CN102214911B - 一种超导磁体失超保护装置 - Google Patents

一种超导磁体失超保护装置 Download PDF

Info

Publication number
CN102214911B
CN102214911B CN201110139941.XA CN201110139941A CN102214911B CN 102214911 B CN102214911 B CN 102214911B CN 201110139941 A CN201110139941 A CN 201110139941A CN 102214911 B CN102214911 B CN 102214911B
Authority
CN
China
Prior art keywords
superconducting
heater
switch
superconducting magnet
quench
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201110139941.XA
Other languages
English (en)
Other versions
CN102214911A (zh
Inventor
陈顺中
王秋良
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Institute of Electrical Engineering of CAS
Original Assignee
Institute of Electrical Engineering of CAS
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Institute of Electrical Engineering of CAS filed Critical Institute of Electrical Engineering of CAS
Priority to CN201110139941.XA priority Critical patent/CN102214911B/zh
Publication of CN102214911A publication Critical patent/CN102214911A/zh
Application granted granted Critical
Publication of CN102214911B publication Critical patent/CN102214911B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Containers, Films, And Cooling For Superconductive Devices (AREA)

Abstract

一种超导磁体的失超保护装置,由加热器电路(17)和失超探测器(11)组成。超导磁体(1)的每个线圈均装有紧贴该线圈的加热器,所有加热器串联,并与两个二极管组件(2、8)串联形成加热器电路(17)。失超探测器(11)通过采集超导磁体(1)各个线圈的端电压来观测超导磁体(1)是否失超,如果观测到超导磁体(1)失超,失超探测器(11)触发超导开关(4)失超,超导开关(4)失超产生的电压同时施加在加热器电路(17)两端,电流开始流过加热器,触发所有线圈局部开始失超。

Description

一种超导磁体失超保护装置
技术领域
本发明涉及一种针对超导磁体失超的保护装置,特别涉及用于MRI或NMR成像系统中的超导磁体在失超时不被损坏的保护装置。
背景技术
用于超导磁体的超导体只有在满足特定条件(如温度、磁场、电流密度)时才能体现超导特性。一旦条件被破坏,超导体将会发生失超。超导体的一小部分不再是超导态,并进入电阻状态。任何流经该电阻部分的电流都会导致局部焦耳发热。这将导致该超导体的邻近部分失超,结果形成更大的电阻体积,这又导致进一步焦耳发热。
超导磁体可能储存有兆焦耳数量级的能量,在失超后,这些能量将在超导磁体的电阻体积中被消耗。如果不适当地处理失超过程,就会在封闭区中消耗该能量,从而引起局部温度上升。严重的局部过热可能烧焦绝缘或熔化导体,同时失超也可能产生高电压击穿绝缘。因此必须采取有效的措施对超导磁体的失超进行保护。
最有效的方法就是通过扩展失超过程来避免有害的热量集中,使热量尽可能均匀消耗在整个超导磁体上。如果超导磁体在某一线圈的局部发生失超后迅速扩展到整个超导磁体全部失超,就意味着没有一个部分会达到危险温度。在用于MRI或NMR成像系统中的超导磁体中,一般通过向与超导线圈紧密热接触的加热器施加电流来实现有意的失超启动。一般每个超导线圈将配备有一个或多个加热器。
图1所示为一种已知的失超保护电路,该电路适于安装在MRI或NMR成像系统的超导磁体中。超导磁体1包含了串联连接的线圈L1-L6,每个线圈都具有紧密热接触的对应加热器R1-R6。这些加热器电气串联在一起,且该加热器串联结构与超导线圈的子集L2-L5并联。两根电流注入导线7分别电气连接到超导磁体1的两个端点5、6上,外部电源可以通过电流注入导线7为超导磁体1充电。超导开关4的两端分别同超导磁体1的两个端点5、6电气连接。
所有以所谓的持久模式运行的超导磁体都具有超导开关。通常超导开关是一段与超导磁体并联并具有附着于其上的加热器的超导体导线。如果超导开关4的加热器接通,则超导开关4为常导态,具有很大的电阻,此时超导开关4被认为是断开的。当外部电源通过电流注入导线7为超导磁体1充电时,只有极小的电流流经超导开关4。当超导磁体1充电至所要求的电流时,加热器断开,超导开关4转变为超导态,该超导开关4被闭合。当被连接到电流注入导线7的外部电源电流向下变化时,流经超导开关4的电流将增加与流经外部电源中的电流所减少的量相等的量。一旦外部电源电流减少为零时,超导磁体1中的电流完全流经超导开关4形成闭合回路。此时就可以撤去外部电源及电流注入导线7,以减少外界向低温磁体系统中的热传导。
超导开关二极管组件3的两端分别同超导磁体1的两个端点5、6连接,即与超导开关4并联。超导开关二极管组件3由数组背靠背反并联方式连接的二极管对串联组成。超导开关二极管组件3对超导开关4提供保护。当超导磁体1处于持久模式运行时,超导开关4发生失超,处于断开状态,此时超导开关4具有数十欧姆的电阻,如果超导磁体1的电流仍然流经超导开关4,就会很快烧损超导开关4。在存在超导开关二极管组件3的情况下,如果超导开关4两端的电压超过超导开关二极管组件3的阈值电压,超导开关二极管组件3将变为导通状态,超导磁体1电流的绝大部分将流过超导开关二极管组件3。为了在超导磁体1充电期间,超导开关二极管组件6处于非导电状态,超导开关二极管组件3的阈值电压应略微高于超导磁体1的充电电压。
加热器R1-R6串联一个中部二极管组件2,该中部二极管组件2的阈值电压应大于与其并联的超导线圈L2-L5的充电电压,从而阻止加热器R1-R6在超导磁体1充电期间导电。当线圈L1-L6之一失超时,在该线圈两端将会出现电压,并且在串联连接的电阻R1-R6和中部二极管组件2两端也会出现电压。当失超在线圈内传播时,该电压会逐渐上升。当此电压超过中部二极管组件2的阈值电压时,中部二极管组件2就开始导电,电流开始流经加热器R1-R6。然后这些加热器将在每个线圈L1-L6中开始局部失超。通过在所有线圈中开始失超,就相对平均地在所有线圈中扩散在失超中要耗散的能量,从而避免了任何一个线圈发热到足以被损坏。
该失超保护电路具有很大的缺陷。首先,由于失超产生的电压可以达到高值,从而引起加热器中的高电流,导致加热器损坏。其次,中部二极管组件2的阈值电压决定了加热器开始工作的阈值电压。超导磁体1失超后可能需要传播很长时间才能获得超过中部二极管组件2的阈值电压的感应电压,加热器不能足够快的开始导电,从而无法消除线圈损坏的风险。
发明内容
本发明的目的是克服已知的失超保护系统的上述缺陷,提出一种新的失超保护装置。
本发明所适用的超导磁体由多个线圈串联组成。超导磁体两端并联有超导开关,以实现超导磁体的持久模式运行,超导开关是一段与超导磁体并联并具有附着于其上的加热器的超导体导线。超导开关两端并联有超导开关二极管组件对超导开关进行保护,超导开关二极管组件由多组背靠背反并联方式连接的二极管对串联组成。
所述超导开关中加热器的引线串联一个电力电子开关然后再连接到电源上,通过控制电力电子开关的通断来控制超导开关中加热器是否工作,从而控制超导开关的通断状态。
本发明失超保护装置由加热器电路和失超探测器组成。超导磁体的每个线圈都装有紧密热接触的加热器,可以通过在超导磁体的每个线圈的外表面粘贴加热器来实现线圈与加热器的紧密热接触。所有粘贴在线圈外表面的加热器电气串联在一起形成加热器组件。加热器组件的一端同超导磁体的一端电气连接,加热器组件的另一端分别同一个端部二极管组件及一个中部二极管组件串联形成加热器电路。其中端部二极管组件的另一端同超导磁体的另一端电气连接,中部二极管组件的另一端连接到超导磁体中两个线圈的连接点上。端部二极管组件和中部二极管组件结构完全相同,都由多组背靠背反并联方式连接的二极管对串联组成,但比并联在超导开关两端的超导开关二极管组件要少一组以上的二极管对。
本发明提出的失超探测器包括电压传感器、开关控制器、数据采集卡、个人计算机四个子单元。超导磁体中各个线圈的端点电气连接到失超探测器中电压传感器的输入端上,电压传感器的输出端电气连接到数据采集卡的输入端,数据采集卡通过串口连线同个人计算机连接,数据采集卡的一个输出I/O接口同开关控制器的输入端电气连接,开关控制器的输出端再电气连接到电力电子开关的控制极。电压传感器将各个线圈端点的电压转换成弱电压信号。此弱电压信号传输到数据采集卡中被转换成数字信号,然后通过串口通信发送给个人计算机,在个人计算机中,电压信号数据将被储存、运算和分析,以判断出超导磁体是否发生失超。如果个人计算机根据电压信号的变化判断到超导磁体发生了失超,立刻将失超逻辑信号(有失超信号为1,无失超信号为0)通过串口通信返回给数据采集卡,数据采集卡通过I/O接口输出一高电平给开关控制器。开关控制器将数据采集卡输入的高电平信号转换成电力电子开关的控制信号,控制电力电子开关导通,从而启动超导开关中加热器加热,快速触发超导开关失超,使超导开关转变为断开状态。
超导开关的失超会使其两端的电压迅速上升,当超导开关两端的电压超过并联在超导开关两端的超导开关二极管组件的电压阈值时,超导开关二极管组件将会导通,超导开关中的电流绝大部分将分流到超导开关二极管组件中,超导开关两端的电压也会维持在超导开关二极管组件的电压阈值左右。超导开关两端的电压同样施加在加热器组件和端部二极管组件组成的支路上,超导开关两端的电压必然超过端部二极管组件的电压阈值,端部二极管组件就开始导电,电流开始流经加热器,然后这些加热器将在每个线圈中开始局部失超。通过在所有线圈中开始失超,就相对平均地在所有线圈中扩散在失超中要耗散的能量,从而避免了任何一个线圈发热到足以被损坏。
当超导磁体的线圈之一失超时,而失超探测器没能及时准确的输出失超信号,超导开关将不会被触发失超而断开。但失超的线圈两端将会产生一电压,当失超在线圈内传播时,该电压会逐渐上升。加热器组件和中部二极管组件组成的支路两端也会产生电压。当此电压超过中部二极管组件的电压阈值时,中部二极管组件就开始导电,电流开始流经加热器。然后这些加热器将在每个线圈中开始局部失超。
附图说明
图1是一种已知的失超保护电路图,图中:1超导磁体、L1-L6线圈、R1-R6加热器、2中部二极管组件、3超导开关二极管组件、4超导开关、5超导磁体的一端点、6超导磁体的另一端点、7电流注入导线;
图2是本发明实施例的失超保护装置示意图,图中:8端部二极管组件、9加热器组件、10电力电子开关、11失超探测系统、12个人计算机、13数据采集卡、14开关控制器、15电压传感器、16电源、17加热器电路。
具体实施方式
以下结合附图和具体实施方式进一步说明本发明。
如图2所示,本发明所适用的超导磁体1由多个线圈L1-L6串联组成。超导磁体1两端并联有超导开关4,以实现超导磁体1的持久模式运行,超导开关4是一段与超导磁体1并联并装有附着于其上的加热器的超导体导线。超导开关4两端并联有超导开关二极管组件3进行保护,超导开关二极管组件3由多组背靠背反并联方式连接的二极管对串联组成。
超导开关4中加热器的引线串联一个电力电子开关10然后再连接到电源16上,通过控制电力电子开关10的通断来控制超导开关4中加热器是否工作,从而控制超导开关4的通断状态。
本发明失超保护系统由加热器电路17和失超探测器11组成。超导磁体1的线圈L1-L6的外表面都粘贴有紧密热接触的加热器R1-R6。线圈L1-L6对应的加热器R1-R6电气串联在一起形成加热器组件9。加热器组件9的一端同超导磁体1的一端电气连接。加热器组件9的另一端分别同一个端部二极管组件8及一个中部二极管组件2串联,形成加热器电路17。其中端部二极管组件8的另一端同超导磁体1的另一端电气连接,中部二极管组件2的另一端连接到超导磁体1中两个线圈的连接点上。所述的端部二极管组件8和中部二极管组件2结构完全相同,都由多组背靠背反并联方式连接的二极管对串联组成,但比并联在超导开关4两端的超导开关二极管组件3要少一组以上的二极管对。
所述的失超探测器11包括电压传感器15、开关控制器14、数据采集卡13、个人计算机12四个子单元。超导磁体1中各个线圈的端点通过导线电气连接到失超探测器11中电压传感器15的输入端上,电压传感器15的输出端电气连接到数据采集卡13的输入端,数据采集卡13通过串口连线同个人计算机12连接,数据采集卡13的一个输出I/O接口同开关控制器14的输入端电气连接,开关控制器14的输出端再电气连接到电力电子开关10的控制极。电压传感器15将各个线圈端点的电压转换成弱电压信号。此弱电压信号传输到数据采集卡13中被转换成数字信号,然后通过串口通信发送给个人计算机12,个人计算机12储存电压信号数据,并运算和分析,判断超导磁体1是否发生失超。如果个人计算机12根据电压信号的变化判断到超导磁体1发生了失超,立刻将失超逻辑信号(有失超信号为1,无失超信号为0)通过串口通信返回给数据采集卡13,数据采集卡13通过I/O接口输出一高电平给开关控制器14。开关控制器14将数据采集卡13输入的高电平信号转换成所述的电力电子开关10的控制信号,控制电力电子开关10导通,从而启动超导开关4中加热器加热,快速触发超导开关4失超,使超导开关4转变为断开状态。
超导开关4的失超会使其两端的电压迅速上升,当超导开关4两端的电压超过并联在超导开关4两端的超导开关二极管组件3的电压阈值时,超导开关二极管组件3将会导通,超导开关4中的电流绝大部分将分流到超导开关二极管组件3中,超导开关3两端的电压也会维持在超导开关二极管组件3的电压阈值左右。超导开关4两端的电压同样施加在加热器组件9和端部二极管组件8组成的支路上,超导开关4两端的电压必然超过端部二极管组件8的电压阈值,端部二极管组件8即开始导电,电流开始流经所述的加热器R1-R6,加热器R1-R6将在每个线圈中开始局部失超。当在所有线圈L1-L6中开始失超,便相对平均地在所有线圈L1-L6中扩散了在失超中要耗散的能量,从而避免了任何一个线圈发热到足以被损坏。
当超导磁体1的线圈L1-L6之一失超时,而失超探测器11没能及时准确地输出失超信号,超导开关4不会被触发失超而转变为断开状态。但失超的线圈两端将会产生电压,当失超在线圈内传播时,该电压会逐渐上升。加热器组件9和中部二极管组件2组成的支路两端也会产生电压。当此电压超过中部二极管组件2的电压阈值时,中部二极管组件2就开始导电,电流开始流经加热器R1-R6。加热器R1-R6将在每个线圈中开始局部失超。

Claims (2)

1.一种超导磁体失超保护装置,所述的超导磁体(1)由线圈(L1-L6)串联组成;超导磁体(1)的两端并联有超导开关(4),超导开关(4)的两端并联有超导开关二极管组件(3),超导开关二极管组件(3)由多组背靠背反并联方式连接的二极管对串联组成,超导开关(4)中加热器的引线串联一个电力电子开关(10)然后再连接到电源(16)上,通过控制电力电子开关(10)的通断来控制超导开关(4)中的加热器,从而控制超导开关(4)的通断,其特征在于:所述的失超保护装置由加热器电路(17)和失超探测器(11)组成;超导磁体(1)的每个线圈均装有紧贴该线圈的加热器,紧贴在超导磁体线圈上的所述加热器电气串联形成加热器组件(9);所述加热器组件(9)的一端同超导磁体(1)的一端(6)电气连接,加热器组件(9)的另一端分别同端部二极管组件(8)和中部二极管组件(2)串联,形成加热器电路(17);所述端部二极管组件(8)的另一端同超导磁体(1)的另一端电气连接,中部二极管组件(2)的另一端连接到超导磁体(1)中两个线圈的连接点上;所述的端部二极管组件(8)和中部二极管组件(2)均由多组背靠背反并联方式连接的二极管对串联组成,但比所述的超导开关二极管组件(3)少一组以上的二极管对。
2.按照权利要求1所述的超导磁体失超保护装置,其特征在于:所述的失超探测器(11)包括电压传感器(15)、开关控制器(14)、数据采集卡(13)、个人计算机(12)四个子单元;所述的超导磁体(1)中各个线圈的端点电气连接到所述失超探测器(11)中电压传感器(15)的输入端上,电压传感器(15)的输出端电气连接到数据采集卡(13)的输入端,数据采集卡(13)通过串口连线同个人计算机(12)连接,数据采集卡(13)的一个输出I/O接口同开关控制器(14)的输入端电气连接,开关控制器(14)的输出端再电气连接到电力电子开关(10)的控制极;电压传感器(15)将所述各个线圈端点的电压转换成弱电压信号,此弱电压信号传输到数据采集卡(13)中被转换成数字信号,然后通过串口通信发送给个人计算机(12),个人计算机(12)对电压信号数据进行储存、运算和分析,以判断超导磁体(1)是否发生失超,若发生失超,个人计算机(12)将失超逻辑信号通过串口通信返回给数据采集卡(13),数据采集卡(13)通过I/O接口输出一高电平给所述的开关控制器(14);所述的开关控制器(14)将数据采集卡输入的高电平信号转换成电力电子开关(10)的控制信号,控制电力电子开关(10)导通,从而启动超导开关(4)中加热器加热,快速触发超导开关(4)失超,使超导开关(4)转变为断开状态。
CN201110139941.XA 2011-05-27 2011-05-27 一种超导磁体失超保护装置 Active CN102214911B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201110139941.XA CN102214911B (zh) 2011-05-27 2011-05-27 一种超导磁体失超保护装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201110139941.XA CN102214911B (zh) 2011-05-27 2011-05-27 一种超导磁体失超保护装置

Publications (2)

Publication Number Publication Date
CN102214911A CN102214911A (zh) 2011-10-12
CN102214911B true CN102214911B (zh) 2014-01-22

Family

ID=44746086

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201110139941.XA Active CN102214911B (zh) 2011-05-27 2011-05-27 一种超导磁体失超保护装置

Country Status (1)

Country Link
CN (1) CN102214911B (zh)

Families Citing this family (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8482369B2 (en) * 2011-10-31 2013-07-09 General Electric Company Single switch dump resistor ladder network for magnet quench protection
CN103777161B (zh) * 2012-10-17 2017-08-22 上海联影医疗科技有限公司 超导磁体的降场电路和方法
US9874618B2 (en) * 2014-12-24 2018-01-23 General Electric Company Control system and method for a superconducting magnet
CN106098291B (zh) * 2016-07-29 2018-01-19 中国原子能科学研究院 回旋加速器大储能超导线圈的快速退磁方法
CN108023334B (zh) * 2017-12-27 2019-11-26 上海联影医疗科技有限公司 超导磁体失超保护系统和磁共振系统
CN109510167A (zh) * 2018-11-13 2019-03-22 中国原子能科学研究院 一种基于串联形式的紧凑型超导回旋加速器失超保护电路
CN110071713B (zh) * 2019-03-01 2020-12-18 天津大学 用于传导冷却的超导开关及其超导磁体装置
CN111541222B (zh) * 2020-06-05 2022-06-17 南京工程学院 一种大功率托卡马克装置磁体电源系统失超保护开关
CN112509780B (zh) * 2021-02-05 2021-07-02 华中科技大学 一种超导磁体系统及其失超保护电路
CN113871131A (zh) * 2021-09-26 2021-12-31 中国科学院电工研究所 一种加速超导磁体失超传播电路
CN114295892A (zh) * 2021-12-31 2022-04-08 东部超导科技(苏州)有限公司 基于失超检测的超导限流器线圈冗余设计方法

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1828789A (zh) * 2005-03-04 2006-09-06 西门子磁体技术有限公司 超导磁体系统
CN101552077A (zh) * 2008-12-11 2009-10-07 中国科学院电工研究所 一种用于产生高磁场高均匀度的超导磁体系统
CN201674471U (zh) * 2010-05-21 2010-12-15 南京丰盛超导技术有限公司 一种带超导接头的热控式超导开关

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2658532B2 (ja) * 1990-08-27 1997-09-30 三菱電機株式会社 超電導マグネット装置
US6717781B2 (en) * 2001-09-25 2004-04-06 Ge Medical Systems Global Technology Company, Llc Balanced quench protection circuit

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1828789A (zh) * 2005-03-04 2006-09-06 西门子磁体技术有限公司 超导磁体系统
CN101552077A (zh) * 2008-12-11 2009-10-07 中国科学院电工研究所 一种用于产生高磁场高均匀度的超导磁体系统
CN201674471U (zh) * 2010-05-21 2010-12-15 南京丰盛超导技术有限公司 一种带超导接头的热控式超导开关

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
FAIR超导二极磁体实验失超保护系统设计与分析;龙风等;《核聚变与等离子体物理》;20081231;第28卷(第4期);第333-336页 *
JP平4-106907A 1992.04.08
龙风等.FAIR超导二极磁体实验失超保护系统设计与分析.《核聚变与等离子体物理》.2008,第28卷(第4期),

Also Published As

Publication number Publication date
CN102214911A (zh) 2011-10-12

Similar Documents

Publication Publication Date Title
CN102214911B (zh) 一种超导磁体失超保护装置
CN100557912C (zh) 核磁共振成像系统、超导磁体及其失超保护电路和方法
CN105706191B (zh) 用于限流器的设备和包括该设备的限流器
JP4620637B2 (ja) 抵抗型超電導限流器
KR100505054B1 (ko) 초전도 저항형 한류기
CN103022972B (zh) 一种用于超导磁体失超保护的装置
GB2423871A (en) Superconducting magnet with divided coils and quench protection
KR100717351B1 (ko) 동시퀀치를 위한 초전도 바이패스 리액터를 갖는 한류기
CN202930433U (zh) 双面ybco薄膜结构的超导限流器单元模块
CN114094372A (zh) 一种新型的集成化高压电路通断连接系统
JP2007527682A (ja) 傷害電流制限器
CN102751699B (zh) 一种核磁共振超导磁体失超保护装置
CN102956809B (zh) 双面ybco薄膜结构的超导限流器单元模块
CN103777161A (zh) 超导磁体的降场电路和方法
CN102361318B (zh) 带有辅助超导开关的超导磁体失超保护装置
US20230065221A1 (en) Quench protection circuit for superconducting magnet system based on distributed heater network
Park et al. Experimental and numerical analysis of high resistive coated conductor for conceptual design of fault current limiter
Marinucci et al. Quench analysis of a high-current forced-flow HTS conductor model for fusion magnets
Gui et al. Quench and Recovery Characteristics of SFCL Based on Double-Sided YBCO Thin Films
Ohsaki et al. Characteristics of resistive fault current limiting elements using YBCO superconducting thin film with meander-shaped metal layer
CN101521078B (zh) 带有失超保护电路的超导磁铁
US7646571B2 (en) Circuit for effective quench heating in superconducting magnets
US3859566A (en) Arrangement for removing energy from a superconducting magnet
CN114221298B (zh) 一种高场高均匀度超导磁体失超保护电路
Ishiyama et al. Transient stability characteristics of a 1-m single-layer YBCO cable

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C14 Grant of patent or utility model
GR01 Patent grant