CN102190573A - Method for preparing formic acid through electrochemical catalytic reduction of carbon dioxide - Google Patents
Method for preparing formic acid through electrochemical catalytic reduction of carbon dioxide Download PDFInfo
- Publication number
- CN102190573A CN102190573A CN2011100783949A CN201110078394A CN102190573A CN 102190573 A CN102190573 A CN 102190573A CN 2011100783949 A CN2011100783949 A CN 2011100783949A CN 201110078394 A CN201110078394 A CN 201110078394A CN 102190573 A CN102190573 A CN 102190573A
- Authority
- CN
- China
- Prior art keywords
- carbon dioxide
- formic acid
- organic solvent
- cathode
- ionic liquid
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- CURLTUGMZLYLDI-UHFFFAOYSA-N Carbon dioxide Chemical compound O=C=O CURLTUGMZLYLDI-UHFFFAOYSA-N 0.000 title claims abstract description 138
- BDAGIHXWWSANSR-UHFFFAOYSA-N methanoic acid Natural products OC=O BDAGIHXWWSANSR-UHFFFAOYSA-N 0.000 title claims abstract description 100
- 229910002092 carbon dioxide Inorganic materials 0.000 title claims abstract description 67
- 239000001569 carbon dioxide Substances 0.000 title claims abstract description 65
- OSWFIVFLDKOXQC-UHFFFAOYSA-N 4-(3-methoxyphenyl)aniline Chemical compound COC1=CC=CC(C=2C=CC(N)=CC=2)=C1 OSWFIVFLDKOXQC-UHFFFAOYSA-N 0.000 title claims abstract description 50
- 235000019253 formic acid Nutrition 0.000 title claims abstract description 50
- 238000000034 method Methods 0.000 title claims description 24
- 238000010531 catalytic reduction reaction Methods 0.000 title description 3
- 239000002608 ionic liquid Substances 0.000 claims abstract description 29
- 238000006243 chemical reaction Methods 0.000 claims abstract description 26
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 claims abstract description 24
- 239000003960 organic solvent Substances 0.000 claims abstract description 23
- 239000007864 aqueous solution Substances 0.000 claims abstract description 15
- 238000005868 electrolysis reaction Methods 0.000 claims abstract description 15
- 239000003115 supporting electrolyte Substances 0.000 claims abstract description 9
- 239000012528 membrane Substances 0.000 claims abstract description 7
- 239000008151 electrolyte solution Substances 0.000 claims description 20
- 239000001257 hydrogen Substances 0.000 claims description 15
- 229910052739 hydrogen Inorganic materials 0.000 claims description 15
- OKKJLVBELUTLKV-UHFFFAOYSA-N Methanol Chemical compound OC OKKJLVBELUTLKV-UHFFFAOYSA-N 0.000 claims description 12
- 238000010521 absorption reaction Methods 0.000 claims description 11
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 claims description 11
- -1 glyoxaline ion Chemical class 0.000 claims description 11
- RAXXELZNTBOGNW-UHFFFAOYSA-N imidazole Natural products C1=CNC=N1 RAXXELZNTBOGNW-UHFFFAOYSA-N 0.000 claims description 11
- 239000001301 oxygen Substances 0.000 claims description 11
- 229910052760 oxygen Inorganic materials 0.000 claims description 11
- 230000008569 process Effects 0.000 claims description 11
- IAZDPXIOMUYVGZ-UHFFFAOYSA-N Dimethylsulphoxide Chemical compound CS(C)=O IAZDPXIOMUYVGZ-UHFFFAOYSA-N 0.000 claims description 10
- 239000007789 gas Substances 0.000 claims description 10
- 239000000243 solution Substances 0.000 claims description 10
- WEVYAHXRMPXWCK-UHFFFAOYSA-N Acetonitrile Chemical compound CC#N WEVYAHXRMPXWCK-UHFFFAOYSA-N 0.000 claims description 9
- 239000007788 liquid Substances 0.000 claims description 9
- LFQSCWFLJHTTHZ-UHFFFAOYSA-N Ethanol Chemical compound CCO LFQSCWFLJHTTHZ-UHFFFAOYSA-N 0.000 claims description 8
- WYURNTSHIVDZCO-UHFFFAOYSA-N Tetrahydrofuran Chemical compound C1CCOC1 WYURNTSHIVDZCO-UHFFFAOYSA-N 0.000 claims description 8
- 239000006227 byproduct Substances 0.000 claims description 8
- 125000000524 functional group Chemical group 0.000 claims description 8
- 238000006722 reduction reaction Methods 0.000 claims description 7
- 239000000047 product Substances 0.000 claims description 6
- 239000000203 mixture Substances 0.000 claims description 5
- UFHFLCQGNIYNRP-UHFFFAOYSA-N Hydrogen Chemical compound [H][H] UFHFLCQGNIYNRP-UHFFFAOYSA-N 0.000 claims description 4
- QAOWNCQODCNURD-UHFFFAOYSA-N Sulfuric acid Chemical compound OS(O)(=O)=O QAOWNCQODCNURD-UHFFFAOYSA-N 0.000 claims description 4
- 125000001183 hydrocarbyl group Chemical group 0.000 claims description 4
- 125000004435 hydrogen atom Chemical group [H]* 0.000 claims description 4
- RUOJZAUFBMNUDX-UHFFFAOYSA-N propylene carbonate Chemical compound CC1COC(=O)O1 RUOJZAUFBMNUDX-UHFFFAOYSA-N 0.000 claims description 4
- YLQBMQCUIZJEEH-UHFFFAOYSA-N tetrahydrofuran Natural products C=1C=COC=1 YLQBMQCUIZJEEH-UHFFFAOYSA-N 0.000 claims description 4
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 claims description 3
- UIIMBOGNXHQVGW-UHFFFAOYSA-M Sodium bicarbonate Chemical compound [Na+].OC([O-])=O UIIMBOGNXHQVGW-UHFFFAOYSA-M 0.000 claims description 3
- RTAQQCXQSZGOHL-UHFFFAOYSA-N Titanium Chemical compound [Ti] RTAQQCXQSZGOHL-UHFFFAOYSA-N 0.000 claims description 3
- 239000010439 graphite Substances 0.000 claims description 3
- 229910002804 graphite Inorganic materials 0.000 claims description 3
- 150000002500 ions Chemical class 0.000 claims description 3
- 229910052719 titanium Inorganic materials 0.000 claims description 3
- 239000010936 titanium Substances 0.000 claims description 3
- UIIMBOGNXHQVGW-DEQYMQKBSA-M Sodium bicarbonate-14C Chemical compound [Na+].O[14C]([O-])=O UIIMBOGNXHQVGW-DEQYMQKBSA-M 0.000 claims description 2
- 239000007795 chemical reaction product Substances 0.000 claims description 2
- 239000003795 chemical substances by application Substances 0.000 claims description 2
- ZPWVASYFFYYZEW-UHFFFAOYSA-L dipotassium hydrogen phosphate Chemical compound [K+].[K+].OP([O-])([O-])=O ZPWVASYFFYYZEW-UHFFFAOYSA-L 0.000 claims description 2
- 235000019797 dipotassium phosphate Nutrition 0.000 claims description 2
- 229910000396 dipotassium phosphate Inorganic materials 0.000 claims description 2
- BNIILDVGGAEEIG-UHFFFAOYSA-L disodium hydrogen phosphate Chemical compound [Na+].[Na+].OP([O-])([O-])=O BNIILDVGGAEEIG-UHFFFAOYSA-L 0.000 claims description 2
- 229910000397 disodium phosphate Inorganic materials 0.000 claims description 2
- 235000019800 disodium phosphate Nutrition 0.000 claims description 2
- 229910052738 indium Inorganic materials 0.000 claims description 2
- 229910052745 lead Inorganic materials 0.000 claims description 2
- CHKVPAROMQMJNQ-UHFFFAOYSA-M potassium bisulfate Chemical compound [K+].OS([O-])(=O)=O CHKVPAROMQMJNQ-UHFFFAOYSA-M 0.000 claims description 2
- 238000002360 preparation method Methods 0.000 claims description 2
- AJPJDKMHJJGVTQ-UHFFFAOYSA-M sodium dihydrogen phosphate Chemical compound [Na+].OP(O)([O-])=O AJPJDKMHJJGVTQ-UHFFFAOYSA-M 0.000 claims description 2
- 150000003460 sulfonic acids Chemical class 0.000 claims description 2
- 229910052718 tin Inorganic materials 0.000 claims description 2
- 229910052725 zinc Inorganic materials 0.000 claims description 2
- 235000011089 carbon dioxide Nutrition 0.000 claims 6
- 238000006555 catalytic reaction Methods 0.000 claims 5
- 239000004215 Carbon black (E152) Substances 0.000 claims 2
- GPRLSGONYQIRFK-UHFFFAOYSA-N hydron Chemical compound [H+] GPRLSGONYQIRFK-UHFFFAOYSA-N 0.000 claims 2
- 150000003222 pyridines Chemical class 0.000 claims 2
- 229910019142 PO4 Inorganic materials 0.000 claims 1
- ZLMJMSJWJFRBEC-UHFFFAOYSA-N Potassium Chemical compound [K] ZLMJMSJWJFRBEC-UHFFFAOYSA-N 0.000 claims 1
- 229910052799 carbon Inorganic materials 0.000 claims 1
- 238000010349 cathodic reaction Methods 0.000 claims 1
- 150000002460 imidazoles Chemical class 0.000 claims 1
- 229940045641 monobasic sodium phosphate Drugs 0.000 claims 1
- 230000001590 oxidative effect Effects 0.000 claims 1
- 239000010452 phosphate Substances 0.000 claims 1
- NBIIXXVUZAFLBC-UHFFFAOYSA-K phosphate Chemical compound [O-]P([O-])([O-])=O NBIIXXVUZAFLBC-UHFFFAOYSA-K 0.000 claims 1
- 229910052700 potassium Inorganic materials 0.000 claims 1
- 239000011591 potassium Substances 0.000 claims 1
- JXAZAUKOWVKTLO-UHFFFAOYSA-L sodium pyrosulfate Chemical compound [Na+].[Na+].[O-]S(=O)(=O)OS([O-])(=O)=O JXAZAUKOWVKTLO-UHFFFAOYSA-L 0.000 claims 1
- 239000011259 mixed solution Substances 0.000 abstract description 13
- 230000000694 effects Effects 0.000 abstract description 4
- 239000010406 cathode material Substances 0.000 abstract description 2
- 230000007774 longterm Effects 0.000 abstract description 2
- 238000004519 manufacturing process Methods 0.000 abstract 1
- 239000003792 electrolyte Substances 0.000 description 28
- JUJWROOIHBZHMG-UHFFFAOYSA-N Pyridine Chemical compound C1=CC=NC=C1 JUJWROOIHBZHMG-UHFFFAOYSA-N 0.000 description 6
- 230000009467 reduction Effects 0.000 description 6
- 229960001760 dimethyl sulfoxide Drugs 0.000 description 5
- 238000004821 distillation Methods 0.000 description 4
- UGFAIRIUMAVXCW-UHFFFAOYSA-N Carbon monoxide Chemical compound [O+]#[C-] UGFAIRIUMAVXCW-UHFFFAOYSA-N 0.000 description 3
- 229910002091 carbon monoxide Inorganic materials 0.000 description 3
- UQSQSQZYBQSBJZ-UHFFFAOYSA-N fluorosulfonic acid Chemical compound OS(F)(=O)=O UQSQSQZYBQSBJZ-UHFFFAOYSA-N 0.000 description 3
- 238000007254 oxidation reaction Methods 0.000 description 3
- UMJSCPRVCHMLSP-UHFFFAOYSA-N pyridine Natural products COC1=CC=CN=C1 UMJSCPRVCHMLSP-UHFFFAOYSA-N 0.000 description 3
- 238000004064 recycling Methods 0.000 description 3
- 239000007772 electrode material Substances 0.000 description 2
- 238000005516 engineering process Methods 0.000 description 2
- 229910021397 glassy carbon Inorganic materials 0.000 description 2
- 239000012535 impurity Substances 0.000 description 2
- 229910000402 monopotassium phosphate Inorganic materials 0.000 description 2
- 235000019796 monopotassium phosphate Nutrition 0.000 description 2
- PJNZPQUBCPKICU-UHFFFAOYSA-N phosphoric acid;potassium Chemical compound [K].OP(O)(O)=O PJNZPQUBCPKICU-UHFFFAOYSA-N 0.000 description 2
- 238000007086 side reaction Methods 0.000 description 2
- WBHQBSYUUJJSRZ-UHFFFAOYSA-M sodium bisulfate Chemical compound [Na+].OS([O-])(=O)=O WBHQBSYUUJJSRZ-UHFFFAOYSA-M 0.000 description 2
- 229910000342 sodium bisulfate Inorganic materials 0.000 description 2
- 239000000126 substance Substances 0.000 description 2
- QZGTYABAXQDMRP-UHFFFAOYSA-N 1-butyl-2H-pyridine trifluoromethanesulfonic acid Chemical compound FC(S(=O)(=O)O)(F)F.C(CCC)N1CC=CC=C1 QZGTYABAXQDMRP-UHFFFAOYSA-N 0.000 description 1
- FRZPYEHDSAQGAS-UHFFFAOYSA-M 1-butyl-3-methylimidazol-3-ium;trifluoromethanesulfonate Chemical compound [O-]S(=O)(=O)C(F)(F)F.CCCC[N+]=1C=CN(C)C=1 FRZPYEHDSAQGAS-UHFFFAOYSA-M 0.000 description 1
- UNRVFVIZRXNZKT-UHFFFAOYSA-N CCCCN1CN(C)C=C1.FC(F)(F)S(=O)(=O)NS(=O)(=O)C(F)(F)F Chemical compound CCCCN1CN(C)C=C1.FC(F)(F)S(=O)(=O)NS(=O)(=O)C(F)(F)F UNRVFVIZRXNZKT-UHFFFAOYSA-N 0.000 description 1
- BWGNESOTFCXPMA-UHFFFAOYSA-N Dihydrogen disulfide Chemical compound SS BWGNESOTFCXPMA-UHFFFAOYSA-N 0.000 description 1
- 229910000831 Steel Inorganic materials 0.000 description 1
- 230000001133 acceleration Effects 0.000 description 1
- 230000009286 beneficial effect Effects 0.000 description 1
- 238000009835 boiling Methods 0.000 description 1
- 230000003197 catalytic effect Effects 0.000 description 1
- 239000004568 cement Substances 0.000 description 1
- 239000013064 chemical raw material Substances 0.000 description 1
- 239000011248 coating agent Substances 0.000 description 1
- 238000000576 coating method Methods 0.000 description 1
- 230000007812 deficiency Effects 0.000 description 1
- 238000010586 diagram Methods 0.000 description 1
- 238000004090 dissolution Methods 0.000 description 1
- 239000003814 drug Substances 0.000 description 1
- 239000000975 dye Substances 0.000 description 1
- 238000002848 electrochemical method Methods 0.000 description 1
- 238000003487 electrochemical reaction Methods 0.000 description 1
- 238000004070 electrodeposition Methods 0.000 description 1
- 239000002803 fossil fuel Substances 0.000 description 1
- 239000005431 greenhouse gas Substances 0.000 description 1
- 238000010438 heat treatment Methods 0.000 description 1
- 150000002431 hydrogen Chemical class 0.000 description 1
- 239000010985 leather Substances 0.000 description 1
- 229910000403 monosodium phosphate Inorganic materials 0.000 description 1
- 235000019799 monosodium phosphate Nutrition 0.000 description 1
- 229910000028 potassium bicarbonate Inorganic materials 0.000 description 1
- 235000015497 potassium bicarbonate Nutrition 0.000 description 1
- 239000011736 potassium bicarbonate Substances 0.000 description 1
- 229910000343 potassium bisulfate Inorganic materials 0.000 description 1
- TYJJADVDDVDEDZ-UHFFFAOYSA-M potassium hydrogencarbonate Chemical compound [K+].OC([O-])=O TYJJADVDDVDEDZ-UHFFFAOYSA-M 0.000 description 1
- 239000002994 raw material Substances 0.000 description 1
- 230000036632 reaction speed Effects 0.000 description 1
- 230000035484 reaction time Effects 0.000 description 1
- 230000004044 response Effects 0.000 description 1
- 238000000926 separation method Methods 0.000 description 1
- 229910000030 sodium bicarbonate Inorganic materials 0.000 description 1
- 235000017557 sodium bicarbonate Nutrition 0.000 description 1
- 239000010959 steel Substances 0.000 description 1
- 230000005619 thermoelectricity Effects 0.000 description 1
- 230000009466 transformation Effects 0.000 description 1
Images
Classifications
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02P—CLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
- Y02P20/00—Technologies relating to chemical industry
- Y02P20/50—Improvements relating to the production of bulk chemicals
- Y02P20/54—Improvements relating to the production of bulk chemicals using solvents, e.g. supercritical solvents or ionic liquids
Landscapes
- Electrolytic Production Of Non-Metals, Compounds, Apparatuses Therefor (AREA)
Abstract
本项发明涉及一种电化学催化还原二氧化碳制甲酸的方法,属于二氧化碳资源化技术领域。本项发明用质子交换膜将电解池分隔为阴极室和阳极室,在阴极室中注入溶有大量二氧化碳的有机溶剂/离子液体/水混合溶液,在阳极室中注入含有支持电解质的水溶液。接通电解电源后,二氧化碳在阴极上发生电还原反应,生成甲酸。通过本项发明,可以获得一种导电性好、黏度小、溶解二氧化碳能力强、电化学窗口宽、使用成本低的有机溶剂/离子液体/水混合溶液,在这种混合溶液中电还原二氧化碳,可以提高二氧化电还原反应的电流密度,同时提高阴极材料的电催化活性和长期稳定性。The invention relates to a method for producing formic acid by electrochemically catalytically reducing carbon dioxide, which belongs to the technical field of carbon dioxide resource utilization. The invention uses a proton exchange membrane to separate the electrolytic cell into a cathode chamber and an anode chamber, injects a mixed solution of organic solvent/ionic liquid/water dissolved in a large amount of carbon dioxide into the cathode chamber, and injects an aqueous solution containing supporting electrolyte into the anode chamber. After the electrolysis power supply is turned on, carbon dioxide undergoes an electroreduction reaction on the cathode to generate formic acid. Through this invention, an organic solvent/ionic liquid/water mixed solution with good conductivity, low viscosity, strong ability to dissolve carbon dioxide, wide electrochemical window, and low cost can be obtained. In this mixed solution, carbon dioxide is electroreduced, The current density of the carbon dioxide electroreduction reaction can be increased, and the electrocatalytic activity and long-term stability of the cathode material can be improved at the same time.
Description
技术领域technical field
本项发明涉及一种电化学催化还原二氧化碳制备甲酸的方法,属于二氧化碳资源化利用技术领域。The invention relates to a method for preparing formic acid by electrochemically catalytically reducing carbon dioxide, which belongs to the technical field of resource utilization of carbon dioxide.
背景技术Background technique
二氧化碳是导致温室气体效应的主要成分,同时也是一种重要的资源。将二氧化碳转化为其他化工原料,减少化石燃料使用量,是实现二氧化碳减排的重要技术途径,也是热电、钢铁、水泥等二氧化碳高排放行业迫切需要解决的现实问题。大力研发二氧化碳资源化转化新技术,可以推动二氧化碳资源化利用新兴产业的快速发展。Carbon dioxide is the main component that causes the greenhouse gas effect, and it is also an important resource. Converting carbon dioxide into other chemical raw materials and reducing the use of fossil fuels is an important technical way to reduce carbon dioxide emissions, and it is also a practical problem that industries with high carbon dioxide emissions such as thermoelectricity, steel, and cement urgently need to solve. Vigorously researching and developing new technologies for carbon dioxide resource transformation can promote the rapid development of emerging industries for carbon dioxide resource utilization.
甲酸是一种重要的基础化工原料,广泛应用于医药、染料、皮革等领域。在“二氧化碳电化学还原研究进展”(陶映初、吴少晖、张曦.《化学通报》2001(5):272-277)一文中,涉及到一种在水溶液中用电化学方法将二氧化碳催化还原为甲酸的方法,其反应原理为:水在阳极上发生氧化反应,生成氢离子和氧气,氢离子经传质过程迁移到阴极,在阴极上参与二氧化碳电催化还原反应,生成甲酸和副反应产物。Formic acid is an important basic chemical raw material, widely used in medicine, dyes, leather and other fields. In the article "Research Progress in Electrochemical Reduction of Carbon Dioxide" (Tao Yingchu, Wu Shaohui, Zhang Xi. "Chemical Bulletin" 2001(5):272-277), it involves a catalytic reduction of carbon dioxide to formic acid by electrochemical method in aqueous solution. The method, the reaction principle is: water oxidizes on the anode to generate hydrogen ions and oxygen, the hydrogen ions migrate to the cathode through the mass transfer process, and participate in the electrocatalytic reduction of carbon dioxide on the cathode to generate formic acid and side reaction products.
但是,现有在水溶液中电催化还原二氧化碳制甲酸的技术却存在以下问题:第一、二氧化碳是非极性分子,在水溶液中溶解度很小,标准状态下只有0.033mol/L,导致阴极反应速度太过缓慢;第二、在水溶液中电还原二氧化碳,为了提高电解液的导电性,需要在电解液中加入无机支持电解质,由此不可避免地将一些无机杂质带入到电解液中,其中一些杂质在阴极表面发生电沉积反应,形成析氢过电位低的表面活性点,导致析氢反应速度加快,同时也导致电极材料对二氧化碳电还原反应的电催化活性降低。However, the existing technology of producing formic acid by electrocatalytic reduction of carbon dioxide in aqueous solution has the following problems: first, carbon dioxide is a non-polar molecule, and its solubility in aqueous solution is very small, only 0.033mol/L in the standard state, causing the cathode reaction speed to be too high. Second, in the electroreduction of carbon dioxide in an aqueous solution, in order to improve the conductivity of the electrolyte, it is necessary to add an inorganic supporting electrolyte to the electrolyte, thus inevitably bringing some inorganic impurities into the electrolyte, some of which The electrodeposition reaction occurs on the surface of the cathode, forming surface active sites with low hydrogen evolution overpotential, which leads to the acceleration of the hydrogen evolution reaction, and also reduces the electrocatalytic activity of the electrode material for the carbon dioxide electroreduction reaction.
发明内容Contents of the invention
本发明的目的在于克服上述二氧化碳电催化还原技术存在的不足,提供一种电化学催化还原二氧化碳制备甲酸的方法,在含有少量水的有机溶剂/离子液体溶液中,用电化学催化还原的方法将二氧化碳高效转化为甲酸。The object of the present invention is to overcome the deficiencies in the electrocatalytic reduction of carbon dioxide mentioned above, and provide a method for the preparation of formic acid by electrochemical catalytic reduction of carbon dioxide. Carbon dioxide is efficiently converted to formic acid.
本发明的技术方案是这样实现的:采用全氟磺酸型质子交换膜将电解池分隔为阴极室和阳极室,采用溶解有二氧化碳的有机溶剂/离子液体/水混合溶液为阴极室电解液,采用含有支持电解质的水溶液为阳极室电解液,采用In、Pb、Zn或Sn电极为阴极,采用石墨、玻碳或IrO2·Ta2O5涂层钛电极为阳极,采用电解还原法将二氧化碳转化为甲酸。具体过程如下:The technical scheme of the present invention is realized in that way: the electrolytic cell is divided into a cathode chamber and an anode chamber by using a perfluorosulfonic acid type proton exchange membrane, and an organic solvent/ionic liquid/water mixed solution dissolved with carbon dioxide is used as the cathode chamber electrolyte, The aqueous solution containing the supporting electrolyte is used as the electrolyte in the anode chamber, the In, Pb, Zn or Sn electrode is used as the cathode, and the graphite, glassy carbon or IrO 2 ·Ta 2 O 5 coated titanium electrode is used as the anode, and the carbon dioxide is reduced by electrolytic reduction. converted to formic acid. The specific process is as follows:
步骤一,在室温下,按1:1~6的液/剂体积比,将离子液体溶入含水率为5%~15%(质量比)的有机溶剂中,得到有机溶剂/离子液体/水混合溶液。再将该混合溶液输送到气体吸收塔中,用于溶解吸收二氧化碳,至二氧化碳浓度达到0.05~0.69mol/L,将溶有二氧化碳的溶液注入到阴极室中,用作阴极室电解液;同时,将含有支持电解质的水溶液注入阳极室中,用作阳极室电解液;
步骤二,在室温条件下接通电解电源,控制电解电压为3~4.2V、电流密度为200~450A/m2,进行电解反应1.5~3小时(反应时间根据实际情况而定,使电解液中的二氧化碳得以充分还原即可,电解池中电解液量大时,需要的时间较长)。水在阳极上发生氧化反应,生成氢离子和氧气,氢离子经传质过程迁移到阴极,与二氧化碳在阴极上发生电还原反应,生成甲酸并溶于电解液中;Step 2, turn on the electrolysis power supply at room temperature, control the electrolysis voltage to 3-4.2V, and the current density to 200-450A/m 2 , and carry out the electrolysis reaction for 1.5-3 hours (the reaction time depends on the actual situation, so that the electrolyte It only needs to fully reduce the carbon dioxide in the electrolytic cell, when the amount of electrolyte in the electrolytic cell is large, it will take a long time). Water undergoes an oxidation reaction on the anode to generate hydrogen ions and oxygen. The hydrogen ions migrate to the cathode through the mass transfer process, and undergo an electroreduction reaction with carbon dioxide on the cathode to generate formic acid and dissolve in the electrolyte;
步骤三,将溶有甲酸的电解液从阴极室中引出,用蒸馏的方法使甲酸挥发逸出(加热到甲酸的沸点以上),得到甲酸产品;将分离甲酸后的电解液再次用于溶解吸收二氧化碳(在气体吸收塔中进行),之后将溶有二氧化碳的溶液再次注入阴极室中,形成电解液循环。阳极反应产物氧气和阴极反应的主要副产物氢气,可分别在阳极室和阴极室上部进行收集。
本发明中,阳极室水溶液中的支持电解质为碳酸氢钠、碳酸氢钾、磷酸氢钾、磷酸氢钠、磷酸二氢钠、磷酸二氢钾、硫酸氢钠、硫酸氢钾或硫酸中的任一种,其在水溶液中的浓度为0.1~2mol/L(根据实际需要确定)。阴极室电解液中有机溶剂为二甲亚砜、乙腈、四氢呋喃、甲醇、乙醇或碳酸丙烯酯中的一种,或上述有机溶剂的任意混合物,离子液体为咪唑类离子液体或吡啶类离子液体,或上述离子液体的任意混合物。In the present invention, the supporting electrolyte in the aqueous solution of the anode chamber is any one of sodium bicarbonate, potassium bicarbonate, potassium hydrogen phosphate, sodium hydrogen phosphate, sodium dihydrogen phosphate, potassium dihydrogen phosphate, sodium hydrogen sulfate, potassium hydrogen sulfate or sulfuric acid. One, its concentration in aqueous solution is 0.1-2mol/L (determined according to actual needs). The organic solvent in the cathode chamber electrolyte is one of dimethyl sulfoxide, acetonitrile, tetrahydrofuran, methanol, ethanol or propylene carbonate, or any mixture of the above-mentioned organic solvents, and the ionic liquid is an imidazole ionic liquid or a pyridine ionic liquid, Or any mixture of the above ionic liquids.
咪唑类离子液体的结构式为:The structural formula of imidazole ionic liquid is:
其中,R1、R2为C1-C5的碳氢链;M、N为连接到碳氢链上的官能团或氢原子,官能团为:—NH2、—CN或—OH;X-为CF3SO3 -、CF3COO-、(CF3SO2)2N-、HCO3 -、H2PO4 -、HSO4 -、Cl-、Br-、I-。Among them, R 1 and R 2 are C 1 -C 5 hydrocarbon chains; M and N are functional groups or hydrogen atoms connected to the hydrocarbon chains, and the functional groups are: -NH 2 , -CN or -OH; X - is CF 3 SO 3 - , CF 3 COO - , (CF 3 SO 2 ) 2 N - , HCO 3 - , H 2 PO 4 - , HSO 4 - , Cl - , Br - , I - .
吡啶类离子液体的结构式为:The structural formula of pyridine ionic liquid is:
其中,R1、R2为C1-C5的碳氢链;M、N为连接到碳氢链上的官能团或氢原子,官能团为:—NH2、—CN或—OH;X-为CF3SO3 -、CF3COO-、(CF3SO2)2N-、HCO3 -、H2PO4 -、HSO4 -、Cl-、Br-、I-。Among them, R 1 and R 2 are C 1 -C 5 hydrocarbon chains; M and N are functional groups or hydrogen atoms connected to the hydrocarbon chains, and the functional groups are: -NH 2 , -CN or -OH; X - is CF 3 SO 3 - , CF 3 COO - , (CF 3 SO 2 ) 2 N - , HCO 3 - , H 2 PO 4 - , HSO 4 - , Cl - , Br - , I - .
本发明涉及的主要电化学反应有:The main electrochemical reactions involved in the present invention have:
阳极反应: Anode reaction:
阴极反应: Cathode reaction:
总反应: Overall response:
本发明与现有技术相比具有以下有益效果:Compared with the prior art, the present invention has the following beneficial effects:
(1)二甲亚砜、乙腈、四氢呋喃、甲醇、乙醇等有机溶剂和咪唑类、吡啶类离子液体对二氧化碳具有良好的溶解吸收性能,将离子液体溶于有机溶剂中得到的混合溶液,具有导电性好、黏度小、溶解二氧化碳能力强、电化学窗口宽、使用成本低的优点;(1) Organic solvents such as dimethyl sulfoxide, acetonitrile, tetrahydrofuran, methanol, ethanol, and imidazole and pyridine ionic liquids have good solubility and absorption properties for carbon dioxide, and the mixed solution obtained by dissolving ionic liquids in organic solvents has conductivity It has the advantages of good stability, low viscosity, strong ability to dissolve carbon dioxide, wide electrochemical window, and low cost of use;
(2)将含有少量水的有机溶剂/离子液体混合溶液作为阴极室电解液,可使二氧化碳电还原反应的电流密度达到200~450A/m2,生成甲酸的电流效率可达到61~78%,且可使阴极材料的电催化活性和长期稳定性提高。(2) Using the organic solvent/ionic liquid mixed solution containing a small amount of water as the electrolyte in the cathodic chamber can make the current density of carbon dioxide electroreduction reaction reach 200-450A/m 2 , and the current efficiency of formic acid can reach 61-78%. And the electrocatalytic activity and long-term stability of the cathode material can be improved.
(3)离子液体具有很高的离子迁移率和电导率,在含有少量水的有机溶剂/离子液体混合溶液中电还原二氧化碳,不需要在电解液中加入无机支持电解质,由此可以避免一些无机杂质电沉积在阴极表面,引起电极材料催化活性降低和析氢副反应加剧。(3) Ionic liquids have high ion mobility and electrical conductivity. Electroreduction of carbon dioxide in an organic solvent/ionic liquid mixed solution containing a small amount of water does not require adding inorganic supporting electrolytes to the electrolyte, thus avoiding some inorganic Impurities are electrodeposited on the surface of the cathode, causing the reduction of the catalytic activity of the electrode material and the intensification of the side reaction of hydrogen evolution.
附图说明Description of drawings
图1是本发明电解池结构原理示意图。Figure 1 is a schematic diagram of the structural principle of the electrolytic cell of the present invention.
图中:1-电解电源,2-阴极,3-阴极室电解液,4-质子交换膜,5-阳极室电解液,6-阳极。In the figure: 1-electrolysis power supply, 2-cathode, 3-electrolyte in cathodic chamber, 4-proton exchange membrane, 5-electrolyte in anode chamber, 6-anode.
具体实施方式Detailed ways
下面结合附图和实施例,对本项发明的技术方案作进一步说明,但本发明的技术内容不限于所述的范围。The technical scheme of the present invention will be further described below in conjunction with the accompanying drawings and embodiments, but the technical content of the present invention is not limited to the scope described.
实施例1:如附图1所示,用全氟磺酸型质子交换膜将电解池分隔为阴极室和阳极室,采用In电极为阴极,采用石墨电极为阳极,通过电还原反应,将二氧化碳转化为甲酸。具体过程如下:Embodiment 1: as shown in accompanying
步骤一,在室温下,按1:4的液/剂体积比,将1-丁基-3-甲基咪唑三氟甲基磺酸离子液体溶入含水率为15%(质量百分比)的二甲亚砜中,得到有机溶剂/离子液体/水混合溶液。将该混合溶液输送到气体吸收塔中,用于溶解吸收二氧化碳至二氧化碳浓度达到0.05 mol/L,将溶有二氧化碳的上述溶液注入到阴极室中作为阴极室电解液;同时,在阳极室中注入0.1mol/L 的碳酸氢钠水溶液,作为阳极室电解液;
步骤二,在室温下接通电解电源,控制电解电压为3.9V、电流密度为280A/m2,进行电解反应3小时,水在阳极上发生氧化反应生成氢离子和氧气,氢离子经传质过程迁移到阴极,与二氧化碳在阴极上发生电还原反应,生成甲酸溶于电解液中,生成甲酸的电流效率达到61%;Step 2, turn on the electrolysis power supply at room temperature, control the electrolysis voltage to 3.9V, and the current density to 280A/m 2 , carry out the electrolysis reaction for 3 hours, and the water oxidizes on the anode to generate hydrogen ions and oxygen, and the hydrogen ions undergo mass transfer The process migrates to the cathode, and an electroreduction reaction occurs with carbon dioxide on the cathode to generate formic acid, which is dissolved in the electrolyte, and the current efficiency of generating formic acid reaches 61%;
步骤三,将溶有甲酸的电解液从阴极室中引出,将电解液加热到100.8℃,用蒸馏的方法使甲酸充分挥发逸出,得到甲酸产品;同时,将分离甲酸后的电解液再次用于溶解吸收二氧化碳(入气体吸收塔),之后将溶有二氧化碳的上述电解液注入到阴极室中,形成电解液循环利用。阳极反应的副产物氧气和阴极反应的副产物一氧化碳,可分别在阳极室和阴极室上部进行收集。
实施例2:如附图1所示,采用全氟磺酸型质子交换膜将电解池分隔为阴极室和阳极室,采用Pb电极为阴极,采用玻碳电极为阳极,通过电还原反应,将二氧化碳转化为甲酸。具体过程如下:Embodiment 2: as shown in accompanying
步骤一,在室温下,按1:6的液/剂体积比,将1-丁基吡啶三氟甲基磺酸离子液体溶入含水率为10%(质量百分比)的甲醇中,得到有机溶剂/离子液体/水混合溶液,再将该混合溶液输送到气体吸收塔中,溶解吸收二氧化碳至二氧化碳浓度达到0.083 mol/L后,将溶有二氧化碳的上述溶液注入到阴极室中,用作阴极室电解液;同时,在阳极室中注入2mol/L 的硫酸氢钠水溶液,作为阳极室电解液;Step 1: Dissolve 1-butylpyridine trifluoromethanesulfonate ionic liquid in methanol with a water content of 10% (mass percentage) at a liquid/dose volume ratio of 1:6 at room temperature to obtain an organic solvent /ionic liquid/water mixed solution, and then transport the mixed solution to the gas absorption tower, dissolve and absorb carbon dioxide until the carbon dioxide concentration reaches 0.083 mol/L, inject the above solution dissolved in carbon dioxide into the cathode chamber, and use it as the cathode chamber Electrolyte; At the same time, inject 2mol/L sodium bisulfate aqueous solution in the anode chamber as the anode chamber electrolyte;
步骤二,在室温下接通电解电源,控制电解电压为3V、电流密度为200A/m2,进行电解反应2小时,水在阳极上发生氧化反应生成氢离子和氧气,氢离子经传质过程迁移到阴极,与二氧化碳在阴极上发生电还原反应,生成的甲酸溶于电解液中,生成甲酸的电流效率达到69%;Step 2, turn on the electrolysis power supply at room temperature, control the electrolysis voltage to 3V, and the current density to 200A/m 2 , carry out the electrolysis reaction for 2 hours, and the water will undergo oxidation reaction on the anode to generate hydrogen ions and oxygen, and the hydrogen ions will pass through the mass transfer process Migrate to the cathode, and undergo an electroreduction reaction with carbon dioxide on the cathode, the generated formic acid is dissolved in the electrolyte, and the current efficiency of generating formic acid reaches 69%;
步骤三,将溶有甲酸的电解液从阴极室中引出,将电解液加热到108℃,用蒸馏的方法使甲酸充分挥发逸出,得到甲酸产品;将分离甲酸后的电解液再次用于溶解吸收二氧化碳(入气体吸收塔),之后将溶有二氧化碳的上述电解液注入到阴极室中,形成电解液循环利用。阳极反应的副产物氧气和阴极反应的副产物一氧化碳,可分别在阳极室和阴极室上部进行收集。
实施例3:如附图1所示,采用全氟磺酸型质子交换膜将电解池分隔为阴极室和阳极室,采用Sn电极为阴极,采用IrO2·Ta2O5涂层钛电极为阳极,通过电还原反应,将二氧化碳转化为甲酸。具体过程如下:Embodiment 3: as shown in accompanying
步骤一,在室温下,按1:1的液/剂体积比,将1-丁基-3-甲基咪唑双三氟甲基磺酰亚胺离子液体溶入含水率为5%(质量百分比)的二甲亚砜/碳酸丙烯酯混合有机溶剂中(二甲亚砜与碳酸丙烯酯的体积比为1:1),得到有机溶剂/离子液体/水混合溶液,将该混合溶液输送到气体吸收塔中,溶解吸收二氧化碳至二氧化碳浓度达到0.69 mol/L后,将溶有二氧化碳的上述溶液注入到阴极室中,用作阴极室电解液;同时,在阳极室中注入浓度为0.2mol/L 的磷酸二氢钾水溶液,作为阳极室电解液;
步骤二,在室温下接通电解电源,控制电解电压为4.2V、电流密度为450A/m2,进行电解反应1.5小时,水在阳极上发生氧化反应生成氢离子和氧气,氢离子经传质过程迁移到阴极,与二氧化碳在阴极上发生电还原反应,生成的甲酸溶于电解液中,生成甲酸的电流效率可达78%;Step 2, turn on the electrolysis power supply at room temperature, control the electrolysis voltage to 4.2V, and the current density to 450A/m 2 , and carry out the electrolysis reaction for 1.5 hours. The oxidation reaction of water on the anode generates hydrogen ions and oxygen, and the hydrogen ions undergo mass transfer. The process migrates to the cathode, and an electroreduction reaction occurs with carbon dioxide on the cathode, and the generated formic acid is dissolved in the electrolyte, and the current efficiency of generating formic acid can reach 78%;
步骤三,将溶有甲酸的电解液从阴极室中引出,将电解液加热到108℃,用蒸馏的方法使甲酸充分挥发逸出而得到甲酸产品;同时,将分离甲酸后的电解液再次用于溶解吸收二氧化碳(入气体吸收塔),之后将溶有二氧化碳的上述电解液注入到阴极室中,形成电解液循环利用。阳极反应的副产物氧气和阴极反应的副产物一氧化碳,可分别在阳极室和阴极室上部进行收集。
Claims (5)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN2011100783949A CN102190573B (en) | 2011-03-30 | 2011-03-30 | A method for preparing formic acid by electrochemical catalytic reduction of carbon dioxide |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN2011100783949A CN102190573B (en) | 2011-03-30 | 2011-03-30 | A method for preparing formic acid by electrochemical catalytic reduction of carbon dioxide |
Publications (2)
Publication Number | Publication Date |
---|---|
CN102190573A true CN102190573A (en) | 2011-09-21 |
CN102190573B CN102190573B (en) | 2013-11-27 |
Family
ID=44599538
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN2011100783949A Expired - Fee Related CN102190573B (en) | 2011-03-30 | 2011-03-30 | A method for preparing formic acid by electrochemical catalytic reduction of carbon dioxide |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN102190573B (en) |
Cited By (37)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20130140187A1 (en) * | 2012-07-26 | 2013-06-06 | Liquid Light, Inc. | Electrochemical Reduction of CO2 with Co-Oxidation of an Alcohol |
CN103205773A (en) * | 2013-03-25 | 2013-07-17 | 华东师范大学 | A method for electrochemically reducing CO2 to synthesize small molecule alcohols |
CN103233240A (en) * | 2006-10-13 | 2013-08-07 | 曼得拉能源替代有限公司 | Continuous co-current electrochemical reduction of carbon dioxide |
US8845877B2 (en) | 2010-03-19 | 2014-09-30 | Liquid Light, Inc. | Heterocycle catalyzed electrochemical process |
US8845878B2 (en) | 2010-07-29 | 2014-09-30 | Liquid Light, Inc. | Reducing carbon dioxide to products |
US8858777B2 (en) | 2012-07-26 | 2014-10-14 | Liquid Light, Inc. | Process and high surface area electrodes for the electrochemical reduction of carbon dioxide |
CN104204301A (en) * | 2012-03-06 | 2014-12-10 | 液体光有限公司 | Reducing carbon dioxide to products |
US8961774B2 (en) | 2010-11-30 | 2015-02-24 | Liquid Light, Inc. | Electrochemical production of butanol from carbon dioxide and water |
US8986533B2 (en) | 2009-01-29 | 2015-03-24 | Princeton University | Conversion of carbon dioxide to organic products |
US9085827B2 (en) | 2012-07-26 | 2015-07-21 | Liquid Light, Inc. | Integrated process for producing carboxylic acids from carbon dioxide |
US9090976B2 (en) | 2010-12-30 | 2015-07-28 | The Trustees Of Princeton University | Advanced aromatic amine heterocyclic catalysts for carbon dioxide reduction |
CN104846393A (en) * | 2015-06-17 | 2015-08-19 | 哈尔滨工业大学 | A CO2 electrochemical reduction method using an Ag-containing electrode as a working electrode |
CN104959135A (en) * | 2015-06-29 | 2015-10-07 | 华中师范大学 | A nano-zinc catalyst and a method for efficiently catalyzing CO2 reduction of CO based on nano-zinc catalyst |
US9175409B2 (en) | 2012-07-26 | 2015-11-03 | Liquid Light, Inc. | Multiphase electrochemical reduction of CO2 |
US9222179B2 (en) | 2010-03-19 | 2015-12-29 | Liquid Light, Inc. | Purification of carbon dioxide from a mixture of gases |
CN105297067A (en) * | 2015-11-16 | 2016-02-03 | 昆明理工大学 | Multi-room diaphragm electrolysis method and device for electroreduction of carbon dioxide into carbon monoxide |
US9267212B2 (en) | 2012-07-26 | 2016-02-23 | Liquid Light, Inc. | Method and system for production of oxalic acid and oxalic acid reduction products |
CN105420751A (en) * | 2014-09-23 | 2016-03-23 | 中国科学院大连化学物理研究所 | Method for preparing hydrocarbon through electrochemical reduction of carbon dioxide |
US9309599B2 (en) | 2010-11-30 | 2016-04-12 | Liquid Light, Inc. | Heterocycle catalyzed carbonylation and hydroformylation with carbon dioxide |
CN105601074A (en) * | 2015-12-18 | 2016-05-25 | 中国科学院广州能源研究所 | Novel efficient resource utilization method of electroplating sludge and carbon dioxide co-processing |
CN106876722A (en) * | 2015-12-13 | 2017-06-20 | 中国科学院大连化学物理研究所 | A gas diffusion electrode for electrochemical reduction of carbon dioxide and its preparation and application |
CN107250438A (en) * | 2015-02-06 | 2017-10-13 | 西门子公司 | The method and electrolysis system utilized for carbon dioxide |
CN107326391A (en) * | 2017-07-06 | 2017-11-07 | 太原理工大学 | A kind of method that microorganism auxiliary photoelectrocatalysis reduces CO2 |
CN107429410A (en) * | 2015-02-27 | 2017-12-01 | 国立研究开发法人科学技术振兴机构 | The electrochemical reduction of carbon dioxide |
CN108118361A (en) * | 2016-11-26 | 2018-06-05 | 中国科学院大连化学物理研究所 | A kind of raising CO2The method of electrochemical reduction electrode catalytic activity |
US10119196B2 (en) | 2010-03-19 | 2018-11-06 | Avantium Knowledge Centre B.V. | Electrochemical production of synthesis gas from carbon dioxide |
CN109415831A (en) * | 2016-06-30 | 2019-03-01 | 西门子股份公司 | Device and method for carbon dioxide electrolysis |
US10329676B2 (en) | 2012-07-26 | 2019-06-25 | Avantium Knowledge Centre B.V. | Method and system for electrochemical reduction of carbon dioxide employing a gas diffusion electrode |
CN109972162A (en) * | 2019-05-13 | 2019-07-05 | 中国人民解放军军事科学院防化研究院 | A kind of electro-chemistry oxygen-producing method |
CN110117794A (en) * | 2019-05-21 | 2019-08-13 | 盐城工学院 | A kind of electroreduction CO2The three Room type electrolytic cell devices and its electrolytic method of formates processed |
CN110860294A (en) * | 2019-11-27 | 2020-03-06 | 河北科技大学 | Preparation method of copper-lead composite metal catalyst and application of copper-lead composite metal catalyst |
CN113201761A (en) * | 2021-05-06 | 2021-08-03 | 西安文理学院 | Microbial electrogenesis catalytic reduction CO2Method for preparing formic acid, biofuel cell and application |
CN113430547A (en) * | 2021-05-06 | 2021-09-24 | 盐城工学院 | A kind of device and electrolysis method for electrolyzing carbon dioxide to produce potassium formate |
CN114686908A (en) * | 2022-03-07 | 2022-07-01 | 华中科技大学 | A kind of high-efficiency electrocatalytic carbon dioxide reduction method to directly generate formic acid |
CN116099342A (en) * | 2023-02-14 | 2023-05-12 | 西安热工研究院有限公司 | A system and method for boiler flue gas desulfurization and carbon dioxide resource utilization |
JP7658527B1 (en) | 2024-07-29 | 2025-04-08 | 康夫 辻野 | Method for promoting formic acid synthesis reaction, and ionic liquid |
WO2025084975A1 (en) * | 2023-10-17 | 2025-04-24 | CarbGen AB | A bi-phasic electrolysis cell for carbon dioxide capture, electrocatalysts for use in the cell, related methods and a production facility using the electrolysis cell and the electrocatalysts |
Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4673473A (en) * | 1985-06-06 | 1987-06-16 | Peter G. Pa Ang | Means and method for reducing carbon dioxide to a product |
CN101250711A (en) * | 2008-03-27 | 2008-08-27 | 昆明理工大学 | Electrochemical reduction method and device for carbon dioxide in ionic liquid |
CN101328590A (en) * | 2008-06-17 | 2008-12-24 | 昆明理工大学 | A method of converting carbon dioxide into organic compounds |
WO2010010252A2 (en) * | 2008-07-22 | 2010-01-28 | Ifp | Method for obtaining formic acid by co<sb>2</sb> electro-reduction in an aprotic medium |
CN101657568A (en) * | 2005-10-13 | 2010-02-24 | 曼得拉能源替代有限公司 | Continuous co-current electrochemical reduction of carbon dioxide |
-
2011
- 2011-03-30 CN CN2011100783949A patent/CN102190573B/en not_active Expired - Fee Related
Patent Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4673473A (en) * | 1985-06-06 | 1987-06-16 | Peter G. Pa Ang | Means and method for reducing carbon dioxide to a product |
CN101657568A (en) * | 2005-10-13 | 2010-02-24 | 曼得拉能源替代有限公司 | Continuous co-current electrochemical reduction of carbon dioxide |
CN101250711A (en) * | 2008-03-27 | 2008-08-27 | 昆明理工大学 | Electrochemical reduction method and device for carbon dioxide in ionic liquid |
CN101328590A (en) * | 2008-06-17 | 2008-12-24 | 昆明理工大学 | A method of converting carbon dioxide into organic compounds |
WO2010010252A2 (en) * | 2008-07-22 | 2010-01-28 | Ifp | Method for obtaining formic acid by co<sb>2</sb> electro-reduction in an aprotic medium |
Non-Patent Citations (2)
Title |
---|
肖丽平等: "离子液体-乙腈混合溶剂中电催化CO2与甲醇合成碳酸二甲酯", 《催化学报》, vol. 30, no. 1, 15 January 2009 (2009-01-15), pages 44 * |
魏文英, 李 军, 尹燕华: "CO2电化学还原合成甲酸的研究", 《舰船科学技术》, vol. 30, no. 6, 15 December 2008 (2008-12-15), pages 210 - 212 * |
Cited By (62)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN103233240A (en) * | 2006-10-13 | 2013-08-07 | 曼得拉能源替代有限公司 | Continuous co-current electrochemical reduction of carbon dioxide |
CN103233240B (en) * | 2006-10-13 | 2015-10-28 | 曼得拉能源替代有限公司 | The lasting co-current electrochemical reduction of carbonic acid gas |
US8986533B2 (en) | 2009-01-29 | 2015-03-24 | Princeton University | Conversion of carbon dioxide to organic products |
US9970117B2 (en) | 2010-03-19 | 2018-05-15 | Princeton University | Heterocycle catalyzed electrochemical process |
US8845877B2 (en) | 2010-03-19 | 2014-09-30 | Liquid Light, Inc. | Heterocycle catalyzed electrochemical process |
US9222179B2 (en) | 2010-03-19 | 2015-12-29 | Liquid Light, Inc. | Purification of carbon dioxide from a mixture of gases |
US10119196B2 (en) | 2010-03-19 | 2018-11-06 | Avantium Knowledge Centre B.V. | Electrochemical production of synthesis gas from carbon dioxide |
US8845878B2 (en) | 2010-07-29 | 2014-09-30 | Liquid Light, Inc. | Reducing carbon dioxide to products |
US9309599B2 (en) | 2010-11-30 | 2016-04-12 | Liquid Light, Inc. | Heterocycle catalyzed carbonylation and hydroformylation with carbon dioxide |
US8961774B2 (en) | 2010-11-30 | 2015-02-24 | Liquid Light, Inc. | Electrochemical production of butanol from carbon dioxide and water |
US9090976B2 (en) | 2010-12-30 | 2015-07-28 | The Trustees Of Princeton University | Advanced aromatic amine heterocyclic catalysts for carbon dioxide reduction |
CN104204301A (en) * | 2012-03-06 | 2014-12-10 | 液体光有限公司 | Reducing carbon dioxide to products |
US9175407B2 (en) | 2012-07-26 | 2015-11-03 | Liquid Light, Inc. | Integrated process for producing carboxylic acids from carbon dioxide |
US9267212B2 (en) | 2012-07-26 | 2016-02-23 | Liquid Light, Inc. | Method and system for production of oxalic acid and oxalic acid reduction products |
US9080240B2 (en) | 2012-07-26 | 2015-07-14 | Liquid Light, Inc. | Electrochemical co-production of a glycol and an alkene employing recycled halide |
US20130140187A1 (en) * | 2012-07-26 | 2013-06-06 | Liquid Light, Inc. | Electrochemical Reduction of CO2 with Co-Oxidation of an Alcohol |
US10287696B2 (en) | 2012-07-26 | 2019-05-14 | Avantium Knowledge Centre B.V. | Process and high surface area electrodes for the electrochemical reduction of carbon dioxide |
US8858777B2 (en) | 2012-07-26 | 2014-10-14 | Liquid Light, Inc. | Process and high surface area electrodes for the electrochemical reduction of carbon dioxide |
US8845875B2 (en) * | 2012-07-26 | 2014-09-30 | Liquid Light, Inc. | Electrochemical reduction of CO2 with co-oxidation of an alcohol |
US9175409B2 (en) | 2012-07-26 | 2015-11-03 | Liquid Light, Inc. | Multiphase electrochemical reduction of CO2 |
US10329676B2 (en) | 2012-07-26 | 2019-06-25 | Avantium Knowledge Centre B.V. | Method and system for electrochemical reduction of carbon dioxide employing a gas diffusion electrode |
US8845876B2 (en) | 2012-07-26 | 2014-09-30 | Liquid Light, Inc. | Electrochemical co-production of products with carbon-based reactant feed to anode |
US9708722B2 (en) | 2012-07-26 | 2017-07-18 | Avantium Knowledge Centre B.V. | Electrochemical co-production of products with carbon-based reactant feed to anode |
US9085827B2 (en) | 2012-07-26 | 2015-07-21 | Liquid Light, Inc. | Integrated process for producing carboxylic acids from carbon dioxide |
US11131028B2 (en) | 2012-07-26 | 2021-09-28 | Avantium Knowledge Centre B.V. | Method and system for electrochemical reduction of carbon dioxide employing a gas diffusion electrode |
US9303324B2 (en) | 2012-07-26 | 2016-04-05 | Liquid Light, Inc. | Electrochemical co-production of chemicals with sulfur-based reactant feeds to anode |
US8821709B2 (en) | 2012-07-26 | 2014-09-02 | Liquid Light, Inc. | System and method for oxidizing organic compounds while reducing carbon dioxide |
CN103205773B (en) * | 2013-03-25 | 2015-11-18 | 华东师范大学 | A kind of electrochemical reduction CO 2the method of synthesized micromolecule alcohol compound |
CN103205773A (en) * | 2013-03-25 | 2013-07-17 | 华东师范大学 | A method for electrochemically reducing CO2 to synthesize small molecule alcohols |
CN105420751A (en) * | 2014-09-23 | 2016-03-23 | 中国科学院大连化学物理研究所 | Method for preparing hydrocarbon through electrochemical reduction of carbon dioxide |
CN107250438B (en) * | 2015-02-06 | 2019-11-08 | 西门子公司 | Method and electrolysis system for carbon dioxide utilization |
US11198942B2 (en) | 2015-02-06 | 2021-12-14 | Siemens Energy Global GmbH & Co. KG | Electrolysis system for carbon dioxide |
CN107250438A (en) * | 2015-02-06 | 2017-10-13 | 西门子公司 | The method and electrolysis system utilized for carbon dioxide |
CN107429410B (en) * | 2015-02-27 | 2020-06-09 | 国立研究开发法人科学技术振兴机构 | Electrochemical reduction of carbon dioxide |
CN107429410A (en) * | 2015-02-27 | 2017-12-01 | 国立研究开发法人科学技术振兴机构 | The electrochemical reduction of carbon dioxide |
US11878279B2 (en) | 2015-02-27 | 2024-01-23 | Japan Science And Technology Agency | Electrochemical reduction of carbon dioxide |
CN104846393A (en) * | 2015-06-17 | 2015-08-19 | 哈尔滨工业大学 | A CO2 electrochemical reduction method using an Ag-containing electrode as a working electrode |
CN104846393B (en) * | 2015-06-17 | 2017-04-26 | 哈尔滨工业大学 | CO2 electrochemical reduction method with Ag-containing electrode as working electrode |
CN104959135A (en) * | 2015-06-29 | 2015-10-07 | 华中师范大学 | A nano-zinc catalyst and a method for efficiently catalyzing CO2 reduction of CO based on nano-zinc catalyst |
CN105297067B (en) * | 2015-11-16 | 2018-02-09 | 昆明理工大学 | A kind of multicell diaphragm electrolysis method and apparatus by carbon dioxide electroreduction for carbon monoxide |
CN105297067A (en) * | 2015-11-16 | 2016-02-03 | 昆明理工大学 | Multi-room diaphragm electrolysis method and device for electroreduction of carbon dioxide into carbon monoxide |
CN106876722B (en) * | 2015-12-13 | 2019-07-26 | 中国科学院大连化学物理研究所 | A gas diffusion electrode for electrochemical reduction of carbon dioxide and its preparation and application |
CN106876722A (en) * | 2015-12-13 | 2017-06-20 | 中国科学院大连化学物理研究所 | A gas diffusion electrode for electrochemical reduction of carbon dioxide and its preparation and application |
CN105601074B (en) * | 2015-12-18 | 2018-06-29 | 中国科学院广州能源研究所 | A kind of electroplating sludge cooperates with the high-efficiency resource recycling new method of processing with carbon dioxide |
CN105601074A (en) * | 2015-12-18 | 2016-05-25 | 中国科学院广州能源研究所 | Novel efficient resource utilization method of electroplating sludge and carbon dioxide co-processing |
CN109415831A (en) * | 2016-06-30 | 2019-03-01 | 西门子股份公司 | Device and method for carbon dioxide electrolysis |
US10907261B2 (en) | 2016-06-30 | 2021-02-02 | Siemens Aktiengesellschaft | System and method for the electrolysis of carbon dioxide |
CN108118361A (en) * | 2016-11-26 | 2018-06-05 | 中国科学院大连化学物理研究所 | A kind of raising CO2The method of electrochemical reduction electrode catalytic activity |
CN108118361B (en) * | 2016-11-26 | 2019-05-21 | 中国科学院大连化学物理研究所 | A kind of raising CO2The method of electrochemical reduction electrode catalytic activity |
CN107326391A (en) * | 2017-07-06 | 2017-11-07 | 太原理工大学 | A kind of method that microorganism auxiliary photoelectrocatalysis reduces CO2 |
CN107326391B (en) * | 2017-07-06 | 2018-10-09 | 太原理工大学 | A kind of method of microorganism auxiliary photoelectrocatalysis reduction CO2 |
CN109972162A (en) * | 2019-05-13 | 2019-07-05 | 中国人民解放军军事科学院防化研究院 | A kind of electro-chemistry oxygen-producing method |
CN110117794A (en) * | 2019-05-21 | 2019-08-13 | 盐城工学院 | A kind of electroreduction CO2The three Room type electrolytic cell devices and its electrolytic method of formates processed |
CN110860294A (en) * | 2019-11-27 | 2020-03-06 | 河北科技大学 | Preparation method of copper-lead composite metal catalyst and application of copper-lead composite metal catalyst |
CN110860294B (en) * | 2019-11-27 | 2022-10-25 | 河北科技大学 | Method for preparing formic acid using copper-lead composite metal as electrode for electrochemical reduction of carbon dioxide |
CN113201761A (en) * | 2021-05-06 | 2021-08-03 | 西安文理学院 | Microbial electrogenesis catalytic reduction CO2Method for preparing formic acid, biofuel cell and application |
CN113430547A (en) * | 2021-05-06 | 2021-09-24 | 盐城工学院 | A kind of device and electrolysis method for electrolyzing carbon dioxide to produce potassium formate |
CN113201761B (en) * | 2021-05-06 | 2023-08-04 | 西安文理学院 | A method for producing formic acid by electrocatalytic reduction of CO2 produced by microorganisms, a biofuel cell and its application |
CN114686908A (en) * | 2022-03-07 | 2022-07-01 | 华中科技大学 | A kind of high-efficiency electrocatalytic carbon dioxide reduction method to directly generate formic acid |
CN116099342A (en) * | 2023-02-14 | 2023-05-12 | 西安热工研究院有限公司 | A system and method for boiler flue gas desulfurization and carbon dioxide resource utilization |
WO2025084975A1 (en) * | 2023-10-17 | 2025-04-24 | CarbGen AB | A bi-phasic electrolysis cell for carbon dioxide capture, electrocatalysts for use in the cell, related methods and a production facility using the electrolysis cell and the electrocatalysts |
JP7658527B1 (en) | 2024-07-29 | 2025-04-08 | 康夫 辻野 | Method for promoting formic acid synthesis reaction, and ionic liquid |
Also Published As
Publication number | Publication date |
---|---|
CN102190573B (en) | 2013-11-27 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN102190573B (en) | A method for preparing formic acid by electrochemical catalytic reduction of carbon dioxide | |
CN102181876B (en) | Method and device for preparing carbon monoxide through electrochemical catalytic reduction of carbon dioxide | |
CN105297067B (en) | A kind of multicell diaphragm electrolysis method and apparatus by carbon dioxide electroreduction for carbon monoxide | |
CN102468499B (en) | The renovation process of waste liquor of all-vanadium flow battery | |
CN103401010B (en) | Method for preparing electrolytes of all-vanadium flow battery | |
CN101651221B (en) | Method for preparing electrolyte for vanadium cell | |
JP5680145B2 (en) | Trivalent vanadium ion electrolyte, production method thereof and vanadium battery | |
CN104313631A (en) | Method and device for preparing carbon monoxide through carrying out phase interface electrochemical catalytic reduction on carbon dioxide | |
Chisholm et al. | Decoupled electrolysis using a silicotungstic acid electron-coupled-proton buffer in a proton exchange membrane cell | |
CN104846397A (en) | A kind of electrode for electrochemically reducing CO2 to produce formic acid and its preparation method and application | |
CN105420751A (en) | Method for preparing hydrocarbon through electrochemical reduction of carbon dioxide | |
CN101792913B (en) | Paired electrolytic synthesis method for producing butanedioic acid and sulfuric acid | |
CN102170007A (en) | Anode electrolyte of highly stable full-vanadium fluid battery and preparation method thereof | |
CN103066312A (en) | Preparation method for electrolyte used for vanadium flow cell | |
CN105925999B (en) | A kind of Fe2+Anodic oxidation and cathodic reduction co-production H2Process | |
CN102110837A (en) | Preparation method of electrolyte for vanadium redox battery (VRB) | |
CN108441885A (en) | A kind of composite material and its application in urea aoxidizes assistance Acid-Base electrolytic cell device for preparing hydrogen | |
CN104577173B (en) | The method that electrolyte for vanadium cell is directly prepared using vanadic anhydride | |
CN100438190C (en) | All-vanadium ion flow battery electrolyte and preparation method thereof | |
CN205329170U (en) | Multi -chambered diaphragm electrolysis device that is carbon dioxide electroreduction carbon monoxide | |
Cheng et al. | Interfacial proton supply/filtration regulates the dynamics of electrocatalytic nitrogen reduction reaction: a perspective | |
CN103388155B (en) | Device and method for continuously preparing tetramethylammonium hydroxide | |
CN104638288A (en) | Electrochemical preparation method of 3.5 valence vanadium electrolyte | |
CN106544699A (en) | A kind of method that ionic liquid electrolytic recovery waste lead accumulator lead plaster carries lead | |
CN109904518A (en) | A kind of preparation method and application of solid electrolyte membrane |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
C06 | Publication | ||
PB01 | Publication | ||
C10 | Entry into substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
C14 | Grant of patent or utility model | ||
GR01 | Patent grant | ||
CF01 | Termination of patent right due to non-payment of annual fee |
Granted publication date: 20131127 Termination date: 20150330 |
|
EXPY | Termination of patent right or utility model |