CN102216561B - 通过增强渗透性包裹体的浅层沥青的热采 - Google Patents
通过增强渗透性包裹体的浅层沥青的热采 Download PDFInfo
- Publication number
- CN102216561B CN102216561B CN200980145476.1A CN200980145476A CN102216561B CN 102216561 B CN102216561 B CN 102216561B CN 200980145476 A CN200980145476 A CN 200980145476A CN 102216561 B CN102216561 B CN 102216561B
- Authority
- CN
- China
- Prior art keywords
- fluid
- hydrocarbon
- inclusion enclave
- well
- inclusion
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Fee Related
Links
- 238000011084 recovery Methods 0.000 title claims abstract description 31
- 230000035699 permeability Effects 0.000 title abstract description 8
- 239000010426 asphalt Substances 0.000 title abstract description 5
- 229930195733 hydrocarbon Natural products 0.000 claims abstract description 109
- 150000002430 hydrocarbons Chemical class 0.000 claims abstract description 109
- 239000012530 fluid Substances 0.000 claims abstract description 101
- 238000000034 method Methods 0.000 claims abstract description 72
- 230000015572 biosynthetic process Effects 0.000 claims abstract description 18
- 239000004215 Carbon black (E152) Substances 0.000 claims description 79
- 238000002347 injection Methods 0.000 claims description 19
- 239000007924 injection Substances 0.000 claims description 19
- 238000005755 formation reaction Methods 0.000 claims description 15
- 238000005065 mining Methods 0.000 claims description 13
- 230000010349 pulsation Effects 0.000 claims description 13
- 238000002513 implantation Methods 0.000 claims description 11
- 238000000605 extraction Methods 0.000 claims description 6
- 238000010438 heat treatment Methods 0.000 abstract description 6
- 230000001902 propagating effect Effects 0.000 abstract 1
- 238000005516 engineering process Methods 0.000 description 12
- 238000010586 diagram Methods 0.000 description 11
- 238000010796 Steam-assisted gravity drainage Methods 0.000 description 7
- 239000007789 gas Substances 0.000 description 5
- 238000010793 Steam injection (oil industry) Methods 0.000 description 4
- 238000005086 pumping Methods 0.000 description 4
- 230000008859 change Effects 0.000 description 3
- 238000009826 distribution Methods 0.000 description 3
- 230000002708 enhancing effect Effects 0.000 description 3
- 238000005728 strengthening Methods 0.000 description 3
- 230000009466 transformation Effects 0.000 description 3
- 230000006835 compression Effects 0.000 description 2
- 238000007906 compression Methods 0.000 description 2
- 230000002349 favourable effect Effects 0.000 description 2
- 239000000463 material Substances 0.000 description 2
- VNWKTOKETHGBQD-UHFFFAOYSA-N methane Chemical compound C VNWKTOKETHGBQD-UHFFFAOYSA-N 0.000 description 2
- 230000008569 process Effects 0.000 description 2
- 240000007594 Oryza sativa Species 0.000 description 1
- 235000007164 Oryza sativa Nutrition 0.000 description 1
- 229910000831 Steel Inorganic materials 0.000 description 1
- 239000000956 alloy Substances 0.000 description 1
- 229910045601 alloy Inorganic materials 0.000 description 1
- 230000003321 amplification Effects 0.000 description 1
- 230000008901 benefit Effects 0.000 description 1
- 238000012217 deletion Methods 0.000 description 1
- 230000037430 deletion Effects 0.000 description 1
- 238000011161 development Methods 0.000 description 1
- 238000006073 displacement reaction Methods 0.000 description 1
- 230000008595 infiltration Effects 0.000 description 1
- 238000001764 infiltration Methods 0.000 description 1
- 238000009434 installation Methods 0.000 description 1
- 238000004093 laser heating Methods 0.000 description 1
- 239000007788 liquid Substances 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 210000002445 nipple Anatomy 0.000 description 1
- 238000003199 nucleic acid amplification method Methods 0.000 description 1
- 238000005457 optimization Methods 0.000 description 1
- 229920000642 polymer Polymers 0.000 description 1
- 238000012545 processing Methods 0.000 description 1
- 235000009566 rice Nutrition 0.000 description 1
- 239000011435 rock Substances 0.000 description 1
- 239000004576 sand Substances 0.000 description 1
- 238000007789 sealing Methods 0.000 description 1
- 239000010959 steel Substances 0.000 description 1
- 238000003325 tomography Methods 0.000 description 1
Classifications
-
- E—FIXED CONSTRUCTIONS
- E21—EARTH OR ROCK DRILLING; MINING
- E21B—EARTH OR ROCK DRILLING; OBTAINING OIL, GAS, WATER, SOLUBLE OR MELTABLE MATERIALS OR A SLURRY OF MINERALS FROM WELLS
- E21B43/00—Methods or apparatus for obtaining oil, gas, water, soluble or meltable materials or a slurry of minerals from wells
- E21B43/16—Enhanced recovery methods for obtaining hydrocarbons
- E21B43/24—Enhanced recovery methods for obtaining hydrocarbons using heat, e.g. steam injection
- E21B43/2405—Enhanced recovery methods for obtaining hydrocarbons using heat, e.g. steam injection in association with fracturing or crevice forming processes
-
- E—FIXED CONSTRUCTIONS
- E21—EARTH OR ROCK DRILLING; MINING
- E21B—EARTH OR ROCK DRILLING; OBTAINING OIL, GAS, WATER, SOLUBLE OR MELTABLE MATERIALS OR A SLURRY OF MINERALS FROM WELLS
- E21B43/00—Methods or apparatus for obtaining oil, gas, water, soluble or meltable materials or a slurry of minerals from wells
- E21B43/25—Methods for stimulating production
- E21B43/26—Methods for stimulating production by forming crevices or fractures
- E21B43/261—Separate steps of (1) cementing, plugging or consolidating and (2) fracturing or attacking the formation
Landscapes
- Life Sciences & Earth Sciences (AREA)
- Engineering & Computer Science (AREA)
- Geology (AREA)
- Mining & Mineral Resources (AREA)
- Physics & Mathematics (AREA)
- Environmental & Geological Engineering (AREA)
- Fluid Mechanics (AREA)
- General Life Sciences & Earth Sciences (AREA)
- Geochemistry & Mineralogy (AREA)
- Production Of Liquid Hydrocarbon Mixture For Refining Petroleum (AREA)
- Working-Up Tar And Pitch (AREA)
Abstract
本发明公开了使用增强渗透性包裹体对浅层沥青进行热采的系统和方法。从地下地层内开采烃的方法包括以下步骤:将至少一个大致平面的包裹体从井眼向外扩展至所述地层内;向所述包裹体注入流体,由此加热所述烃;以及在注入步骤期间,从所述井眼开采所述烃。井系统包括从井眼向外延伸至所述地层内的至少一个大致平面的包裹体;注入所述包裹体的流体,由于注入的流体而被加热的烃;以及用于开采所述烃的管柱,所述管柱延伸至所述井眼中的位于所述包裹体以下的位置,并且所述烃在该位置处收集在所述管柱中。
Description
技术领域
本公开内容总体涉及有关地下井采用的设备以及有关地下井进行的操作,并且在本文描述的实施例中,更具体地提供了通过增强渗透性包裹体的浅层沥青的热采。
背景技术
需要一种对相对较浅层如在地中约70至140米深度之间发现的沥青进行热采的经济有效的方法。通常,可通过露天开采工艺来开采向下至约70米深度的沥青,并且蒸汽辅助重力泄油(SAGD)热采方法可有效地开采深度大于约140米的沥青沉积物。
然而,对在露天开采和SAGD均有效和有利的深度之间的沥青进行开采目前还没有实行。70至140米的深度范围对于常规露天开采而言太深,而对于常规SAGD操作而言太浅。
因此,意识到需要对从地层热采沥青和其它相对较重的重烃的技术进行改进。
发明内容
在本说明书中,提供了解决本领域中至少一个问题的装置和方法。下面描述了一个示例,在该示例中,使增强渗透性包裹体扩展至地层内并且将蒸汽注入到所述包裹体的上部,同时从所述包裹体的下部开采沥青。下面描述了另一个示例,在该示例中,蒸汽注入是脉动的,并且相控制阀允许采出沥青但防止采出蒸汽。
根据本发明的一个方面,提供了一种从地下地层内开采烃的方法,所述方法包括以下步骤:将至少一个大致平面的包裹体从井眼向外扩展至所述地层内;向所述包裹体注入流体,由此加热所述烃;以及在注入步骤期间,从所述井眼开采所述烃,其中在同时进行的注入与开采步骤期间,相控制阀防止所述流体与所述烃一起采出。
根据本发明的另一方面,提供了一种用于从与井眼相交的地下地层内开采烃的井系统,所述井系统包括:从井眼向外延伸至所述地层内的至少一个大致平面的包裹体;注入所述包裹体的流体,所述烃由于注入的流体而被加热;用于开采所述烃的管柱,所述管柱延伸至所述井眼中的位于所述包裹体以下的位置,所述烃在该位置处收集在所述管柱中;以及脉动工具,所述脉动工具在注入流体时改变所述流体的流量。
在一个方面,本公开内容提供了一种从地下地层内开采烃的方法。该方法包括以下步骤:将至少一个大致平面的包裹体从井眼向外扩展至所述地层内;向所述包裹体注入流体,由此加热所述烃;以及在注入步骤期间,从所述井眼开采所述烃。
在另一个方面,提供了一种从与井眼相交的地下地层内开采烃的井系统。该系统包括从井眼向外延伸至所述地层内的至少一个大致平面的包裹体。流体被注入所述包裹体,由于被注入的流体而加热所述烃。通过管柱开采所述烃,其中所述管柱延伸至所述井眼中的位于所述包裹体以下的位置。所述烃在该位置处收集在所述管柱中。
在又一方面,一种从地下地层内开采烃的方法包括以下步骤:将至少一个大致平面的包裹体从井眼向外扩展至所述地层内;向所述包裹体注入流体,由此加热所述烃,注入步骤包括当所述流体连续流入所述包裹体时改变所述流体流入所述包裹体的流量;以及在注入步骤期间,从所述井眼开采所述烃。
在再一方面,一种将至少一个大致平面的包裹体从井眼向外扩展至地下地层内的方法包括以下步骤:提供具有至少一个侧向向外延伸的凸出部的包裹体引入工具,所述包裹体引入工具的侧向尺寸大于所述井眼的一部分的内部侧向尺寸;迫使所述包裹体引入工具进入所述井眼部,由此迫使所述凸出部进入所述地层,从而引入所述包裹体;然后将扩展流体泵入所述包裹体内,由此使所述包裹体向外扩展至所述地层内。
对于本领域普通技术人员而言,经对下文的代表性实施例的详细描述和附图进行仔细考虑之后,这些和其它特征、优点、利益和目的将变得显而易见,在附图中,使用相同的附图标记来表示各图中相似的构件。
附图说明
图1是代表性地层的横截面示意图,可以在其中实施体现了本公开内容的原理的方法;
图2是显示使用该方法和相关装置从地层内开采沥青的横截面局部示意图;
图3是该方法中被扩展至地层内的增强渗透性包裹体的放大横截面图;
图4是体现本公开内容的原理的完井系统的横截面局部示意图;
图5是体现本公开内容的原理的另一个完井系统的横截面局部示意图;
图6是体现本公开内容的原理的又一个完井系统的横截面局部示意图;
图7是体现本公开内容的原理的进一步的完井系统的横截面局部示意图;
图8是体现本公开内容的原理的另一个完井系统的横截面局部示意图;
图9是体现本公开内容的原理的另一个完井系统的横截面局部示意图;
图10是体现本公开内容的原理的另一个完井系统的横截面局部示意图;
图11是显示从地层内开采沥青的另一个方法中的初始步骤(例如,在井眼中安装套管)的横截面示意图。
图12是该方法在套管下方钻出开孔之后的横截面示意图;
图13是该方法在安装作业管柱之后的横截面局部示意图;
图14是用于将增强渗透性包裹体引入地层内的工具的横截面示意图;
图15是该方法在将增强渗透性包裹体引入地层内之后的横截面局部示意图;
图16是该方法在取走作业管柱之后的横截面局部示意图;
图17是该方法在取走包裹体引入工具之后的局部横截面图;
图18是该方法在井眼的收集部扩大之后的横截面图;
图19是该方法在将衬套管柱安装在井眼的收集部中之后的横截面图;以及
图20是体现本公开内容的原理的另一个完井系统的横截面图。
具体实施方式
可理解的是,在不背离本公开内容的原理的情况下,在此描述的各个实施例可以以诸如倾斜、倒置、水平、垂直等各种取向以及各种构造来使用。仅以作为本公开内容的原理的有益应用为例描述了实施例,本公开内容不局限于这些实施例的任何具体细节。
在图1-10中代表性示出的是体现本公开内容原理的井系统10和相关方法。在如图1所示的该井系统10中,地层12包含沥青或其它相对较重的重烃14的沉积物。
需要开采烃14,但是它们位于通过露天开采和SAGD方法不能实现开采的约70和140米之间的深度。然而,应清楚地理解到,根据本公开内容的原理,地层12和烃14可处于除70-140米之外的深度。
优选地,地层12相对较疏松或未良好胶结。然而,在一些情况下,地层12能够承受相当大的主应力。
覆盖层16从地层12延伸至地面,相对不渗透层18位于地层12之下。层16和18中每一个均可以包括相对渗透或不渗透的多个子层或区段。
下面具体参照图2,示出的井系统10是在井眼20已钻入地层12之后的情况。套管柱22已安装并胶结在井眼20中。然后从套管柱22的下端向下钻出井眼20的开孔收集部24。
正如在此使用的,术语“套管”用于表示井眼的保护性衬套。套管可包括诸如那些已知为套管、衬套或管子的管状件。套管可以是大致刚性的、挠性的或可膨胀的,并且可以由包括钢、其它合金、聚合物等的任何材料制成。
在套管柱22内的是用于形成从井眼20向外进入地层12中的大致平面的包裹体28的工具26。尽管在图2中仅两个包裹体28可见,然而根据本公开内容的原理,在地层12中可形成任何数量的包裹体(包括一个)。
包裹体28可沿预定方位角的方向从井眼20呈放射状向外延伸。这些包裹体28可同时形成,或以任何顺序形成。从几何意义上说,包裹体28可以不是完全平面或平的,因为它们可以包括一些弯曲部、起伏部、扭曲部等,但优选的是包裹体确实以大致平面的方式从井眼20向外延伸。
例如,如果地层是相对较疏松或未良好胶结的,包裹体28可以仅仅是相对于地层12的剩余部分具有增强渗透性的包裹体。在一些应用中(如在能承受相当大的主应力的地层内),包裹体28可以是被本领域技术人员称为“断层”的类型。
包裹体28可产生于地层12的物质内的相对位移,产生于冲刷等。形成包裹体28的合适的方法(其中一些不需要使用专用工具26)记载在于2007年12月28日提交的序列号为11/966212、于2007年8月1日提交的序列号分别为11/832602、11/832620和11/832615,以及于2006年12月14日提交的序列号为11/610819的美国专利申请。这些现有申请的整个公开内容在此通过参考引入。
如图3代表性地示出,可相对于井眼20将包裹体28沿方位角定向在预先选定的方向上。尽管井眼20与包裹体28如图2所示是垂直定向的,然而根据本公开内容的原理它们可以沿任何其他方向定向。
如图2所示,向地层12注入流体30。流体30经由沿径向形成在套管柱22和采油管柱34之间的环状空间32向下流动。管柱34向下延伸至位于包裹体28以下的位置(例如,在收集部24中)。
流体30经由包裹体28向外流入地层12中。其结果是,地层12中的烃14被加热。例如,流体30可以是蒸汽或能够加热烃14的其他液体或气体。
经适当加热,烃14在地层12中变得可移动(或至少更加可移动)并且可经由包裹体28从地层排入井眼20。如图2所示,烃14排入井眼20并收集在收集部24中。因此,能够经由采油管柱34从井中开采出烃14。
由于环状空间32中流体30施加的压力,烃14可通过采油管柱34向上流动。可替代地,或另外地,可采用辅助提升技术促使烃14通过采油管柱34向上流动。
在图4中,密度相对较小的流体36(即,与烃14相比密度较小)经由在采油管柱34旁边安装在井中的另一个注入管柱38被注入管柱34。流体36可以是蒸汽、其他气体如甲烷、或任何其它密度相对较小的流体或流体的组合。在该方法中可使用常规的人工提升设备(如气举阀工作筒39等)。
在图5中,流体30经由另一个注入管柱40注入井眼20。设置在井眼20中且处于包裹体28上方的封隔器42有助于保持流体30施加的压力,由此有助于迫使烃14通过采油管柱34向上流动。
在图6中,结合了图4和图5的技术,即,流体30经由注入管柱40被注入地层12,并且流体36经由注入管柱38被注入采油管柱34。这表明:根据本公开内容的原理,可采用本文中描述的这些技术(以及在本文中未描述的技术)中的任何数量及其组合。
在图7中,脉动工具44与注入管柱40一起使用,以便在向地层12注入流体30时连续改变流体30的流量。合适的脉动工具记载在专利号US7404416的美国专利、以及于2008年5月14日提交的序列号为12/120633的美国专利申请中。现有专利和申请的整个公开内容在此通过参考引入。
改变流体30进入地层12的流量是有利的,因为它使流体在地层内的分布最优化,由此有助于加热和移动地层内更大比例的烃14。请注意,优选地,由脉动工具44改变的流体30的流量在流动周期和非流动周期之间、或在正向流动周期和反向流动周期之间并不发生交替。
相反,优选地维持流体30沿正向流动(即,流入地层12),同时流量改变或脉动。这可被认为在流体的正基本流量上叠加流体30流量的“AC(交流)”分量。
在图8中,井系统10的结构在大部分方面与如图6所示的系统相似。然而,采油管柱34具有连接在采油管柱的下端的相控制阀46。
相控制阀46防止蒸汽或其它气体跟随烃14从收集部24中出来。用在系统10中的合适的相控制阀记载在于2008年2月28日提交的序列号为12/039206的美国专利申请中。该现有申请的整个公开内容在此通过参考引入。
在图9中,脉动工具44和相控制阀46与各自的注入管柱40和采油管柱34一起使用。再说一次,在不背离本公开内容的原理的情况下,本文描述的任何特征均可根据需要结合到井系统10中。
在图10中,多个包裹体引入工具26a、26b用于在地层12中相应的多个深度处扩展包裹体28a、28b。流体30被注入每个包裹体28a、28b中,并且从每个包裹体28a、28b获得的烃14收集在井眼20中。
因此,可以想到的是,根据本公开内容的原理,包裹体28可形成在地层内的多个不同深度处,并且在其它实施例中,包裹体可形成在多个地层内。例如,在图10的实施例中,在上一组包裹体28a和下一组包裹体28b之间可存在相对不渗透的岩层(例如,一层页岩等)。
如上所述,包裹体扩展工具26可以与在几个先前提交的专利申请中所描述的任何一个工具相似。这些先前描述的工具中的大部分包括使套管柱的一部分发生膨胀从而例如相对于井眼沿径向增加压缩应力。
然而,应理解的是,根据本公开内容的原理,并非一定需要膨胀套管(或互连在套管柱内的工具)。在图11-19中,代表性地示出了在不膨胀套管的情况下在系统10中形成包裹体28的方法。
图11示出了在井眼20已钻入地层12且套管柱22已胶合在井眼中之后的方法和系统10。请注意,在该示例中,套管柱22不延伸穿过地层12的将要引入包裹体28的那部分,并且套管柱不包括包裹体引入工具26。
在图12中,在套管柱22的下端以下钻出中间开孔井眼部48。井眼部48的直径可以等于(以及在其它实施例中可以稍微小于或大于)如下所述安装在井眼部48内的包裹体引入工具26的主体部。
在图13中,作业管柱50上的包裹体引入工具26被运送至井眼20中,并安装在井眼部48中。施加力使工具26穿过位于套管柱22下方的井眼部48周围的泥土,因为至少凸出部52从工具的主体54向外延伸并且与井眼部48的直径相比具有更大的侧向尺寸。如果例如需要增加地层12内的径向压缩应力,主体54也可以具有比井眼部48的直径大的直径。
在图14中,代表性地示出了被驱动进入地层12中的工具26的横截面图。在该图中可见,凸出部52向外延伸进入地层12,由此引入包裹体28。
尽管在图14中示出的工具26具有等间距呈放射状隔开的八个凸出部52,然而应理解的是,该工具可以由任何数量的凸出部(包括一个)构成,并且可以使用该工具引入任何数量的包裹体28。例如,工具26可以包括间隔180度的两个凸出部52,以便引入两个包裹体28。
然后为了引入两个另外的包裹体28,这样的工具26可被提升,沿方位角稍微旋转,并再次被驱使进入地层12。该处理可以重复所需的次数,从而引入所需数量的包裹体28。
根据本公开内容的原理,可在引入包裹体28之后立即或此后一段时间后,使包裹体28向外扩展至地层12内,并且可相继地、同时地或以任何顺序扩展包裹体。在上述的先前专利申请中所描述的用于引入和扩展包裹体28的任何技术(例如,序列号为11/966212、11/832602、11/832620、11/832615和11/610819的美国专利申请)可用于在此描述的系统10和相关方法中。
在图15中,包裹体28已向外扩展至地层12内。这可以通过如下的步骤完成:在套管柱22中设置封隔器56、通过作业管柱50泵送流体58并使流体58经由工具26上的凸出部52向外进入包裹体28中。
在将流体58泵入地层12内以扩展包裹体28的工艺之前或在此期间,工具26可以膨胀或者可以不膨胀(例如,使用液压致动器或在上述的先前专利申请中所描述的任何技术)。此外,流体58可加载沙子或其他支撑剂,这样,在扩展包裹体28之后,每个包裹体将限定出高渗透性流路,以便后来注入流体30和从地层12中开采出烃14。
请注意,工具26并非一定包括凸出部52。主体54可沿径向向外膨胀(例如,使用液压致动器等),并且可以从膨胀的主体泵出流体58以形成包裹体28。
在图16中,已从井中取出作业管柱50,在扩展包裹体28之后将工具26留在井眼部48中。可替代地,视需要,工具26可与作业管柱50一起取出。
在图17中,井眼部48已扩大从而形成收集部24,以便烃14最终积聚在其内。在该实施例中,当使用套洗工具(图未示)从井眼部取出工具26时,井眼部48被扩大。
然而,如上所述如果工具26与作业管柱50一起取出,那么可采用其它技术(如使用扩孔器或钻头等)来扩大井眼部48。此外,在其它实施例中,井眼部48自身可以在根本不扩大的情况下用作收集部24。
在图18中,收集部24已进一步向下延伸进入地层12。如图2-10所示,视需要,收集部24可延伸进入层18中。
在图19中,衬套管柱60已安装在井中,其中衬套悬挂器62在套管柱22中密封和固定衬套管柱的上端。衬套64的开孔或开槽部延伸进入与包裹体28相对的井眼部24,衬套66的无孔或无槽部延伸进入包裹体下方的井眼部。
衬套64的开孔部允许流体30从衬套管柱60注入包裹体28。衬套64的开孔部还可以允许烃14从包裹体28流入衬套管柱60。如果衬套66的无孔部在其下端是开放的,那么还可以允许烃14通过衬套的下端流入衬套管柱60。
现在可以采用上述以及图2-10中所示的任何技术来完成该井。例如,视情况,采油管柱34可与注入管柱38、40中任一个、脉动工具44和/或相控制阀46安装(在采油管柱34的下端延伸进入衬套管柱60的情况下)在一起。
另一个完井选择代表性地显示在图20中。在该完井结构中,上衬套64设有一系列纵向分布的喷嘴68。
至少部分地通过维持衬套64的从内部至外部的正压差,喷嘴68用于均匀地分布向包裹体28的流体30注入。喷嘴68可适当地构造(例如,通过直径、长度、流动限制等)成获得所需的流体30的流动分布,并且所有喷嘴并非必须为相同结构。
下衬套66是开孔的或开槽的,从而允许烃14流入衬套管柱60。控流装置70(例如,止回阀、减压阀等)在上衬套64和下衬套66之间提供单向流体连通。
在操作中,流体30的注入加热了烃14,烃14流入井眼20并积聚在收集部24,然后经由控流装置70进入采油管柱34的下端。流体30可周期性地进入采油管柱34的下端(例如,当收集部中烃14的水平明显下降时),由此有助于通过采油管柱向上提升烃14。
可替代地,控流装置70还可以包括相控制阀(如上述阀46),以防止蒸汽或其它气体从下衬套66通过控流装置流入上衬套64。作为另一种替代方案,如果未在采油管柱34和衬套管柱60之间设置用于密封的封隔器72,那么可在如图8-10所示的和上述采油管柱的下端处包括相控制阀46。
在图20的结构中还可以包括上述任一个其它完井选择。例如,可经由注入管柱40注入流体30,密度相对较小的流体36可经由另一个注入管柱38注入,并且可以使用工作筒39、脉动工具44改变流体30的流量等。
现在可以完全意识到的是,井系统10和相关方法的上述描述使从地下地层开采相对较重的重烃的技术得到了显著发展。系统10和方法特别有利于对于常规露天开采而言太深且对于常规SAGD操作而言太浅的地层。
系统10和方法的一些特别有利的特征在于仅需要一个井眼20既可以注入流体30又可以开采烃14,注入流体可与开采烃同时进行,并且基本上井一旦完成即可以开采烃。系统10和方法为目前使用常规完井技术无法进行热采的浅层沥青的大量沉积物的开采提供了非常经济有效的方式。需要较少的井,这减小了这种开采的环境影响。
该方法不需要如常规SAGD技术的那样的3至4个月的加热阶段,该方法优选地也不包括在蒸汽注入阶段停止开采的循环注入蒸汽过程。相反,优选地通过流体30的注入连续加热烃14,并且在注入期间连续开采,因此能提供非常快的投资回报。
上述公开内容为本领域提供了一种从地下地层12开采烃14的方法。该方法包括以下步骤:使至少一个大致平面的包裹体28从井眼20向外扩展至地层12内;向包裹体28注入流体30,由此加热烃14;以及在注入步骤期间,从井眼20开采烃14。
烃14可包括沥青。烃14的开采步骤可包括在地中约70米和约140米之间的深度处使烃流入井眼20。
流体30可包括蒸汽。流体30可注入与开采烃14的包裹体相同的包裹体28。
流体30可注入位于开采烃14的包裹体下部之上的包裹体28的上部。可以在开采烃14的同时,以变化的流量注入流体30。
可以通过延伸至井眼20的位于包裹体28下方的位置的管柱34来开采烃14。相控制阀46可以防止流体30与烃14一起通过管柱34出来。
包裹体28的扩展步骤可包括在一个深度处将多个包裹体扩展至地层12中。该扩展步骤还可以包括在另一个深度处将多个包裹体28扩展至地层12中。开采步骤可以包括从两个深度处的包裹体28开采出烃14。
包裹体28的扩展步骤可以在无需在井眼20中膨胀套管的情况下进行。
上面的公开内容还提供了一种用于从与井眼20相交的地下地层12中开采烃14的井系统10。系统10包括从井眼20向外延伸至地层12内的至少一个大致平面的包裹体28。
流体30注入包裹体28中。由于注入的流体30而加热烃14。
通过延伸至井眼20中的位于包裹体28下方的位置的管柱34开采烃14。烃14集中到该位置处的管柱34内。
仅单个井眼20就可以用于注入流体30和开采烃14。脉动工具44可以在注入流体30时改变流体30的流量。
可以经由管柱34和井眼20之间形成的环状空间32注入流体30。可以经由注入管柱40注入流体30。
控流装置70可以使烃14从井眼20的位于包裹体28下方的部分24单向流入所述管柱34中。
上文的描述还提供了一种从地下地层12开采烃14的方法,该方法包括以下步骤:将至少一个大致平面的包裹体28从井眼20向外扩展至地层12内;向包裹体28注入流体30,由此加热烃14,该注入步骤包括在流体30连续流入包裹体28的同时改变流体30进入包裹体28的流量;以及在注入步骤期间,从井眼20开采烃14。
上面的公开内容还提供了一种将至少一个大致平面的包裹体28从井眼20向外扩展至地层12内的方法。该方法包括以下步骤:提供具有至少一个侧向向外延伸的凸出部52的包裹体引入工具26,包裹体引入工具26的侧向尺寸大于井眼20的一部分48的内部侧向尺寸;迫使包裹体引入工具26进入井眼部48,由此迫使凸出部52进入地层12,从而引入包裹体28;然后将扩展流体58泵送至包裹体28内,由此使包裹体28向外扩展至地层12内。
包裹体引入工具26的主体54可具有大于井眼部48的内部侧向尺寸的侧向尺寸,为此工具迫使步骤还包括迫使主体54进入井眼部48,由此增加地层12中的径向压缩应力。
流体泵送步骤可以包括通过凸出部52泵送流体58。
凸出部迫使步骤可进行多次,在凸出部迫使步骤之间可沿方位角旋转包裹体引入工具26。
该方法可包括在井眼部48内膨胀包裹体引入工具26的步骤。可以在泵送步骤之前或在此期间进行该膨胀步骤。
该方法可以包括从井眼20取出包裹体引入工具26的步骤。
该方法可以包括向包裹体28注入加热流体30的步骤,由此加热地层12内的烃14;以及在注入步骤期间,从井眼20开采烃14。
当然,本领域技术人员在对代表性实施例的上面描述进行仔细考虑后容易想到的是,可对这些具体实施例作出许多修饰、增加、替换、删除以及其它变化,并且这些变化是落入本公开内容的原理的范围内的。因此上文详细的描述应该被清楚地理解为,其仅以解释说明和示例的方式给出,本发明的精神和范围仅由所附的权利要求和它们的等同物限定。
Claims (35)
1.一种从地下地层内开采烃的方法,所述方法包括以下步骤:
将至少一个大致平面的包裹体从井眼向外扩展至所述地层内;
向所述包裹体注入流体,由此加热所述烃;以及
在注入步骤期间,从所述井眼开采所述烃,
其中在同时进行的注入与开采步骤期间,相控制阀防止所述流体与所述烃一起采出。
2.根据权利要求1所述的方法,其中所述烃包括沥青。
3.根据权利要求1所述的方法,其中开采步骤还包括在地中70米和140米之间的深度使所述烃流入所述井眼。
4.根据权利要求1所述的方法,其中所述流体包括蒸汽。
5.根据权利要求1所述的方法,其中所述流体被注入与开采所述烃的包裹体相同的包裹体。
6.根据权利要求1所述的方法,其中所述流体被注入位于开采所述烃的包裹体的下部之上的包裹体的上部。
7.根据权利要求1所述的方法,其中在开采所述烃的同时以变化的流量注入所述流体。
8.根据权利要求1所述的方法,其中通过延伸至所述井眼中的位于所述包裹体下方的位置的管柱来开采所述烃。
9.根据权利要求1所述的方法,其中扩展步骤还包括在第一深度处将多个所述包裹体扩展至所述地层内。
10.根据权利要求9所述的方法,其中扩展步骤还包括在第二深度处将多个所述包裹体扩展至所述地层内,并且其中开采步骤还包括从所述第一深度和第二深度处的所述包裹体开采出所述烃。
11.根据权利要求1所述的方法,其中扩展步骤在无需在所述井眼中膨胀套管的情况下进行。
12.一种用于从与井眼相交的地下地层内开采烃的井系统,所述井系统包括:
从井眼向外延伸至所述地层内的至少一个大致平面的包裹体;
注入所述包裹体的流体,所述烃由于注入的流体而被加热;
用于开采所述烃的管柱,所述管柱延伸至所述井眼中的位于所述包裹体以下的位置,所述烃在该位置处收集在所述管柱中;以及
脉动工具,所述脉动工具在注入流体时改变所述流体的流量。
13.根据权利要求12所述的系统,其中仅使用单个井眼注入所述流体和开采所述烃。
14.根据权利要求12所述的系统,其中所述烃包括沥青。
15.根据权利要求12所述的系统,其中所述包裹体定位在地中70米和140米之间的深度处。
16.根据权利要求12所述的系统,其中所述流体包括蒸汽。
17.根据权利要求12所述的系统,其中所述流体被注入与开采所述烃的包裹体相同的包裹体。
18.根据权利要求12所述的系统,其中所述流体被注入位于开采所述烃的包裹体的下部之上的包裹体的上部。
19.根据权利要求12所述的系统,其中相控制阀防止所述流体与所述烃一起通过所述管柱采出。
20.根据权利要求12所述的系统,其中在第一深度处,多个所述包裹体延伸至所述地层内。
21.根据权利要求20所述的系统,其中在第二深度处,多个所述包裹体延伸至所述地层内,并且其中从所述第一深度和第二深度处的所述包裹体开采出所述烃。
22.根据权利要求12所述的系统,其中经由所述管柱和所述井眼之间形成的环状空间注入所述流体。
23.根据权利要求12所述的系统,其中经由注入管柱注入所述流体。
24.根据权利要求12所述的系统,还包括控流装置,所述控流装置使所述烃从所述井眼的位于所述包裹体下方的部分单向流入所述管柱中。
25.一种从地下地层内开采烃的方法,所述方法包括以下步骤:
将至少一个大致平面的包裹体从井眼向外扩展至所述地层内;
向所述包裹体注入流体,由此加热所述烃,注入步骤包括当所述流体连续流入所述包裹体时改变所述流体流入所述包裹体的流量;以及
在注入步骤期间,从所述井眼开采所述烃。
26.根据权利要求25所述的方法,其中所述烃包括沥青。
27.根据权利要求25所述的方法,其中开采步骤还包括在地中70米和140米之间的深度使所述烃流入所述井眼。
28.根据权利要求25所述的方法,其中所述流体包括蒸汽。
29.根据权利要求25所述的方法,其中所述流体被注入与开采所述烃的包裹体相同的包裹体。
30.根据权利要求25所述的方法,其中所述流体被注入位于开采所述烃的包裹体的下部之上的包裹体的上部。
31.根据权利要求25所述的方法,其中经由在所述井内互连在注入管柱中的脉动工具注入所述流体。
32.根据权利要求25所述的方法,其中通过延伸至所述井眼中的位于所述包裹体下方的位置的管柱来开采所述烃,并且其中相控制阀防止所述流体与所述烃一起通过所述管柱采出。
33.根据权利要求25所述的方法,其中扩展步骤还包括在第一深度处将多个所述包裹体扩展至所述地层内。
34.根据权利要求33所述的方法,其中扩展步骤还包括在第二深度处将多个所述包裹体扩展至所述地层内,并且其中开采步骤还包括从所述第一深度和第二深度处的所述包裹体开采出所述烃。
35.根据权利要求25所述的方法,其中扩展步骤在无需在所述井眼中膨胀套管的情况下进行。
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201410231938.4A CN104018818B (zh) | 2008-11-13 | 2009-11-06 | 通过增强渗透性包裹体的浅层沥青的热采 |
Applications Claiming Priority (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US12/269,995 | 2008-11-13 | ||
US12/269,995 US8151874B2 (en) | 2006-02-27 | 2008-11-13 | Thermal recovery of shallow bitumen through increased permeability inclusions |
PCT/US2009/063588 WO2010056606A2 (en) | 2008-11-13 | 2009-11-06 | Thermal recovery of shallow bitumen through increased permeability inclusions |
Related Child Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN201410231938.4A Division CN104018818B (zh) | 2008-11-13 | 2009-11-06 | 通过增强渗透性包裹体的浅层沥青的热采 |
Publications (2)
Publication Number | Publication Date |
---|---|
CN102216561A CN102216561A (zh) | 2011-10-12 |
CN102216561B true CN102216561B (zh) | 2014-10-22 |
Family
ID=42102784
Family Applications (2)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN200980145476.1A Expired - Fee Related CN102216561B (zh) | 2008-11-13 | 2009-11-06 | 通过增强渗透性包裹体的浅层沥青的热采 |
CN201410231938.4A Expired - Fee Related CN104018818B (zh) | 2008-11-13 | 2009-11-06 | 通过增强渗透性包裹体的浅层沥青的热采 |
Family Applications After (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN201410231938.4A Expired - Fee Related CN104018818B (zh) | 2008-11-13 | 2009-11-06 | 通过增强渗透性包裹体的浅层沥青的热采 |
Country Status (8)
Country | Link |
---|---|
US (2) | US8151874B2 (zh) |
EP (1) | EP2350436A2 (zh) |
CN (2) | CN102216561B (zh) |
BR (1) | BRPI0915244A2 (zh) |
CA (2) | CA2686050C (zh) |
EC (1) | ECSP11011128A (zh) |
RU (1) | RU2466271C1 (zh) |
WO (1) | WO2010056606A2 (zh) |
Families Citing this family (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US8955585B2 (en) | 2011-09-27 | 2015-02-17 | Halliburton Energy Services, Inc. | Forming inclusions in selected azimuthal orientations from a casing section |
US20140014327A1 (en) * | 2012-07-13 | 2014-01-16 | Schlumberger Technology Corporation | Methodology and system for producing fluids from a condensate gas reservoir |
KR101508969B1 (ko) * | 2013-05-08 | 2015-04-07 | 한국지질자원연구원 | 열전도방식을 이용한 오일샌드의 비투멘 채굴 시스템 |
KR101498879B1 (ko) * | 2013-06-05 | 2015-03-05 | 한국지질자원연구원 | 열공급 및 비투멘 채굴을 동시에 수행하는 단일파이프 방식의 비투멘 채굴 시스템 |
US9557794B2 (en) * | 2014-11-07 | 2017-01-31 | General Electric Company | System and method for distributing electrical power |
WO2016140664A1 (en) * | 2015-03-04 | 2016-09-09 | Halliburton Energy Services, Inc. | Steam operated injection and production device |
Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN1890454A (zh) * | 2003-12-30 | 2007-01-03 | 乔西拉公司 | 不牢固和脆弱粘结的沉积物中的竖直液压裂缝的多方位控制 |
US7404416B2 (en) * | 2004-03-25 | 2008-07-29 | Halliburton Energy Services, Inc. | Apparatus and method for creating pulsating fluid flow, and method of manufacture for the apparatus |
Family Cites Families (195)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US2732195A (en) * | 1956-01-24 | Ljungstrom | ||
US1789993A (en) * | 1929-08-02 | 1931-01-27 | Switzer Frank | Casing ripper |
US2178554A (en) * | 1938-01-26 | 1939-11-07 | Clifford P Bowie | Well slotter |
US2634961A (en) * | 1946-01-07 | 1953-04-14 | Svensk Skifferolje Aktiebolage | Method of electrothermal production of shale oil |
US2548360A (en) * | 1948-03-29 | 1951-04-10 | Stanley A Germain | Electric oil well heater |
US2687179A (en) * | 1948-08-26 | 1954-08-24 | Newton B Dismukes | Means for increasing the subterranean flow into and from wells |
US2642142A (en) * | 1949-04-20 | 1953-06-16 | Stanolind Oil & Gas Co | Hydraulic completion of wells |
US2780450A (en) * | 1952-03-07 | 1957-02-05 | Svenska Skifferolje Ab | Method of recovering oil and gases from non-consolidated bituminous geological formations by a heating treatment in situ |
US2862564A (en) * | 1955-02-21 | 1958-12-02 | Otis Eng Co | Anchoring devices for well tools |
US2870843A (en) * | 1955-06-21 | 1959-01-27 | Gulf Oil Corp | Apparatus for control of flow through the annulus of a dual-zone well |
US3062286A (en) * | 1959-11-13 | 1962-11-06 | Gulf Research Development Co | Selective fracturing process |
US3071481A (en) * | 1959-11-27 | 1963-01-01 | Gulf Oil Corp | Cement composition |
US3058730A (en) * | 1960-06-03 | 1962-10-16 | Fmc Corp | Method of forming underground communication between boreholes |
US3059909A (en) * | 1960-12-09 | 1962-10-23 | Chrysler Corp | Thermostatic fuel mixture control |
US3225828A (en) * | 1963-06-05 | 1965-12-28 | American Coldset Corp | Downhole vertical slotting tool |
US3270816A (en) * | 1963-12-19 | 1966-09-06 | Dow Chemical Co | Method of establishing communication between wells |
US3301723A (en) * | 1964-02-06 | 1967-01-31 | Du Pont | Gelled compositions containing galactomannan gums |
US3280913A (en) * | 1964-04-06 | 1966-10-25 | Exxon Production Research Co | Vertical fracturing process and apparatus for wells |
US3349847A (en) * | 1964-07-28 | 1967-10-31 | Gulf Research Development Co | Process for recovering oil by in situ combustion |
US3353599A (en) * | 1964-08-04 | 1967-11-21 | Gulf Oil Corp | Method and apparatus for stabilizing formations |
US3284281A (en) * | 1964-08-31 | 1966-11-08 | Phillips Petroleum Co | Production of oil from oil shale through fractures |
US3338317A (en) * | 1965-09-22 | 1967-08-29 | Schlumberger Technology Corp | Oriented perforating apparatus |
US3695354A (en) * | 1970-03-30 | 1972-10-03 | Shell Oil Co | Halogenating extraction of oil from oil shale |
US3690380A (en) * | 1970-06-22 | 1972-09-12 | Donovan B Grable | Well apparatus and method of placing apertured inserts in well pipe |
US3739852A (en) * | 1971-05-10 | 1973-06-19 | Exxon Production Research Co | Thermal process for recovering oil |
US3727688A (en) * | 1972-02-09 | 1973-04-17 | Phillips Petroleum Co | Hydraulic fracturing method |
US3779915A (en) * | 1972-09-21 | 1973-12-18 | Dow Chemical Co | Acid composition and use thereof in treating fluid-bearing geologic formations |
US3913671A (en) * | 1973-09-28 | 1975-10-21 | Texaco Inc | Recovery of petroleum from viscous petroleum containing formations including tar sand deposits |
US3884303A (en) * | 1974-03-27 | 1975-05-20 | Shell Oil Co | Vertically expanded structure-biased horizontal fracturing |
US3888312A (en) * | 1974-04-29 | 1975-06-10 | Halliburton Co | Method and compositions for fracturing well formations |
US3948325A (en) * | 1975-04-03 | 1976-04-06 | The Western Company Of North America | Fracturing of subsurface formations with Bingham plastic fluids |
US4005750A (en) * | 1975-07-01 | 1977-02-01 | The United States Of America As Represented By The United States Energy Research And Development Administration | Method for selectively orienting induced fractures in subterranean earth formations |
US3994340A (en) * | 1975-10-30 | 1976-11-30 | Chevron Research Company | Method of recovering viscous petroleum from tar sand |
US4018293A (en) * | 1976-01-12 | 1977-04-19 | The Keller Corporation | Method and apparatus for controlled fracturing of subterranean formations |
US4099570A (en) * | 1976-04-09 | 1978-07-11 | Donald Bruce Vandergrift | Oil production processes and apparatus |
US4066127A (en) * | 1976-08-23 | 1978-01-03 | Texaco Inc. | Processes for producing bitumen from tar sands and methods for forming a gravel pack in tar sands |
US4119151A (en) * | 1977-02-25 | 1978-10-10 | Homco International, Inc. | Casing slotter |
US4116275A (en) * | 1977-03-14 | 1978-09-26 | Exxon Production Research Company | Recovery of hydrocarbons by in situ thermal extraction |
US4085803A (en) * | 1977-03-14 | 1978-04-25 | Exxon Production Research Company | Method for oil recovery using a horizontal well with indirect heating |
US4109722A (en) * | 1977-04-28 | 1978-08-29 | Texaco Inc. | Thermal oil recovery method |
US4114687A (en) * | 1977-10-14 | 1978-09-19 | Texaco Inc. | Systems for producing bitumen from tar sands |
US4265310A (en) * | 1978-10-03 | 1981-05-05 | Continental Oil Company | Fracture preheat oil recovery process |
US4362213A (en) * | 1978-12-29 | 1982-12-07 | Hydrocarbon Research, Inc. | Method of in situ oil extraction using hot solvent vapor injection |
US4280569A (en) | 1979-06-25 | 1981-07-28 | Standard Oil Company (Indiana) | Fluid flow restrictor valve for a drill hole coring tool |
US4271696A (en) * | 1979-07-09 | 1981-06-09 | M. D. Wood, Inc. | Method of determining change in subsurface structure due to application of fluid pressure to the earth |
CA1130201A (en) * | 1979-07-10 | 1982-08-24 | Esso Resources Canada Limited | Method for continuously producing viscous hydrocarbons by gravity drainage while injecting heated fluids |
US4311194A (en) * | 1979-08-20 | 1982-01-19 | Otis Engineering Corporation | Liner hanger and running and setting tool |
US4280559A (en) * | 1979-10-29 | 1981-07-28 | Exxon Production Research Company | Method for producing heavy crude |
US4519454A (en) * | 1981-10-01 | 1985-05-28 | Mobil Oil Corporation | Combined thermal and solvent stimulation |
US4491179A (en) * | 1982-04-26 | 1985-01-01 | Pirson Sylvain J | Method for oil recovery by in situ exfoliation drive |
US4450913A (en) * | 1982-06-14 | 1984-05-29 | Texaco Inc. | Superheated solvent method for recovering viscous petroleum |
US4454916A (en) * | 1982-11-29 | 1984-06-19 | Mobil Oil Corporation | In-situ combustion method for recovery of oil and combustible gas |
US4566536A (en) * | 1983-11-21 | 1986-01-28 | Mobil Oil Corporation | Method for operating an injection well in an in-situ combustion oil recovery using oxygen |
US4474237A (en) * | 1983-12-07 | 1984-10-02 | Mobil Oil Corporation | Method for initiating an oxygen driven in-situ combustion process |
US4513819A (en) * | 1984-02-27 | 1985-04-30 | Mobil Oil Corporation | Cyclic solvent assisted steam injection process for recovery of viscous oil |
US4597441A (en) * | 1984-05-25 | 1986-07-01 | World Energy Systems, Inc. | Recovery of oil by in situ hydrogenation |
US4598770A (en) * | 1984-10-25 | 1986-07-08 | Mobil Oil Corporation | Thermal recovery method for viscous oil |
US4625800A (en) * | 1984-11-21 | 1986-12-02 | Mobil Oil Corporation | Method of recovering medium or high gravity crude oil |
US4678037A (en) * | 1985-12-06 | 1987-07-07 | Amoco Corporation | Method and apparatus for completing a plurality of zones in a wellbore |
US4706751A (en) * | 1986-01-31 | 1987-11-17 | S-Cal Research Corp. | Heavy oil recovery process |
US4697642A (en) * | 1986-06-27 | 1987-10-06 | Tenneco Oil Company | Gravity stabilized thermal miscible displacement process |
US4716960A (en) * | 1986-07-14 | 1988-01-05 | Production Technologies International, Inc. | Method and system for introducing electric current into a well |
US4696345A (en) * | 1986-08-21 | 1987-09-29 | Chevron Research Company | Hasdrive with multiple offset producers |
US4834181A (en) * | 1987-12-29 | 1989-05-30 | Mobil Oil Corporation | Creation of multi-azimuth permeable hydraulic fractures |
CA1295547C (en) * | 1988-10-11 | 1992-02-11 | David J. Stephens | Overburn process for recovery of heavy bitumens |
US5131471A (en) * | 1989-08-16 | 1992-07-21 | Chevron Research And Technology Company | Single well injection and production system |
US4977961A (en) * | 1989-08-16 | 1990-12-18 | Chevron Research Company | Method to create parallel vertical fractures in inclined wellbores |
US4926941A (en) * | 1989-10-10 | 1990-05-22 | Shell Oil Company | Method of producing tar sand deposits containing conductive layers |
US5002431A (en) * | 1989-12-05 | 1991-03-26 | Marathon Oil Company | Method of forming a horizontal contamination barrier |
US5036918A (en) * | 1989-12-06 | 1991-08-06 | Mobil Oil Corporation | Method for improving sustained solids-free production from heavy oil reservoirs |
GB2240798A (en) * | 1990-02-12 | 1991-08-14 | Shell Int Research | Method and apparatus for perforating a well liner and for fracturing a surrounding formation |
US5010964A (en) * | 1990-04-06 | 1991-04-30 | Atlantic Richfield Company | Method and apparatus for orienting wellbore perforations |
US5211714A (en) * | 1990-04-12 | 1993-05-18 | Halliburton Logging Services, Inc. | Wireline supported perforating gun enabling oriented perforations |
US5054551A (en) * | 1990-08-03 | 1991-10-08 | Chevron Research And Technology Company | In-situ heated annulus refining process |
US5060726A (en) * | 1990-08-23 | 1991-10-29 | Shell Oil Company | Method and apparatus for producing tar sand deposits containing conductive layers having little or no vertical communication |
US5046559A (en) * | 1990-08-23 | 1991-09-10 | Shell Oil Company | Method and apparatus for producing hydrocarbon bearing deposits in formations having shale layers |
US5111881A (en) * | 1990-09-07 | 1992-05-12 | Halliburton Company | Method to control fracture orientation in underground formation |
US5105886A (en) * | 1990-10-24 | 1992-04-21 | Mobil Oil Corporation | Method for the control of solids accompanying hydrocarbon production from subterranean formations |
US5060287A (en) * | 1990-12-04 | 1991-10-22 | Shell Oil Company | Heater utilizing copper-nickel alloy core |
US5065818A (en) * | 1991-01-07 | 1991-11-19 | Shell Oil Company | Subterranean heaters |
US5123487A (en) * | 1991-01-08 | 1992-06-23 | Halliburton Services | Repairing leaks in casings |
US5148869A (en) * | 1991-01-31 | 1992-09-22 | Mobil Oil Corporation | Single horizontal wellbore process/apparatus for the in-situ extraction of viscous oil by gravity action using steam plus solvent vapor |
CA2046107C (en) * | 1991-07-03 | 1994-12-06 | Geryl Owen Brannan | Laterally and vertically staggered horizontal well hydrocarbon recovery method |
US5215146A (en) * | 1991-08-29 | 1993-06-01 | Mobil Oil Corporation | Method for reducing startup time during a steam assisted gravity drainage process in parallel horizontal wells |
CA2058255C (en) * | 1991-12-20 | 1997-02-11 | Roland P. Leaute | Recovery and upgrading of hydrocarbons utilizing in situ combustion and horizontal wells |
US5211230A (en) * | 1992-02-21 | 1993-05-18 | Mobil Oil Corporation | Method for enhanced oil recovery through a horizontal production well in a subsurface formation by in-situ combustion |
US5318123A (en) * | 1992-06-11 | 1994-06-07 | Halliburton Company | Method for optimizing hydraulic fracturing through control of perforation orientation |
US5392854A (en) * | 1992-06-12 | 1995-02-28 | Shell Oil Company | Oil recovery process |
US5255742A (en) * | 1992-06-12 | 1993-10-26 | Shell Oil Company | Heat injection process |
US5297626A (en) * | 1992-06-12 | 1994-03-29 | Shell Oil Company | Oil recovery process |
US5944446A (en) | 1992-08-31 | 1999-08-31 | Golder Sierra Llc | Injection of mixtures into subterranean formations |
US5325923A (en) * | 1992-09-29 | 1994-07-05 | Halliburton Company | Well completions with expandable casing portions |
US5396957A (en) * | 1992-09-29 | 1995-03-14 | Halliburton Company | Well completions with expandable casing portions |
US5361856A (en) | 1992-09-29 | 1994-11-08 | Halliburton Company | Well jetting apparatus and met of modifying a well therewith |
US5360066A (en) * | 1992-12-16 | 1994-11-01 | Halliburton Company | Method for controlling sand production of formations and for optimizing hydraulic fracturing through perforation orientation |
US5394941A (en) * | 1993-06-21 | 1995-03-07 | Halliburton Company | Fracture oriented completion tool system |
US5335724A (en) * | 1993-07-28 | 1994-08-09 | Halliburton Company | Directionally oriented slotting method |
US5372195A (en) * | 1993-09-13 | 1994-12-13 | The United States Of America As Represented By The Secretary Of The Interior | Method for directional hydraulic fracturing |
US5607016A (en) | 1993-10-15 | 1997-03-04 | Butler; Roger M. | Process and apparatus for the recovery of hydrocarbons from a reservoir of hydrocarbons |
US5407009A (en) * | 1993-11-09 | 1995-04-18 | University Technologies International Inc. | Process and apparatus for the recovery of hydrocarbons from a hydrocarbon deposit |
US5411094A (en) * | 1993-11-22 | 1995-05-02 | Mobil Oil Corporation | Imbibition process using a horizontal well for oil production from low permeability reservoirs |
US5404952A (en) * | 1993-12-20 | 1995-04-11 | Shell Oil Company | Heat injection process and apparatus |
CA2114456C (en) * | 1994-01-28 | 2004-08-31 | Thomas James Boone | Thermal recovery process for recovering oil from underground formations |
US5431224A (en) * | 1994-04-19 | 1995-07-11 | Mobil Oil Corporation | Method of thermal stimulation for recovery of hydrocarbons |
US5472049A (en) * | 1994-04-20 | 1995-12-05 | Union Oil Company Of California | Hydraulic fracturing of shallow wells |
TW358120B (en) | 1994-08-24 | 1999-05-11 | Shell Int Research | Hydrocarbon conversion catalysts |
US5431225A (en) * | 1994-09-21 | 1995-07-11 | Halliburton Company | Sand control well completion methods for poorly consolidated formations |
ZA96241B (en) | 1995-01-16 | 1996-08-14 | Shell Int Research | Method of creating a casing in a borehole |
US5829520A (en) | 1995-02-14 | 1998-11-03 | Baker Hughes Incorporated | Method and apparatus for testing, completion and/or maintaining wellbores using a sensor device |
US5564499A (en) | 1995-04-07 | 1996-10-15 | Willis; Roger B. | Method and device for slotting well casing and scoring surrounding rock to facilitate hydraulic fractures |
US5626191A (en) | 1995-06-23 | 1997-05-06 | Petroleum Recovery Institute | Oilfield in-situ combustion process |
US5824214A (en) | 1995-07-11 | 1998-10-20 | Mobil Oil Corporation | Method for hydrotreating and upgrading heavy crude oil during production |
ATE191254T1 (de) | 1995-12-27 | 2000-04-15 | Shell Int Research | Flamenlose verbrennvorrichtung und verfahren |
US5931230A (en) * | 1996-02-20 | 1999-08-03 | Mobil Oil Corporation | Visicous oil recovery using steam in horizontal well |
US6283216B1 (en) | 1996-03-11 | 2001-09-04 | Schlumberger Technology Corporation | Apparatus and method for establishing branch wells from a parent well |
US5743334A (en) | 1996-04-04 | 1998-04-28 | Chevron U.S.A. Inc. | Evaluating a hydraulic fracture treatment in a wellbore |
US5771973A (en) * | 1996-07-26 | 1998-06-30 | Amoco Corporation | Single well vapor extraction process |
CA2185837C (en) | 1996-09-18 | 2001-08-07 | Alberta Oil Sands Technology And Research Authority | Solvent-assisted method for mobilizing viscous heavy oil |
US6079499A (en) | 1996-10-15 | 2000-06-27 | Shell Oil Company | Heater well method and apparatus |
US6056057A (en) | 1996-10-15 | 2000-05-02 | Shell Oil Company | Heater well method and apparatus |
US5871637A (en) | 1996-10-21 | 1999-02-16 | Exxon Research And Engineering Company | Process for upgrading heavy oil using alkaline earth metal hydroxide |
US5765642A (en) | 1996-12-23 | 1998-06-16 | Halliburton Energy Services, Inc. | Subterranean formation fracturing methods |
US5862858A (en) | 1996-12-26 | 1999-01-26 | Shell Oil Company | Flameless combustor |
US6116343A (en) | 1997-02-03 | 2000-09-12 | Halliburton Energy Services, Inc. | One-trip well perforation/proppant fracturing apparatus and methods |
US6023554A (en) | 1997-05-20 | 2000-02-08 | Shell Oil Company | Electrical heater |
US5981447A (en) | 1997-05-28 | 1999-11-09 | Schlumberger Technology Corporation | Method and composition for controlling fluid loss in high permeability hydrocarbon bearing formations |
US6003599A (en) | 1997-09-15 | 1999-12-21 | Schlumberger Technology Corporation | Azimuth-oriented perforating system and method |
GB9723031D0 (en) | 1997-11-01 | 1998-01-07 | Petroline Wellsystems Ltd | Downhole tubing location method |
AU1478199A (en) | 1997-12-11 | 1999-06-28 | Petroleum Recovery Institute | Oilfield in situ hydrocarbon upgrading process |
US6119776A (en) * | 1998-02-12 | 2000-09-19 | Halliburton Energy Services, Inc. | Methods of stimulating and producing multiple stratified reservoirs |
US6360819B1 (en) | 1998-02-24 | 2002-03-26 | Shell Oil Company | Electrical heater |
EP1092080B1 (en) | 1998-07-01 | 2003-01-29 | Shell Internationale Research Maatschappij B.V. | Method and tool for fracturing an underground formation |
CA2243105C (en) | 1998-07-10 | 2001-11-13 | Igor J. Mokrys | Vapour extraction of hydrocarbon deposits |
US6076046A (en) | 1998-07-24 | 2000-06-13 | Schlumberger Technology Corporation | Post-closure analysis in hydraulic fracturing |
US6142229A (en) | 1998-09-16 | 2000-11-07 | Atlantic Richfield Company | Method and system for producing fluids from low permeability formations |
US6446727B1 (en) | 1998-11-12 | 2002-09-10 | Sclumberger Technology Corporation | Process for hydraulically fracturing oil and gas wells |
US6216783B1 (en) | 1998-11-17 | 2001-04-17 | Golder Sierra, Llc | Azimuth control of hydraulic vertical fractures in unconsolidated and weakly cemented soils and sediments |
US7185710B2 (en) | 1998-12-07 | 2007-03-06 | Enventure Global Technology | Mono-diameter wellbore casing |
US6739392B2 (en) | 1998-12-07 | 2004-05-25 | Shell Oil Company | Forming a wellbore casing while simultaneously drilling a wellbore |
US6508307B1 (en) | 1999-07-22 | 2003-01-21 | Schlumberger Technology Corporation | Techniques for hydraulic fracturing combining oriented perforating and low viscosity fluids |
US6427776B1 (en) | 2000-03-27 | 2002-08-06 | Weatherford/Lamb, Inc. | Sand removal and device retrieval tool |
WO2001081240A2 (en) | 2000-04-24 | 2001-11-01 | Shell Internationale Research Maatschappij B.V. | In-situ heating of coal formation to produce fluid |
DZ3387A1 (fr) | 2000-07-18 | 2002-01-24 | Exxonmobil Upstream Res Co | Procede pour traiter les intervalles multiples dans un trou de forage |
US6372678B1 (en) | 2000-09-28 | 2002-04-16 | Fairmount Minerals, Ltd | Proppant composition for gas and oil well fracturing |
CA2342955C (en) | 2001-04-04 | 2005-06-14 | Roland P. Leaute | Liquid addition to steam for enhancing recovery of cyclic steam stimulation or laser-css |
CA2349234C (en) | 2001-05-31 | 2004-12-14 | Imperial Oil Resources Limited | Cyclic solvent process for in-situ bitumen and heavy oil production |
US6550539B2 (en) | 2001-06-20 | 2003-04-22 | Weatherford/Lamb, Inc. | Tie back and method for use with expandable tubulars |
CA2351148C (en) | 2001-06-21 | 2008-07-29 | John Nenniger | Method and apparatus for stimulating heavy oil production |
MY135121A (en) | 2001-07-18 | 2008-02-29 | Shell Int Research | Wellbore system with annular seal member |
US6591908B2 (en) | 2001-08-22 | 2003-07-15 | Alberta Science And Research Authority | Hydrocarbon production process with decreasing steam and/or water/solvent ratio |
US6662874B2 (en) | 2001-09-28 | 2003-12-16 | Halliburton Energy Services, Inc. | System and method for fracturing a subterranean well formation for improving hydrocarbon production |
US6725933B2 (en) | 2001-09-28 | 2004-04-27 | Halliburton Energy Services, Inc. | Method and apparatus for acidizing a subterranean well formation for improving hydrocarbon production |
US6719054B2 (en) | 2001-09-28 | 2004-04-13 | Halliburton Energy Services, Inc. | Method for acid stimulating a subterranean well formation for improving hydrocarbon production |
US6820690B2 (en) | 2001-10-22 | 2004-11-23 | Schlumberger Technology Corp. | Technique utilizing an insertion guide within a wellbore |
US7066284B2 (en) | 2001-11-14 | 2006-06-27 | Halliburton Energy Services, Inc. | Method and apparatus for a monodiameter wellbore, monodiameter casing, monobore, and/or monowell |
US6883611B2 (en) | 2002-04-12 | 2005-04-26 | Halliburton Energy Services, Inc. | Sealed multilateral junction system |
US6732800B2 (en) | 2002-06-12 | 2004-05-11 | Schlumberger Technology Corporation | Method of completing a well in an unconsolidated formation |
US7055598B2 (en) | 2002-08-26 | 2006-06-06 | Halliburton Energy Services, Inc. | Fluid flow control device and method for use of same |
US6792720B2 (en) | 2002-09-05 | 2004-09-21 | Geosierra Llc | Seismic base isolation by electro-osmosis during an earthquake event |
US7152676B2 (en) | 2002-10-18 | 2006-12-26 | Schlumberger Technology Corporation | Techniques and systems associated with perforation and the installation of downhole tools |
CA2522546A1 (en) | 2003-04-14 | 2004-10-28 | Enventure Global Technology | Radially expanding casing and drilling a wellbore |
US7044225B2 (en) * | 2003-09-16 | 2006-05-16 | Joseph Haney | Shaped charge |
US7316274B2 (en) | 2004-03-05 | 2008-01-08 | Baker Hughes Incorporated | One trip perforating, cementing, and sand management apparatus and method |
US7159660B2 (en) | 2004-05-28 | 2007-01-09 | Halliburton Energy Services, Inc. | Hydrajet perforation and fracturing tool |
US7069989B2 (en) | 2004-06-07 | 2006-07-04 | Leon Marmorshteyn | Method of increasing productivity and recovery of wells in oil and gas fields |
US7228908B2 (en) * | 2004-12-02 | 2007-06-12 | Halliburton Energy Services, Inc. | Hydrocarbon sweep into horizontal transverse fractured wells |
US7219732B2 (en) * | 2004-12-02 | 2007-05-22 | Halliburton Energy Services, Inc. | Methods of sequentially injecting different sealant compositions into a wellbore to improve zonal isolation |
US7412331B2 (en) * | 2004-12-16 | 2008-08-12 | Chevron U.S.A. Inc. | Method for predicting rate of penetration using bit-specific coefficient of sliding friction and mechanical efficiency as a function of confined compressive strength |
US7555414B2 (en) | 2004-12-16 | 2009-06-30 | Chevron U.S.A. Inc. | Method for estimating confined compressive strength for rock formations utilizing skempton theory |
US20060162923A1 (en) | 2005-01-25 | 2006-07-27 | World Energy Systems, Inc. | Method for producing viscous hydrocarbon using incremental fracturing |
RU2289684C1 (ru) * | 2005-05-04 | 2006-12-20 | Открытое акционерное общество "Всероссийский нефтегазовый научно-исследовательский институт им. А.П. Крылова" (ОАО ВНИИнефть) | Способ разработки месторождений высоковязких нефтей или битума |
US20070199701A1 (en) | 2006-02-27 | 2007-08-30 | Grant Hocking | Ehanced hydrocarbon recovery by in situ combustion of oil sand formations |
US20070199706A1 (en) | 2006-02-27 | 2007-08-30 | Grant Hocking | Enhanced hydrocarbon recovery by convective heating of oil sand formations |
US7404441B2 (en) | 2006-02-27 | 2008-07-29 | Geosierra, Llc | Hydraulic feature initiation and propagation control in unconsolidated and weakly cemented sediments |
US20070199700A1 (en) | 2006-02-27 | 2007-08-30 | Grant Hocking | Enhanced hydrocarbon recovery by in situ combustion of oil sand formations |
US7591306B2 (en) | 2006-02-27 | 2009-09-22 | Geosierra Llc | Enhanced hydrocarbon recovery by steam injection of oil sand formations |
US20070199697A1 (en) | 2006-02-27 | 2007-08-30 | Grant Hocking | Enhanced hydrocarbon recovery by steam injection of oil sand formations |
US20070199699A1 (en) | 2006-02-27 | 2007-08-30 | Grant Hocking | Enhanced Hydrocarbon Recovery By Vaporizing Solvents in Oil Sand Formations |
US7866395B2 (en) | 2006-02-27 | 2011-01-11 | Geosierra Llc | Hydraulic fracture initiation and propagation control in unconsolidated and weakly cemented sediments |
US20070199710A1 (en) | 2006-02-27 | 2007-08-30 | Grant Hocking | Enhanced hydrocarbon recovery by convective heating of oil sand formations |
US7604054B2 (en) | 2006-02-27 | 2009-10-20 | Geosierra Llc | Enhanced hydrocarbon recovery by convective heating of oil sand formations |
US20070199712A1 (en) | 2006-02-27 | 2007-08-30 | Grant Hocking | Enhanced hydrocarbon recovery by steam injection of oil sand formations |
US20070199711A1 (en) | 2006-02-27 | 2007-08-30 | Grant Hocking | Enhanced hydrocarbon recovery by vaporizing solvents in oil sand formations |
US20070199705A1 (en) | 2006-02-27 | 2007-08-30 | Grant Hocking | Enhanced hydrocarbon recovery by vaporizing solvents in oil sand formations |
US7748458B2 (en) | 2006-02-27 | 2010-07-06 | Geosierra Llc | Initiation and propagation control of vertical hydraulic fractures in unconsolidated and weakly cemented sediments |
US20070199695A1 (en) | 2006-02-27 | 2007-08-30 | Grant Hocking | Hydraulic Fracture Initiation and Propagation Control in Unconsolidated and Weakly Cemented Sediments |
US7520325B2 (en) | 2006-02-27 | 2009-04-21 | Geosierra Llc | Enhanced hydrocarbon recovery by in situ combustion of oil sand formations |
US7814978B2 (en) | 2006-12-14 | 2010-10-19 | Halliburton Energy Services, Inc. | Casing expansion and formation compression for permeability plane orientation |
RU2333340C1 (ru) * | 2007-02-02 | 2008-09-10 | Открытое акционерное общество "Татнефть" им. В.Д. Шашина | Способ строительства многоствольной скважины для добычи высоковязкой нефти |
US7909094B2 (en) | 2007-07-06 | 2011-03-22 | Halliburton Energy Services, Inc. | Oscillating fluid flow in a wellbore |
US7647966B2 (en) | 2007-08-01 | 2010-01-19 | Halliburton Energy Services, Inc. | Method for drainage of heavy oil reservoir via horizontal wellbore |
US7640975B2 (en) * | 2007-08-01 | 2010-01-05 | Halliburton Energy Services, Inc. | Flow control for increased permeability planes in unconsolidated formations |
US7640982B2 (en) | 2007-08-01 | 2010-01-05 | Halliburton Energy Services, Inc. | Method of injection plane initiation in a well |
US7832477B2 (en) | 2007-12-28 | 2010-11-16 | Halliburton Energy Services, Inc. | Casing deformation and control for inclusion propagation |
US7866400B2 (en) | 2008-02-28 | 2011-01-11 | Halliburton Energy Services, Inc. | Phase-controlled well flow control and associated methods |
-
2008
- 2008-11-13 US US12/269,995 patent/US8151874B2/en active Active
-
2009
- 2009-11-06 EP EP09752962A patent/EP2350436A2/en not_active Withdrawn
- 2009-11-06 CN CN200980145476.1A patent/CN102216561B/zh not_active Expired - Fee Related
- 2009-11-06 RU RU2011123874/03A patent/RU2466271C1/ru not_active IP Right Cessation
- 2009-11-06 BR BRPI0915244A patent/BRPI0915244A2/pt not_active IP Right Cessation
- 2009-11-06 WO PCT/US2009/063588 patent/WO2010056606A2/en active Application Filing
- 2009-11-06 CN CN201410231938.4A patent/CN104018818B/zh not_active Expired - Fee Related
- 2009-11-09 CA CA2686050A patent/CA2686050C/en active Active
- 2009-11-09 CA CA2821503A patent/CA2821503C/en active Active
-
2011
- 2011-06-13 EC ECSP11011128 patent/ECSP11011128A/es unknown
-
2012
- 2012-03-03 US US13/411,542 patent/US8863840B2/en active Active
Patent Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN1890454A (zh) * | 2003-12-30 | 2007-01-03 | 乔西拉公司 | 不牢固和脆弱粘结的沉积物中的竖直液压裂缝的多方位控制 |
US7404416B2 (en) * | 2004-03-25 | 2008-07-29 | Halliburton Energy Services, Inc. | Apparatus and method for creating pulsating fluid flow, and method of manufacture for the apparatus |
Also Published As
Publication number | Publication date |
---|---|
CN102216561A (zh) | 2011-10-12 |
EP2350436A2 (en) | 2011-08-03 |
WO2010056606A2 (en) | 2010-05-20 |
ECSP11011128A (es) | 2011-09-30 |
CN104018818A (zh) | 2014-09-03 |
US8151874B2 (en) | 2012-04-10 |
US20090101347A1 (en) | 2009-04-23 |
RU2466271C1 (ru) | 2012-11-10 |
CA2821503C (en) | 2015-09-15 |
BRPI0915244A2 (pt) | 2016-11-01 |
US8863840B2 (en) | 2014-10-21 |
CA2821503A1 (en) | 2010-05-13 |
CN104018818B (zh) | 2017-04-12 |
CA2686050A1 (en) | 2010-05-13 |
WO2010056606A3 (en) | 2010-08-19 |
CA2686050C (en) | 2015-02-03 |
US20120160495A1 (en) | 2012-06-28 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US20210277757A1 (en) | Pressure assisted oil recovery | |
CA2046107C (en) | Laterally and vertically staggered horizontal well hydrocarbon recovery method | |
US7621326B2 (en) | Petroleum extraction from hydrocarbon formations | |
US8122953B2 (en) | Drainage of heavy oil reservoir via horizontal wellbore | |
US7422063B2 (en) | Hydrocarbon recovery from subterranean formations | |
CA2855417C (en) | Improved hydrocarbon recovery process exploiting multiple induced fractures | |
US20060175061A1 (en) | Method for Recovering Hydrocarbons from Subterranean Formations | |
CN102216561B (zh) | 通过增强渗透性包裹体的浅层沥青的热采 | |
US20070284107A1 (en) | Heavy Oil Recovery and Apparatus | |
US20110272153A1 (en) | Method and System For Enhancing A Recovery Process Employing One or More Horizontal Wellbores | |
CN104981584A (zh) | 低渗透率轻质油储层中的流体注入 | |
Surjaatmadja et al. | Selective placement of fractures in horizontal wells in offshore Brazil demonstrates effectiveness of hydrajet stimulation process | |
Salh et al. | Using the Artificial Gas Lift to Increase the Productivity of Noor Oil Field/Mishrif Formation | |
Faruque et al. | Optimization of gas-well production practices with special reference to Kailashtilla gas field, North-East, Bangladesh | |
Hallam | Operational techniques to improve the performance of in-situ combustion in heavy-oil and oil-sand reservoirs | |
Saquib Ali Memon et al. | Optimum Production Design System for Multizone Well | |
Al-Otaibi et al. | Smart-well completion utilizes natural reservoir energy to produce high-water-cut and low-productivity-index well in Abqaiq Field | |
Carlson | Condensation induced water hammer and steam assisted gravity drainage in the Athabasca oil sands | |
Miller et al. | Pikes peak project: Successful without horizontal wells | |
CA2549782A1 (en) | Method for recovering hydrocarbons from subterranean formations | |
Campbell et al. | Stimulating a Barefoot Completion with Multiple Sand Fracture Treatments Using an Inflatable Packer Straddle System | |
Denney | Multiple transverse fracturing in open hole enables development of a low-permeability reservoir | |
Utama et al. | Successfully Combating Tortuousity Effects in Deviated and Vertical Wells in the Tanjung Oilfield | |
CA2545505A1 (en) | Petroleum extraction from hydrocarbon formations | |
CA2549784A1 (en) | Hydrocarbon recovery from subterranean formations |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
C06 | Publication | ||
PB01 | Publication | ||
C10 | Entry into substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
C14 | Grant of patent or utility model | ||
GR01 | Patent grant | ||
CF01 | Termination of patent right due to non-payment of annual fee |
Granted publication date: 20141022 Termination date: 20171106 |
|
CF01 | Termination of patent right due to non-payment of annual fee |