CN102216701A - 用于传热的方法和器件 - Google Patents

用于传热的方法和器件 Download PDF

Info

Publication number
CN102216701A
CN102216701A CN2009801266508A CN200980126650A CN102216701A CN 102216701 A CN102216701 A CN 102216701A CN 2009801266508 A CN2009801266508 A CN 2009801266508A CN 200980126650 A CN200980126650 A CN 200980126650A CN 102216701 A CN102216701 A CN 102216701A
Authority
CN
China
Prior art keywords
energy
radiation
arbitrary
heat
radiated
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN2009801266508A
Other languages
English (en)
Inventor
雅尼·奥克萨南
雅科·蒂尔基
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Publication of CN102216701A publication Critical patent/CN102216701A/zh
Pending legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B21/00Machines, plants or systems, using electric or magnetic effects
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B23/00Machines, plants or systems, with a single mode of operation not covered by groups F25B1/00 - F25B21/00, e.g. using selective radiation effect
    • F25B23/003Machines, plants or systems, with a single mode of operation not covered by groups F25B1/00 - F25B21/00, e.g. using selective radiation effect using selective radiation effect
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05DSYSTEMS FOR CONTROLLING OR REGULATING NON-ELECTRIC VARIABLES
    • G05D23/00Control of temperature
    • G05D23/19Control of temperature characterised by the use of electric means
    • G05D23/1919Control of temperature characterised by the use of electric means characterised by the type of controller
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/12Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof structurally associated with, e.g. formed in or on a common substrate with, one or more electric light sources, e.g. electroluminescent light sources, and electrically or optically coupled thereto
    • H01L31/16Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof structurally associated with, e.g. formed in or on a common substrate with, one or more electric light sources, e.g. electroluminescent light sources, and electrically or optically coupled thereto the semiconductor device sensitive to radiation being controlled by the light source or sources
    • H01L31/167Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof structurally associated with, e.g. formed in or on a common substrate with, one or more electric light sources, e.g. electroluminescent light sources, and electrically or optically coupled thereto the semiconductor device sensitive to radiation being controlled by the light source or sources the light sources and the devices sensitive to radiation all being semiconductor devices characterised by potential barriers
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02SGENERATION OF ELECTRIC POWER BY CONVERSION OF INFRARED RADIATION, VISIBLE LIGHT OR ULTRAVIOLET LIGHT, e.g. USING PHOTOVOLTAIC [PV] MODULES
    • H02S10/00PV power plants; Combinations of PV energy systems with other systems for the generation of electric power
    • H02S10/30Thermophotovoltaic systems
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02BCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
    • Y02B30/00Energy efficient heating, ventilation or air conditioning [HVAC]
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Electromagnetism (AREA)
  • Mechanical Engineering (AREA)
  • Thermal Sciences (AREA)
  • General Engineering & Computer Science (AREA)
  • Automation & Control Theory (AREA)
  • Manufacturing & Machinery (AREA)
  • Health & Medical Sciences (AREA)
  • Toxicology (AREA)
  • Cooling Or The Like Of Semiconductors Or Solid State Devices (AREA)
  • Physical Or Chemical Processes And Apparatus (AREA)
  • Led Device Packages (AREA)

Abstract

一种用于在热泵中传热的方法和器件,其中在与热力学第二定律限定的方向相反的方向上借助光或者其它电磁辐射从发射辐射的元件(1)向吸收辐射的元件(2)传送热能,并且其中吸收的辐射的部分能量转换回可利用的能量形式,例如电能或者机械能。

Description

用于传热的方法和器件
技术领域
本发明主要地涉及能量传送。本发明具体地涉及借助电磁辐射如光来传送热能。
背景技术
已知的传热方法常规地使用各种制冷剂(例如制冷机中的基于压缩机的溶液)或者电流(珀耳帖元件)。这些解决方案的弱点在于尺寸大、对环境产生有害影响并且机械热泵的可动部分磨损而且在热电热泵的情况下性能系数低。
发明内容
根据本发明的第一方面,提供一种如权利要求1所述的方法。
在本发明的某些实施例中,可以在与热力学第二定律确定的热流向相反的方向上传热。
在本发明的某些实施例中,光或者其它电磁辐射可以用来传送固态热泵中的热。本发明的某些实施例可以实现珀耳帖元件作为紧凑固态热泵的益处,而且还达到比珀耳帖元件更高的性能系数。在本发明某些实施例的传热方法中,发射光或者其它电磁辐射的元件所发射的辐射耦合到吸收辐射的元件,其中该辐射的部分能量作为热被释放而该辐射的部分能量转换回可利用的能量形式,比如电能或者机械能。在某些实施例中,借助光子从发射元件向吸收元件传热。发射元件发射的辐射可以例如是半导体中的电致发光产生的光。
根据本发明的第二方面,提供一种如权利要求7所述的方法。
在某些实施例中,该器件包括:发射光的元件,光学耦合到吸收光的元件,其中发射元件随着它发射光而冷却并且吸收元件随着它吸收光而加热。
上述器件可以是使用光子来传热的器件,也就是光子热泵。根据某些实施例的光子热泵是适合于冷却和加热应用的固态热泵。它与基于压缩机的热泵相比的优点在于尺寸小并且无可动部分和制冷剂。此外,它可以达到比其它固态热泵更高的性能系数。
根据本发明实施例的方法和器件可以用于在例如制冷机、加热或者空调设备、制冷器或者利用热泵的其它设备中传热。
在具体实施方式中和在从属权利要求中描述本发明的某些实施例。在本发明的某些所选方面的背景中描述实施例。本领域技术人员理解任何实施例通常可以与在本发明的相同方面之下的其它一个或者多个实施例组合。任何实施例通常也可以与本发明本身的其它一个或者多个方面组合或者与任何其它一个或者多个实施例一起组合。
附图说明
图1示出了本发明一个实施例中的传热原理的例子,而图2示出了实现所呈现的传热方法的器件的结构或者横截面的例子。
具体实施方式
在下文中描述根据本发明实施例的借助光来操作的热泵的操作原理和结构的例子。将注意,代替光,该热泵可以借助其它电磁辐射来传热。
在图1中,发射辐射的元件1借助外部能量源4发射辐射3。元件1可以例如包括通过电致发光来发光的发光二极管,而外部能量源4可以是通过图1的电路为发光二极管提供电流I0的电压源U0。向吸收辐射的元件2传送发射的辐射3,其中辐射中包括的部分能量作为热能被释放而部分能量在外部元件5中以容易利用的能量形式(例如电能或者机械能)被恢复。元件2可以例如是作为光电电池单元来操作的发光二极管,该二极管生成通过电路向元件5馈送的电压U1和电流I1。元件5可以例如存储接收的能量或者对由元件2产生的电压进行变换,从而可以例如通过虚线代表的反馈电路与外部能量源4结合使用接收的能量以发射元件1中的辐射。即使传热的光子的能量明显大于热能,回收所吸收的光子的能量仍然实现以大的性能系数传热。包围发射元件1的区域6(该区域可以包括在结构上属于元件1的元件(比如衬底和/或电接触件)和冷却的物体)通过隔热区域8(该区域减少在发射元件1与吸收元件2之间的导热,但是对于在发射元件1与吸收元件2之间的电磁辐射为透明)来与包围吸收元件2的区域7(该区域可以包括与在元件1周围的元件对应的元件)分离。
图2呈现了利用所呈现的传热方法的器件或者结构的横截面的例子。为了附图简洁起见,该结构并未按正确比例绘制,并且实际上,该结构的宽度比高度大得多。在图2中,发射元件由在交线A上方的部分形成而吸收元件由在交线B下方的部分形成。发射元件和吸收元件在实践中可以包括半导体二极管结构,金属接触件和镜结构。
在一个实施例中,发射元件操作为使得当电荷载流子在它们通过金属接触件15a、15b和16a以及掺杂的半导体层10a(n-型掺杂)和11a(p型掺杂)注入至有源区域12a时重新组合时生成光子。当材料为高质量时,发射的光子的能量大于外部功率源提供的能量。外部能量源未提供的发射光子的部分能量由发射元件的热能提供。因此发射元件冷却下来。
在一个实施例中,吸收元件是作为光电电池单元来操作的二极管结构,其中在有源区域12b中,以很高的量子效率来吸收发射元件发射的光子。在有源区域中生成的电荷载流子通过掺杂半导体层10b(n型掺杂)和11b(p型掺杂)以及金属接触件15c、15d和16b在外部电路中生成电压和电流并且允许将发射的光子的部分能量恢复为电能。未恢复的那部分能量被释放为吸收元件中的热,这造成加热吸收元件。
通过接触件15a-15d、16a、16b将该结构连接到外部元件(比如图1的外部能量源)。在某些实施例中,图1的外部电压源U0通过接触件15a、15b和16a向发射元件馈送能量并且通过电致发光或者另一适用机制生成光子。外部电路U1从吸收光子的吸收元件对应地接收能量并且将能量重定向回发射元件以在发射光子中重用。当封装该器件时,图2的结构连接到外部电路,被紧密地密封并且在密封体中产生真空。发射元件形成器件的冷却侧而吸收元件形成器件的加热侧。为了使传热更高效,导热元件如热管、散热器和/或风扇可以放置于冷却侧与待冷却的物体以及加热侧与待加热的物体之间,从而它们通过该器件从冷却的物体向加热的物体传热。
图2中的器件作为高效热泵的操作根据实施例而基于光子发射和吸收的很高量子效率,在发射元件与吸收元件之间的少量导热以及少量电阻损耗。为了实现这些,以下因素起作用:
(1)发射的光子在掺杂半导体层中的吸收应当少。这可以例如通过由磷化铟制作掺杂半导体层10a、10b和11a、11b而由能隙比InP层的能隙更小的GaAsSb或者InGaAs层制作有源区域12a、12b来实现。半导体层10a、10b、11a、11b和12a、12b应当与衬底晶格匹配或者为假形(pseudomorphic),即应变结构(其中应变尚未通过形成位错而松弛)。有源区域12a、12b的厚度通常可以为光的波长级,半导体层11a、11b的厚度可以是空穴的扩散长度级,而半导体层10a、10b的厚度可以是衬底的厚度级并且它可以由衬底本身形成,只要衬底材料的光学损耗充分小。能够基于电致发光和吸收来实现发光并且可以用来制作其中有源区的能隙比掺杂半导体层的能隙更小的结构的其它复合半导体也可以用来制作图2的器件。例如使用GaAs/AlGaAs材料系统是可能的,但是通常需要从完整结构中去除GaAs衬底以便于衬底吸收不引起问题。
(2)在发射元件与吸收元件之间的光学耦合应当强到使得光子传送高效率地出现在元件之间,但是同时在元件之间的导热应当少。这可以例如通过以下方式来实现:将图2中的结构制作成两个部分,从而单独地制作发射元件和吸收元件并且例如通过使用小粒子13将它们附着在一起来相互接近地放置它们。然后可以使元件之间的间隙如此之薄以至它允许光在元件之间的高效耦合,但是粒子13的小接触区域将显著地减少光子在元件之间的导热。当封装器件时,真空也可以形成于区域14中,这进一步明显减少元件之间的导热。
(3)在半导体层11a、11b和金属接触件16a、16b的界面Ra和Rb处的吸收损耗应当少。为了实现这一点,填充半导体与反射体或者接触件金属之间多数区域的气隙17a、17b可以在这些界面用来增加来自空气和半导体的界面的全内反射部分而不引起过量电阻损耗。在图2的配置中,实际电接触件由以适当填充因子制作至半导体表面的挤压物18a、18b形成。反射率系数高的其它镜结构也适合于该目的。
(4)达到高外部量子效率通常需要大的内部量子效率。可以通过使用高质量材料、高级制作技术和对结构的优化来达到这一要求。可以通过钝化与有源区12a、12b接近的界面(这减少非辐射表面状态的量并且允许减少通过这些状态的再组合的速率)来减少在该结构的表面发生非辐射再组合的比例。
(5)该结构的电阻损耗应当少。可以通过侧部和在区域11a、11b中制作与区域10a、10b中的结构的电接触件15a-15d,从而光由在半导体11a、11b与电接触件16a、16b之间的界面高效反射。由于该结构的宽度明显大于厚度,所以在该结构中的电流传送在接触件15a、15b与16a以及接触件15b、15d与16b之间主要为横向。可以通过优化该结构的宽度、半导体层10a、10b和11a、11b的厚度和掺杂浓度以及接触件挤压物18a、18b的填充因子来实现在图2中代表的结构中的电阻损耗。
可以利用上文已经仅呈现其一个例子的各种结构开发利用根据上文描述的本发明某些实施例的方法。其它修改例如是由除了无机半导体之外的材料制成的结构和如下结构,其中光纤、光子晶体、其它波导或者非互易(non-reciprocal)部件(比如基于法拉第旋转的光学隔离器)用来在充当发射器与吸收器的元件之间传送光子。另外该结构也可以集成作为电或者光集成电路的部分,这可以允许制作技术上的优点。
前文描述提供了本发明某些实施例的非限制例子。本领域技术人员清楚本发明并不限于呈现的细节并且也可以使用其它等效方式来实施本发明。在本文中,术语包括为开放式表述并且它们并非意在进行限制。
也可以利用所呈现的实施例的一些特征而不使用其它特征。这样,前文描述应当视为仅说明而不限制本发明的原理。本发明的范围仅由所附专利权利要求限定。

Claims (15)

1.一种用于传热的方法,其中借助在结构中生成的电磁辐射(3)从发射辐射的元件(1)向吸收辐射的元件(2)传送热能,其特征在于传递所述热能的所述电磁辐射(3)由电致发光生成并且所述吸收的辐射的部分能量转换回可利用的能量形式,例如电能或者机械能。
2.如权利要求1所述的方法,其特征在于在所述吸收元件(2)中恢复的部分能量在所述发射元件(1)中用来发射电磁辐射(3)。
3.如权利要求1或者2所述的方法,其特征在于所述发射元件(1)和/或所述吸收元件(2)包括发光二极管。
4.如权利要求1-3中的任一权利要求所述的方法,其特征在于使用至少一个隔热材料层或者真空作为所述吸收元件(2)与所述发射元件(1)之间的隔热体(8),所述隔热材料层或者真空如此之薄使得它允许在所述发射元件与所述吸收元件之间传送辐射(3)。
5.如权利要求1-4中的任一权利要求所述的方法,其特征在于所述发射元件和所述吸收元件由小粒子(13)相互分离,从而形成于所述元件之间的间隙(14)如此之薄使得它允许光在所述元件之间的高效耦合,但是所述粒子(13)的小接触表面区域减少所述元件之间的导热。
6.如权利要求1-5中的任一权利要求所述的方法,其特征在于在由小粒子(13)和窄真空相互分离的两个发光二极管结构(10a-16a、10b-16b)之间传热。
7.一种器件,包括:
发射辐射的元件(1),配置成通过使用电磁辐射(3)向吸收辐射的元件(2)传送能量,
吸收辐射的元件(2),配置成吸收由发射辐射的所述元件(1)发射的电磁辐射和由所述辐射传送的能量,其特征在于:
所述器件被配置成通过使用电致发光来生成传递热能的所述电磁辐射(3)并且与辐射一起将热能从所述发射元件(1)向所述吸收元件(2)传送并且将所述吸收的辐射的部分量转换回可利用的能量形式,例如电能或者机械能。
8.如权利要求7所述的器件,其特征在于所述器件被配置成在所述发射元件(1)中重用所述吸收元件(2)中恢复的部分能量以发射电磁辐射(3)。
9.如权利要求7或者8所述的器件,其特征在于所述发射元件(1)和/或所述吸收元件(2)为发光二极管。
10.如权利要求7-9中的任一权利要求所述的器件,其特征在于所述器件包括至少一个隔热材料层或者真空(8),所述隔热材料层或者真空如此之薄使得允许在所述发射元件(1)与所述吸收元件(2)之间传送辐射(3)。
11.如权利要求7-10中的任一权利要求所述的器件,其特征在于所述发射元件和所述吸收元件由小粒子(13)相互分离使得形成于所述元件之间的间隙(14)如此之薄使得它允许光在所述元件之间的光耦合,但是所述粒子(13)的小接触表面区域减少所述元件之间的导热。
12.如权利要求7-11中的任一权利要求所述的器件,其特征在于所述器件包括由小粒子(13)和窄真空相互分离的两个发光二极管结构(10a-16a,10b-16b)。
13.如权利要求7-12中的任一权利要求所述的器件,其中通过这样的电接触件(16a,16b)进行电荷载流子向半导体中的注入,其特征在于所述半导体和充当接触件的金属已经由所述接触件中占大部分的气隙(17a,17b)分离并且通过所述半导体或者所述金属中的穿越所述间隙的挤压物(18a,18b)进行在所述半导体与所述金属之间的电流传送。
14.如权利要求7-13中的任一权利要求所述的器件,其特征在于所述器件被配置成在传送电磁辐射时使用波导、光纤或者非互易部件,比如基于法拉第旋转的光学耦合器。
15.一种光器件或者电器件,包括如权利要求7-14中的任一权利要求所述的器件作为一般光器件或者电器件的部分或者具体与电或者光集成电路集成于相同衬底上。
CN2009801266508A 2008-07-09 2009-07-07 用于传热的方法和器件 Pending CN102216701A (zh)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
FI20080434 2008-07-09
FI20080434A FI121094B (fi) 2008-07-09 2008-07-09 Menetelmä ja laite lämmön siirtoon
PCT/FI2009/050617 WO2010004090A2 (en) 2008-07-09 2009-07-07 Method and device for transferring heat

Publications (1)

Publication Number Publication Date
CN102216701A true CN102216701A (zh) 2011-10-12

Family

ID=39677550

Family Applications (1)

Application Number Title Priority Date Filing Date
CN2009801266508A Pending CN102216701A (zh) 2008-07-09 2009-07-07 用于传热的方法和器件

Country Status (7)

Country Link
US (1) US20110107770A1 (zh)
EP (1) EP2321591A2 (zh)
JP (1) JP2011527516A (zh)
KR (1) KR20110052607A (zh)
CN (1) CN102216701A (zh)
FI (1) FI121094B (zh)
WO (1) WO2010004090A2 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111373215A (zh) * 2017-11-30 2020-07-03 开利公司 电热热传递系统

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9557215B2 (en) 2012-08-17 2017-01-31 Massachusetts Institute Of Technology Phonon-recyling light-emitting diodes
WO2015023819A1 (en) 2013-08-16 2015-02-19 Massachusetts Institute Of Technology Thermo-electrically pumped light-emitting diodes
US10845375B2 (en) * 2016-02-19 2020-11-24 Agjunction Llc Thermal stabilization of inertial measurement units
US11359875B1 (en) 2016-08-11 2022-06-14 David M. Baker Radiant heat pump

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6378321B1 (en) * 2001-03-02 2002-04-30 The Regents Of The University Of California Semiconductor-based optical refrigerator

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2932954A (en) * 1958-10-17 1960-04-19 Westinghouse Electric Corp Illuminating and heating and cooling panel member
US5696863A (en) * 1982-08-06 1997-12-09 Kleinerman; Marcos Y. Distributed fiber optic temperature sensors and systems
US4628695A (en) * 1984-09-28 1986-12-16 The United States Of America As Represented By The United States Department Of Energy Solid state radiative heat pump
AU3551999A (en) * 1998-04-10 1999-11-01 Regents Of The University Of California, The Optical refrigerator using reflectivity tuned dielectric mirror
US6947615B2 (en) * 2001-05-17 2005-09-20 Sioptical, Inc. Optical lens apparatus and associated method
US7390962B2 (en) * 2003-05-22 2008-06-24 The Charles Stark Draper Laboratory, Inc. Micron gap thermal photovoltaic device and method of making the same
US20050057831A1 (en) * 2003-09-12 2005-03-17 Practical Technology, Inc. Directional heat exchanger
US20090188549A1 (en) * 2008-01-29 2009-07-30 Mtvp Corporation Method of and apparatus for improved thermophotonic generation of electricity

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6378321B1 (en) * 2001-03-02 2002-04-30 The Regents Of The University Of California Semiconductor-based optical refrigerator

Non-Patent Citations (4)

* Cited by examiner, † Cited by third party
Title
FREY R ET AL: "Comparison of Peltier and anti-Stokes optical coolings", 《JOURNAL OF APPLIED PHYSICS》 *
K L LIN ET AL: "High external quantum efficiency from", 《SEMICONDUCTOR SCIENCE AND TECHNOLOGY》 *
MILLS G ET AL: "Performance modeling of optical refrigerators", 《CRYOGENICS》 *
YU ET AL: "Impact of electronic density of states on electroluminescence refrigeration", 《SOLID STATE ELECTRONICS》 *

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111373215A (zh) * 2017-11-30 2020-07-03 开利公司 电热热传递系统
CN111373215B (zh) * 2017-11-30 2023-02-21 开利公司 电热热传递系统

Also Published As

Publication number Publication date
JP2011527516A (ja) 2011-10-27
KR20110052607A (ko) 2011-05-18
EP2321591A2 (en) 2011-05-18
US20110107770A1 (en) 2011-05-12
FI121094B (fi) 2010-06-30
WO2010004090A2 (en) 2010-01-14
FI20080434A0 (fi) 2008-07-09
WO2010004090A3 (en) 2010-03-11
FI20080434A (fi) 2010-01-10

Similar Documents

Publication Publication Date Title
Sadi et al. Thermophotonic cooling with light-emitting diodes
CN102216701A (zh) 用于传热的方法和器件
Xiao et al. Electroluminescent refrigeration by ultra-efficient GaAs light-emitting diodes
Berdahl Radiant refrigeration by semiconductor diodes
Oksanen et al. Thermophotonic heat pump—a theoretical model and numerical simulations
US20110139203A1 (en) Heterostructure thermoelectric generator
CN101645674B (zh) 液态金属冷却的聚焦型太阳能热离子发电装置
CN204534496U (zh) 一种可利用余热的led散热装置
CN201887327U (zh) 内置致冷器、温度可控的半导体激光器同轴to封装结构
CN104854717A (zh) 颜色转换装置、照明单元、固态发光体封装和灯具
Xie et al. Manipulating heat transport of photoluminescent composites in LEDs/LDs
CN101542755A (zh) 发光二极管半导体本体和发光二极管半导体本体的应用
Zhao et al. Chemical potential of photons and its implications for controlling radiative heat transfer
JP4833827B2 (ja) 異方性冷却素子およびこれを備えたペルチェモジュール、発光ダイオード素子、半導体レーザ素子
US20090188549A1 (en) Method of and apparatus for improved thermophotonic generation of electricity
CN201270483Y (zh) 液态金属冷却的聚焦型太阳能热离子发电装置
CN102053450A (zh) 基于四波混频效应的微环谐振腔结构全光逻辑与门
US4628695A (en) Solid state radiative heat pump
KR102013849B1 (ko) 열전현상을 이용한 자가발전 발광다이오드 소자, 이의 제조방법, 및 이를 구비한 발광다이오드 모듈
WO2010106232A2 (en) A method and device for transferring heat
Xiao et al. Ultra-high luminescence efficiency as a technology enabler: solar cells, thermophotovoltaics, and optoelectronic refrigerators
CN201130812Y (zh) 激光二极管泵浦固体激光器中晶体端面散热装置
CN112902491B (zh) 一种光致热电子与光子协同发射制冷的方法及装置
CN101174752A (zh) 激光二极管泵浦固体激光器中晶体端面散热方法
CN218886359U (zh) 超高亮液晶显示模块

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
WD01 Invention patent application deemed withdrawn after publication

Application publication date: 20111012

WD01 Invention patent application deemed withdrawn after publication