometer zinc oxide photochemical catalyst with visible light photocatalytic activity Download PDF

Info

Publication number
CN102218316A
CN102218316A CN2010101502492A CN201010150249A CN102218316A CN 102218316 A CN102218316 A CN 102218316A CN 2010101502492 A CN2010101502492 A CN 2010101502492A CN 201010150249 A CN201010150249 A CN 201010150249A CN 102218316 A CN102218316 A CN 102218316A
Authority
CN
China
Prior art keywords
zinc oxide
solution
preparation
visible light
gained
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN2010101502492A
Other languages
Chinese (zh)
Inventor
沈斌斌
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Priority to CN2010101502492A priority Critical patent/CN102218316A/en
Publication of CN102218316A publication Critical patent/CN102218316A/en
Pending legal-status Critical Current

Links

Landscapes

  • Catalysts (AREA)

Abstract

The invention provides a preparation method of an iron-doped nanometer zinc oxide crystal, aiming at overcoming the shortcoming of the traditional photocatalytic property and particularly solving the problem that the photocatalytic activity is hardly available in a visible light region. The preparation method has the advantages of simplicity, low cost and rapid reaction speed; and the nanometer zinc oxide prepared by the invention has very good photocatalysis capability in the visible light and the grain size of 5 nanometers to 50 nanometers and can be used for preparing high-performance materials related to solar energy.

Description

Preparation method with visible light photocatalysis active nano zinc oxide photocatalyst
[technical field]
The present invention relates to a kind of semi-conducting material technology and environmental area, specifically is a kind of preparation method with visible light photocatalysis active nano zinc oxide photocatalyst.
[background technology]
Zinc oxide is a kind of novel broad stopband (being about 3.3eV) semi-conducting material with many superior functions, also is the novel environment friendly material that is widely studied at present, and, low cost and other advantages nontoxic because of it are widely used in photocatalysis field.It can destroy various organic pollutions by the effect of light auxiliary catalysis; The organic matter of difficult degradation finally is oxidized to inorganic matters such as carbon dioxide and water; Nearly all organic pollution in the energy oxidation removal water.Studies show that, the reaction speed of nano zinc oxide particles is 100~1000 times of common zinc oxide particle, and compare with ordinary particle, it causes scattering of light hardly, and have being with of bigger specific area and broad, therefore be considered to one of high activity catalysis material that has application prospect, and be able to extensive use, the method for preparing nano zinc oxide material has sol-gel process, hydro-thermal method, spray pyrolysis, sedimentation etc., and hydro-thermal method has characteristics such as reaction speed is fast, product property is superior.Energy gap with zinc oxide of catalysis characteristics is 3.3eV, and its photocatalysis characteristic only limits to ultraviolet band, has caused it directly to utilize sunshine to carry out the efficient lower (less than 3%) of photocatalysis Decomposition; In addition, because h+ is easy and e-is compound, thereby greatly reduce the light decomposition efficiency.Therefore, reduce h+ and e-recombination probability, prolong its disengaging time, the utilization rate that improves sunshine is the key of enhancing nano zinc oxide photocatalysis activity.Method by surface modification can reach this purpose.At present, the method for modification is mainly metal ion mixing, surperficial noble metal loading, surface light sensitization or adopts composite semiconductor.
[summary of the invention]
The objective of the invention is to overcome the deficiency of existing photocatalysis performance, particularly almost do not have photocatalytic activity that a kind of preparation method of iron doped zinc oxide nano crystalline substance is provided at visible region.Production method of the present invention is simple, and is cheap, and reaction speed is fast; The nano zine oxide of the present invention's preparation has good photo-catalysis capability under visible light.
The present invention realizes by following preparation method:
Nano zine oxide visible-light photocatalyst production technology involved in the present invention comprises the steps:
Step 1 accurately takes by weighing a certain amount of FeCl with balance 36H 2O places beaker, and adds a certain amount of hydrochloric acid solution in beaker;
Step 2 adds a certain amount of distilled water diluting to 10mmol/L in the solution of step 1 gained;
Step 3 takes by weighing a certain amount of two water acetic acid zinc and is dissolved in the absolute ethyl alcohol, places;
Step 4 takes by weighing an a certain amount of hydronium(ion) oxidation lithium and is dissolved in the absolute ethyl alcohol, places;
Step 5, cooling, stirring slowly are added drop-wise to the solution of a certain amount of step 2 gained in the solution of step 3 gained down;
Step 6 adds the solution of step 4 gained in the solution of step 5 gained, and heating is concentrated into certain volume;
Step 7 adds the PEG400 solution of certain volume 0.05mol/l, and mixes in step 6 solution;
Step 8 with step 7 gained solution hydro-thermal certain hour at a certain temperature, is cooled to room temperature and centrifugation and obtains precipitation;
Step 9, the washing of precipitate drying that step 8 is obtained had both got product.
In the step 1, the hydrochloric acid solution of described adding is about 1ml.
In the step 6, described concentrated volume is controlled at 60ml-100ml.
In the step 7, the volume of described solution is 3ml-5ml.
In the step 8, described hydrothermal temperature is at 100 ℃-140 ℃.
In the step 8, the described hydro-thermal time is 24~48h.
The present invention has following beneficial effect: its nano zine oxide particle diameter is 5 nanometers-50 nanometers, and technology of the present invention has been saved the energy, has simplified step, has improved photocatalysis efficiency and safer.
[specific embodiment]
The invention will be further described below in conjunction with embodiment.Production technology of the present invention is to implement easily to this professional people.Present embodiment has provided detailed embodiment and process being to implement under the prerequisite with the technical solution of the present invention, but protection scope of the present invention is not limited to following embodiment.The experimental technique of unreceipted actual conditions in the following example, usually according to normal condition, or the condition of advising according to manufacturer.
Embodiment
Take by weighing 0.27g FeCI 36H 2O puts in the beaker, adds 1mL HCI solution, the storing solution that 250mL 10mmol/L is joined in the adding distil water dilution.
Take by weighing 1.1g Zn (Ac) 22H 2O and 0.3g LiOHH 2O is dissolved in respectively in the absolute ethyl alcohol, and cooling, stirring slowly are added drop-wise to Zn (Ac) with the iron chloride storing solution of 5mL earlier down 2Solution slowly is added drop-wise to LiOH solution Zn (Ac) again 2In the solution, heating is concentrated into 80mL, adds the PEG400 solution of 4.0mL 0.05mol/L then, and is evenly mixed.
Steady temperature is 120 ℃ in the drying box, keeps 24h, naturally cool to room temperature after, centrifugation obtains precipitation.
With the ultrasonic eccentric cleaning several of deionized water, 60 ℃ of dryings, finally obtain the Zinc oxide powder sample of doped F e ¨.
The nanometer Zinc oxide powder crystalline size that present embodiment obtains is between 10nm-20nm.
Utilize said method can prepare iron nanometer doped zinc oxide powder, and reach its distinctive visible light photocatalysis effect.

Claims (7)

1. the present invention is a kind of preparation method with visible light photocatalysis active nano zinc oxide photocatalyst.Zinc oxide product of the present invention has good photocatalytic, and its nano zine oxide particle diameter is 5 nanometers-50 nanometers.
2. a kind of preparation method with visible light photocatalysis active nano zinc oxide photocatalyst according to claim 1 comprises the steps:
Step 1 accurately takes by weighing a certain amount of FeCl with balance 36H 2O places beaker, and adds a certain amount of hydrochloric acid solution in beaker;
Step 2 adds a certain amount of distilled water diluting to 10mmol/L in the solution of step 1 gained;
Step 3 takes by weighing a certain amount of two water acetic acid zinc and is dissolved in the absolute ethyl alcohol, places;
Step 4 takes by weighing an a certain amount of hydronium(ion) oxidation lithium and is dissolved in the absolute ethyl alcohol, places;
Step 5, cooling, stirring slowly are added drop-wise to the solution of a certain amount of step 2 gained in the solution of step 3 gained down;
Step 6 adds the solution of step 4 gained in the solution of step 5 gained, and heating is concentrated into certain volume;
Step 7 adds the PEG400 solution of certain volume 0.05mol/l, and mixes in step 6 solution;
Step 8 with step 7 gained solution hydro-thermal certain hour at a certain temperature, is cooled to room temperature and centrifugation and obtains precipitation;
Step 9, the washing of precipitate drying that step 8 is obtained had both got product.
3. a kind of preparation method with visible light photocatalysis active nano zinc oxide photocatalyst according to claim 2 is characterized in that in the step 1 that the hydrochloric acid solution of described adding is about 1ml.
4. a kind of preparation method with visible light photocatalysis active nano zinc oxide photocatalyst according to claim 2 is characterized in that in the step 6 that described concentrated volume is controlled at 60ml-100ml.
5. a kind of preparation method with visible light photocatalysis active nano zinc oxide photocatalyst according to claim 2 is characterized in that in the step 7 that the volume of described solution is 3ml-5ml.
6. a kind of preparation method with visible light photocatalysis active nano zinc oxide photocatalyst according to claim 2 is characterized in that in the step 8, and described hydrothermal temperature is at 100 ℃-140 ℃.
7. a kind of preparation method with visible light photocatalysis active nano zinc oxide photocatalyst according to claim 2 is characterized in that in the step 8 that the described hydro-thermal time is 24~48h.
CN2010101502492A 2010-04-16 2010-04-16 Preparation method of nanometer zinc oxide photochemical catalyst with visible light photocatalytic activity Pending CN102218316A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN2010101502492A CN102218316A (en) 2010-04-16 2010-04-16 Preparation method of nanometer zinc oxide photochemical catalyst with visible light photocatalytic activity

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN2010101502492A CN102218316A (en) 2010-04-16 2010-04-16 Preparation method of nanometer zinc oxide photochemical catalyst with visible light photocatalytic activity

Publications (1)

Publication Number Publication Date
CN102218316A true CN102218316A (en) 2011-10-19

Family

ID=44775169

Family Applications (1)

Application Number Title Priority Date Filing Date
CN2010101502492A Pending CN102218316A (en) 2010-04-16 2010-04-16 Preparation method of nanometer zinc oxide photochemical catalyst with visible light photocatalytic activity

Country Status (1)

Country Link
CN (1) CN102218316A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102513074A (en) * 2011-10-27 2012-06-27 云南大学 Nanoparticle photocatalysis board, its preparation method and application thereof
CN105062262A (en) * 2015-08-05 2015-11-18 天长市开林化工有限公司 Building interior wall special-purpose antibacterial mildew-resistant emulsion paint
CN105062338A (en) * 2015-08-05 2015-11-18 天长市开林化工有限公司 Weatherproof aqueous alkyd resin/epoxy resin coating
CN106540703A (en) * 2016-12-06 2017-03-29 沈阳化工大学 A kind of preparation method of Fe doping zinc oxide nanometers photocatalyst
CN112691675A (en) * 2019-10-22 2021-04-23 江苏康润净化科技有限公司 GO and Fe3+Doped ZnO visible light catalyst fabric

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102513074A (en) * 2011-10-27 2012-06-27 云南大学 Nanoparticle photocatalysis board, its preparation method and application thereof
CN105062262A (en) * 2015-08-05 2015-11-18 天长市开林化工有限公司 Building interior wall special-purpose antibacterial mildew-resistant emulsion paint
CN105062338A (en) * 2015-08-05 2015-11-18 天长市开林化工有限公司 Weatherproof aqueous alkyd resin/epoxy resin coating
CN106540703A (en) * 2016-12-06 2017-03-29 沈阳化工大学 A kind of preparation method of Fe doping zinc oxide nanometers photocatalyst
CN112691675A (en) * 2019-10-22 2021-04-23 江苏康润净化科技有限公司 GO and Fe3+Doped ZnO visible light catalyst fabric

Similar Documents

Publication Publication Date Title
Malathi et al. A low cost additive-free facile synthesis of BiFeWO6/BiVO4 nanocomposite with enhanced visible-light induced photocatalytic activity
Deng et al. Enhanced visible light photocatalytic performance of polyaniline modified mesoporous single crystal TiO2 microsphere
Hegde et al. Visible light photocatalytic properties of cubic and orthorhombic SnS nanoparticles
Zhou et al. Preparation and properties of vanadium-doped TiO2 photocatalysts
CN102553560B (en) Preparation method of titanium dioxide/graphene composite photocatalyst
Liu et al. Solvothermal synthesis of nanostructured BiVO4 with highly exposed (0 1 0) facets and enhanced sunlight-driven photocatalytic properties
CN102515246B (en) Preparation method of porous nano zinc oxide (ZnO)
CN102180515B (en) Preparation method for nano titanium dioxide with high visible light catalytic activity and water dispersion thereof
Gao et al. Surface decoration of BiOBr with BiPO4 nanoparticles to build heterostructure photocatalysts with enhanced visible-light photocatalytic activity
Zhang et al. One-dimensional mesoporous Fe2O3@ TiO2 core–shell nanocomposites: rational design, synthesis and application as high-performance photocatalyst in visible and UV light region
Qin et al. Ag/ZnO/graphene oxide heterostructure for the removal of rhodamine B by the synergistic adsorption–degradation effects
CN103657639B (en) Preparation method and silicon modification method of visible light catalysis material for graphene/bismuth tungstate flake nanostructure
Qu et al. A novel ternary Bi4NbO8Cl/BiOCl/Nb2O5 architecture via in-situ solvothermal-induced electron-trap with enhanced photocatalytic activities
Jiang et al. Synergetic effect of piezoelectricity and Ag deposition on photocatalytic performance of barium titanate perovskite
CN102600857A (en) Preparation method of carbon ball-loaded CuO-BiVO4 heterojunction compound photocatalyst
Ghafuri et al. Facile preparation of CuS-g-C3N4/Ag nanocomposite with improved photocatalytic activity for the degradation of rhodamine B
CN102218316A (en) Preparation method of nanometer zinc oxide photochemical catalyst with visible light photocatalytic activity
Zhou et al. BiOI-promoted nano-on-micro BiOI-MoS2/CdS system for high-performance on photocatalytic H2 evolution under visible light irradiation
Zou et al. Synthesis and characterization of enhanced photocatalytic activity with Li+-doping nanosized TiO2 catalyst
CN102302940A (en) Preparation method of novel photocatalyst S-doped SiO2/TiO2 composite material
Yang et al. Facile fabrication of micro-floriated AgBr/Bi2O3 as highly efficient visible-light photocatalyst
Wu et al. Preparation and characterization of Ag2CrO4/few layer boron nitride hybrids for visible-light-driven photocatalysis
Chang et al. H2Ti3O7 nanowires as a high-performance photocatalytic and surface-enhanced Raman scattering substrate
Gao et al. Enhanced visible-light-driven photocatalytic performance of AgNbO3 cubes with a high-energy (001) facet
Yue et al. Novel Ag2S/ZnS/carbon nanofiber ternary nanocomposite for highly efficient photocatalytic hydrogen production

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
DD01 Delivery of document by public notice

Addressee: Shen Binbin

Document name: Notification of Publication of the Application for Invention

DD01 Delivery of document by public notice

Addressee: Shen Binbin

Document name: Notification of before Expiration of Request of Examination as to Substance

DD01 Delivery of document by public notice

Addressee: Shen Binbin

Document name: Notification that Application Deemed to be Withdrawn

C02 Deemed withdrawal of patent application after publication (patent law 2001)
WD01 Invention patent application deemed withdrawn after publication

Application publication date: 20111019