CN102186066A - Optical fiber wired television super-trunk line transmission system - Google Patents
Optical fiber wired television super-trunk line transmission system Download PDFInfo
- Publication number
- CN102186066A CN102186066A CN 201110087696 CN201110087696A CN102186066A CN 102186066 A CN102186066 A CN 102186066A CN 201110087696 CN201110087696 CN 201110087696 CN 201110087696 A CN201110087696 A CN 201110087696A CN 102186066 A CN102186066 A CN 102186066A
- Authority
- CN
- China
- Prior art keywords
- optical
- end module
- fiber
- reverse
- sub
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 239000013307 optical fiber Substances 0.000 title claims abstract description 97
- 230000005540 biological transmission Effects 0.000 title claims abstract description 48
- 230000003287 optical effect Effects 0.000 claims abstract description 212
- 238000001069 Raman spectroscopy Methods 0.000 claims abstract description 13
- 230000008054 signal transmission Effects 0.000 claims abstract description 9
- 239000000835 fiber Substances 0.000 claims description 134
- 239000006185 dispersion Substances 0.000 claims description 100
- 238000004364 calculation method Methods 0.000 claims description 8
- 229910052691 Erbium Inorganic materials 0.000 claims description 2
- UYAHIZSMUZPPFV-UHFFFAOYSA-N erbium Chemical compound [Er] UYAHIZSMUZPPFV-UHFFFAOYSA-N 0.000 claims description 2
- 230000000694 effects Effects 0.000 abstract description 5
- 238000000034 method Methods 0.000 description 5
- 238000010586 diagram Methods 0.000 description 4
- 230000002457 bidirectional effect Effects 0.000 description 2
- 230000015556 catabolic process Effects 0.000 description 2
- 238000006243 chemical reaction Methods 0.000 description 2
- 238000006731 degradation reaction Methods 0.000 description 2
- 230000006855 networking Effects 0.000 description 2
- 230000003071 parasitic effect Effects 0.000 description 2
- 230000002301 combined effect Effects 0.000 description 1
- 238000010276 construction Methods 0.000 description 1
- 230000006735 deficit Effects 0.000 description 1
- 238000013461 design Methods 0.000 description 1
- 230000005684 electric field Effects 0.000 description 1
- 238000002474 experimental method Methods 0.000 description 1
- 238000003780 insertion Methods 0.000 description 1
- 230000037431 insertion Effects 0.000 description 1
- 238000005086 pumping Methods 0.000 description 1
- 238000011084 recovery Methods 0.000 description 1
- 230000035945 sensitivity Effects 0.000 description 1
- 238000004904 shortening Methods 0.000 description 1
- 230000002269 spontaneous effect Effects 0.000 description 1
- 238000013519 translation Methods 0.000 description 1
Images
Landscapes
- Optical Communication System (AREA)
Abstract
本发明公开了一种光纤有线电视超干线传输系统,该系统各模块之间的信号传递关系为:将射频电视信号经前端模块1调制成第一路光信号和第二路光信号,第一路光信号通过正向光纤8依次经第一分前端模块2、第二分前端模块3、第三分前端模块4、第四分前端模块5、第五分前端模块6、第六分前端模块7传递,第二路光信号反向光纤9依次经第六分前端模块7、第五分前端模块6、第四分前端模块5、第三分前端模块4、第二分前端模块3、第一分前端模块2传递,实现超长距离上高质量传输数字信号传输。该系统能提高系统可靠性;能够对组合二阶互调指标进行补偿,提高补偿效果;采用拉曼放大器,改善CNR指标。
The invention discloses an optical fiber cable TV super-trunk line transmission system. The signal transmission relationship among the modules of the system is as follows: the radio frequency television signal is modulated into the first optical signal and the second optical signal through the front-end module 1, and the first The optical signal passes through the forward optical fiber 8 through the first sub-front-end module 2, the second sub-front-end module 3, the third sub-front-end module 4, the fourth sub-front-end module 5, the fifth sub-front-end module 6, and the sixth sub-front-end module 7, the second optical signal reverse optical fiber 9 passes through the sixth front-end module 7, the fifth front-end module 6, the fourth front-end module 5, the third front-end module 4, the second front-end module 3, the second front-end module One sub-front-end module 2 transmits to realize high-quality digital signal transmission over long distances. The system can improve the reliability of the system; it can compensate the combined second-order intermodulation index and improve the compensation effect; the Raman amplifier is used to improve the CNR index.
Description
技术领域technical field
本发明涉及的是一种光纤有线电视超干线传输系统,用于副载波复用光纤有线电视网的长距离大范围联网工程,对广电有线电视网的大范围联网整合和模拟电视向数字电视的平移具有重要作用。The present invention relates to an optical fiber cable TV ultra-trunk transmission system, which is used for the long-distance and large-scale networking project of the subcarrier multiplexing optical fiber cable TV network, and integrates the large-scale networking of the radio and TV cable TV network and the conversion of analog TV to digital TV. Translation plays an important role.
背景技术Background technique
光纤有线电视超干线传输系统采用1550nm波长,常规单模光纤在1550nm波长的色散常数高达17ps/km.nm。光纤在大功率下自相位调制效应与光纤在长距离上的强烈色散相结合,发生光波电场的寄生调相到寄生调幅的转换,导致副载波复用光纤传输系统的非线性指标—组合二阶互调大大劣化,同时载噪比受到制约。组合二阶互调与载噪比的组合效应,决定了数字电视的调制误差比,如何减轻组合二阶互调与载噪比的劣化,是实现光纤有线电视超干线传输系统的最大挑战。Optical fiber cable television ultra-trunk line transmission system uses 1550nm wavelength, and the dispersion constant of conventional single-mode optical fiber at 1550nm wavelength is as high as 17ps/km.nm. The combination of the self-phase modulation effect of the optical fiber at high power and the strong dispersion of the optical fiber over a long distance results in the conversion from the parasitic phase modulation to the parasitic amplitude modulation of the electric field of the light wave, which leads to the nonlinear index of the subcarrier multiplexing optical fiber transmission system—combined second-order The intermodulation is greatly deteriorated, and the carrier-to-noise ratio is restricted. The combined effect of combined second-order intermodulation and carrier-to-noise ratio determines the modulation error ratio of digital TV. How to reduce the degradation of combined second-order intermodulation and carrier-to-noise ratio is the biggest challenge for the realization of fiber-optic cable television super-trunk transmission system.
组合二阶互调劣化的克服办法之一是对光纤进行色散补偿。由于光纤中的自相位调制要通过光纤色散才能转化为额外的光波强度调制,人们希望从控制光纤色散的角度来克服光纤非线性的影响。色散补偿可用色散补偿光纤或实现。色散补偿光纤的优点是带宽大,时延特性线性好(时延纹波小),对补偿器的位置不如啁啾光纤光栅敏感。缺点是插入损耗较大,非线性也较大。One of the ways to overcome the combined second-order intermodulation degradation is to perform dispersion compensation on the optical fiber. Since the self-phase modulation in the fiber can be converted into additional light wave intensity modulation through fiber dispersion, people hope to overcome the influence of fiber nonlinearity from the perspective of controlling fiber dispersion. Dispersion compensation can be realized with dispersion compensating fiber or optical fiber. The advantages of dispersion compensating fiber are large bandwidth, good linearity of delay characteristics (small delay ripple), and less sensitivity to the position of the compensator than chirped fiber gratings. The disadvantage is that the insertion loss is large and the nonlinearity is also large.
光纤有线电视超干线传输系统要求使用掺铒光纤放大器链,链中相邻两EDFA间的光纤跨距由系统指标所容忍的入纤光功率和后一掺铒光纤放大器的输入光功率决定。入纤光功率受制于受激布里渊散射门限和系统组合二阶互调指标,在超干线系统中一般不超过16dBm。掺铒光纤放大器的输入光功率则受制于系统载噪比指标。由于放大的自发辐射噪声(ASE)的存在,掺铒光纤放大器引起的系统输出载噪比损伤依赖于它的输入光功率,输入光功率越大,载噪比跌落越少。The fiber-optic CATV ultra-trunk line transmission system requires the use of erbium-doped fiber amplifier chains. The fiber span between two adjacent EDFAs in the chain is determined by the input optical power tolerated by the system index and the input optical power of the next erbium-doped fiber amplifier. The optical power entering the fiber is subject to the stimulated Brillouin scattering threshold and the second-order intermodulation index of the system combination, and generally does not exceed 16dBm in the ultra-trunk system. The input optical power of the erbium-doped fiber amplifier is subject to the system carrier-to-noise ratio index. Due to the existence of amplified spontaneous emission noise (ASE), the system output carrier-to-noise ratio impairment caused by the erbium-doped fiber amplifier depends on its input optical power. The greater the input optical power, the less the carrier-to-noise ratio drops.
原有的光纤有线电视超干线传输系统如图1所示,由光发射机(31)、多段光纤和多个掺铒光纤放大器(32、33、34、35)级联组成,并在适当的地方插入色散补偿光纤(36),色散补偿光纤的长度按D*L=Dd*Ld计算,D为传输光纤的色散常数、Dd为色散补偿光纤的色散,L为需要补偿的传输光纤长度,Ld为色散补偿光纤的长度的。The original fiber-optic CATV ultra-trunk line transmission system is shown in Figure 1. It consists of an optical transmitter (31), multiple segments of optical fiber and multiple erbium-doped optical fiber amplifiers (32, 33, 34, 35) cascaded. The dispersion compensation fiber (36) is inserted in the place, and the length of the dispersion compensation fiber is calculated according to D*L=D d *L d , D is the dispersion constant of the transmission fiber, D d is the dispersion of the dispersion compensation fiber, and L is the transmission fiber to be compensated length, L d is the length of the dispersion compensating fiber.
这种系统存在以下问题:This system has the following problems:
1、色散补偿光纤长度的计算只考虑了色散的影响,没有考虑到大的入纤功率造成的自相位调制效应的影响,使补偿不精确,需要在工程中反复调整。1. The calculation of the length of the dispersion compensation fiber only considers the influence of dispersion, but does not take into account the influence of the self-phase modulation effect caused by the large input fiber power, which makes the compensation inaccurate and needs to be adjusted repeatedly in the project.
2、在存在大于100km的超长跨距光中继段时,由于后级掺铒光纤放大器的输入光功率较小,使系统载噪比指标严重劣化,如果在中间增加光中继点,在有些条件下会受到供电、环境等条件限制。2. When there is an ultra-long-span optical relay section greater than 100km, the system carrier-to-noise ratio index is seriously deteriorated due to the small input optical power of the subsequent erbium-doped fiber amplifier. If an optical relay point is added in the middle, the Under some conditions, it will be limited by power supply, environment and other conditions.
3、由于光纤有线电视超干线传输系统覆盖范围大,用户多,如果在图1某一点发生设备故障或光纤断裂,会造成大范围收视中断,而修复时间较长,这是广电安全播控所不允许的。3. Due to the large coverage and many users of the optical fiber cable TV super trunk line transmission system, if equipment failure or optical fiber breakage occurs at a certain point in Figure 1, it will cause a large-scale viewing interruption, and the repair time will be long. This is the radio and television safety broadcast control center not allowed.
由于以上原因,近年来国内对光纤有线电视超干线传输系统的实验和工程实践基本都采用凑试法,缺乏理论指导,以致实验结果差异较大,效果也不理想。在工程上需要反复对各种设备和参数进行调试,使施工周期长,性能也不稳定。Due to the above reasons, in recent years, the experiments and engineering practice of fiber-optic cable TV ultra-trunk transmission system in China have basically adopted the method of trial and error, lacking theoretical guidance, resulting in large differences in experimental results and unsatisfactory results. In engineering, various equipment and parameters need to be debugged repeatedly, which makes the construction period long and the performance unstable.
发明内容Contents of the invention
本发明的目的在于提供一种光纤有线电视超干线传输系统,该系统不仅能够提高电视超干线传输可靠性,还可减少干线传输系统的调试时间。The purpose of the present invention is to provide an optical fiber cable television super-trunk transmission system, which can not only improve the reliability of TV super-trunk transmission, but also reduce the debugging time of the trunk transmission system.
为达到上述目的,本发明采用下述技术方案:To achieve the above object, the present invention adopts the following technical solutions:
本发明的一种光纤有线电视超干线传输系统,该系统包括前端模块1、第一分前端模块2、第二分前端模块3、第三分前端模块4、第四分前端模块5、第五分前端模块6、第六分前端模块7、正向光纤8、反向光纤9,其中:An optical fiber cable television super-trunk line transmission system of the present invention, the system includes a front-end module 1, a first sub-front-
前端模块,用于将射频电视信号调制成第一路光信号和第二路光信号;The front-end module is used for modulating the radio frequency television signal into the first optical signal and the second optical signal;
所述的第一分前端模块2、第二分前端模块3、第三分前端模块4、第四分前端模块5、第五分前端模块6、第六分前端模块7,各模块分别用于色散补偿、放大光信号、对光信号进行分路、选择光信号、分配光功率、补偿光信号的功率。The first branch front-
上述各模块之间的信号传递关系为:将射频电视信号经前端模块1调制成第一路光信号和第二路光信号,第一路光信号通过正向光纤8依次经第一分前端模块2、第二分前端模块3、第三分前端模块4、第四分前端模块5、第五分前端模块6、第六分前端模块7传递,第二路光信号反向光纤9依次经第六分前端模块7、第五分前端模块6、第四分前端模块5、第三分前端模块4、第二分前端模块3、第一分前端模块2传递,实现超长距离上传输数字信号传输。The signal transmission relationship between the above modules is as follows: the radio frequency television signal is modulated into the first optical signal and the second optical signal through the front-end module 1, and the first optical signal passes through the forward
所述的前端模块1包括正向光发射机11、反向光发射机12、正向切换光开关13、反向切换光开关14、正向掺铒光纤放大器15、反向掺铒光纤放大器16,其中:、The front-end module 1 includes a forward optical transmitter 11, a reverse optical transmitter 12, a forward switching optical switch 13, a reverse switching optical switch 14, a forward erbium-doped fiber amplifier 15, and a reverse erbium-doped fiber amplifier 16 ,in:,
正向光发射机11、反向光发射机12,分别将射频电视信号调制到两个输出光口;The forward optical transmitter 11 and the reverse optical transmitter 12 respectively modulate the radio frequency television signal to two output optical ports;
正向切换光开关13,用于切换出正向光信号,常闭端口连接所述光发射机17的第一个输出光口,常开端口连接所述光发射机18的第一个输出光口,公共端口与掺铒光纤放大器21连接;The forward switching optical switch 13 is used to switch out the forward optical signal, the normally closed port is connected to the first output optical port of the optical transmitter 17, and the normally open port is connected to the first output optical port of the optical transmitter 18 Mouth, common port is connected with erbium-doped
反向切换光开关14,用于切换出反向光信号,常闭端口与所述光发射机17的第二个输出光口连接,常开端口所述光发射机18的第二个输出光口连接,公共端口与掺铒光纤放大器22连接;The reverse switching optical switch 14 is used to switch out the reverse optical signal, the normally closed port is connected with the second output optical port of the optical transmitter 17, and the second output optical port of the optical transmitter 18 of the normally open port is The port is connected, and the common port is connected with the erbium-doped fiber amplifier 22;
正向掺铒光纤放大器15,用于放大正向光信号,并输出至正向光纤8;A forward erbium-doped fiber amplifier 15 is used to amplify the forward optical signal and output it to the forward
反向掺铒光纤放大器16,用于放大反向光信号,并输出至反向光纤9。The reverse erbium-doped fiber amplifier 16 is used to amplify the reverse optical signal and output it to the reverse optical fiber 9 .
上述的第一分前端模块2、第二分前端模块3、第三分前端模块4、第四分前端模块5、第五分前端模块6、第六分前端模块7,其中,The above-mentioned first sub-front-
所述的第一分前端模块2、第二分前端模块3、第三分前端模块4、第四分前端模块5、第五分前端模块6、第六分前端模块7分别包括:The first branch front-
正向色散补偿模块21,用于对正向光纤8进行色散补偿,其输出与正向掺铒光纤放大器23连接;Forward
反向色散补偿模块22,用于对反向光纤9的前一中继段进行色散补偿,其输出接掺铒光纤放大器24连接;The reverse dispersion compensation module 22 is used to carry out dispersion compensation to the previous relay section of the reverse optical fiber 9, and its output is connected to the erbium-doped fiber amplifier 24;
正向掺铒光纤放大器23,用于放大正向光信号,其输出与正向光分路器25连接;Forward erbium-doped fiber amplifier 23, for amplifying forward optical signal, its output is connected with forward optical splitter 25;
反向掺铒光纤放大器24,用于放大反向光信号,其输出与反向光分路器26连接;Reverse erbium-doped fiber amplifier 24 is used to amplify the reverse optical signal, and its output is connected with reverse optical splitter 26;
正向光分路器25,用于对正向光信号进行分路,一路输出与正向光纤连接,另一路输出与光选择开关27的常闭端口连接;The forward optical splitter 25 is used to split the forward optical signal, one output is connected to the forward optical fiber, and the other output is connected to the normally closed port of the optical selection switch 27;
反向光分路器26,用于对反向光信号进行分路,一路输出与反向光纤9的下一个中继段连接,另一路输出与选择光开关27的常开端口连接;The reverse optical splitter 26 is used to split the reverse optical signal, one output is connected to the next relay section of the reverse optical fiber 9, and the other output is connected to the normally open port of the selection optical switch 27;
光选择开关27,用于选择正向或反向光信号,输出与分配掺铒光纤放大器28连接;Optical selection switch 27 is used to select forward or reverse optical signal, and the output is connected with distribution erbium-doped fiber amplifier 28;
分配掺铒光纤放大器28,用于给分前端模块后的光分配网提供足够的光功率;Distribute the erbium-doped fiber amplifier 28, for providing enough optical power to the optical distribution network behind the sub-front-end module;
正向泵浦拉曼放大器29,当正向光纤8的前一光纤段的长度超过100km时,用于补偿正向光信号的功率,输出连接正向色散补偿模块21;Forward pumping Raman amplifier 29, when the length of the previous optical fiber section of forward
反向泵浦拉曼放大器30,当反向光纤9的前一中继段的长度超过100km时,用于补偿反向光信号的功率,输出连接反向色散补偿模块22。The reverse pump Raman amplifier 30 is used to compensate the power of the reverse optical signal when the length of the previous hop of the reverse optical fiber 9 exceeds 100 km, and the output is connected to the reverse dispersion compensation module 22 .
上述的正向色散补偿模块21包括掺铒光纤放大器201和色散补偿光纤202,反向色散补偿模块22包括掺铒光纤放大器203和色散补偿光纤204,其中:The above-mentioned forward
掺铒光纤放大器201,用于补偿色散补偿光纤的损耗,输出与至色散补偿光纤连接;Erbium-doped fiber amplifier 201, used to compensate the loss of the dispersion compensation fiber, the output is connected to the dispersion compensation fiber;
色散补偿光纤202,用于改善由光纤色散和自相位调制引起的系统组合二阶互调指标,色散补偿光纤的长度 按如下计算式,其计算式:
式中,为DCF的色散常数,D为传输光纤的色散常数,为入纤光功率,为传输光纤的非线性系数,L为补偿段的光纤长度,为色散补偿光纤的输入光功率,为色散补偿光纤的非线性系数,为色散补偿光纤的长度。α为传输光纤的损耗常数,为DCF的损耗常数。In the formula, is the dispersion constant of DCF, D is the dispersion constant of the transmission fiber, is the optical power into the fiber, is the nonlinear coefficient of the transmission fiber, L is the fiber length of the compensation section, is the input optical power of the dispersion compensating fiber, is the nonlinear coefficient of the dispersion compensating fiber, The length of the fiber for dispersion compensation. α is the loss constant of the transmission fiber, is the loss constant of DCF.
所述的正向色散补偿模块21、反向色散补偿模块22,其分别包括小功率掺铒光纤放大器、色散补偿光纤。The forward
本发明的一种光纤有线电视超干线传输系统与现有技术相比较具有如下突出实质性特点和显著优点:Compared with the prior art, a fiber-optic cable television ultra-trunk line transmission system of the present invention has the following prominent substantive features and significant advantages:
1、该系统采用双发射机双纤双向传输结构,对信号进行冗余备份,使系统恢复时间缩短至光选择开关的切换时间,达到毫秒级,提高了系统可靠性;1. The system adopts a dual-transmitter dual-fiber bidirectional transmission structure, and redundantly backs up the signal, so that the system recovery time is shortened to the switching time of the optical selection switch, which reaches the millisecond level, and the system reliability is improved;
2、该系统根据补偿段的入纤光功率、光纤长度等预先计算色散补偿光纤长度,定制色散补偿器,从而可以对组合二阶互调指标精确补偿,使补偿效果更好;2. The system pre-calculates the length of the dispersion compensation fiber according to the input optical power and fiber length of the compensation section, and customizes the dispersion compensator, so that the combined second-order intermodulation index can be accurately compensated, so that the compensation effect is better;
3、该系统采用拉曼放大器解决了100km以上超长跨距无光中继的信号高质量传输问题,提高了后级EDFA的输入光功率,改善了CNR指标。3. The system uses a Raman amplifier to solve the problem of high-quality signal transmission with an ultra-long span of more than 100km without optical relay, which improves the input optical power of the subsequent EDFA and improves the CNR index.
附图说明Description of drawings
图1 为现有的光纤有线电视超干线传输系统的结构示意图;Fig. 1 is the structural schematic diagram of existing optical fiber cable television ultra-trunk transmission system;
图2 为本发明的一种光纤有线电视超干线传输系统的结构示意图;Fig. 2 is the structural representation of a kind of optical fiber cable television ultra-trunk line transmission system of the present invention;
图3 为本发明实施例的正向光纤线路配置的示意图。FIG. 3 is a schematic diagram of forward optical fiber line configuration according to an embodiment of the present invention.
具体实施方式Detailed ways
下面结合附图和具体实施例对本发明作进一步详细的描述。如图2所示,本发明的一种光纤有线电视超干线传输系统,该系统包括前端模块(1)、第一分前端模块(2)、第二分前端模块(3)、第三分前端模块(4)、第四分前端模块(5)、第五分前端模块(6)、第六分前端模块(7)、正向光纤(8)、反向光纤(9),其中:The present invention will be further described in detail below in conjunction with the accompanying drawings and specific embodiments. As shown in Figure 2, an optical fiber cable television super-trunk line transmission system of the present invention, the system includes a front-end module (1), a first sub-front-end module (2), a second sub-front-end module (3), a third sub-front-end Module (4), fourth-point front-end module (5), fifth-point front-end module (6), sixth-point front-end module (7), forward optical fiber (8), reverse optical fiber (9), of which:
前端模块,用于将射频电视信号调制成第一路光信号和第二路光信号,The front-end module is used to modulate the radio frequency television signal into the first optical signal and the second optical signal,
所述的第一分前端模块(2)、第二分前端模块(3)、第三分前端模块(4)、第四分前端模块(5)、第五分前端模块(6)、第六分前端模块(7),各模块分别用于对用于色散补偿、放大光信号、对光信号进行分路、选择光信号、分配光功率、补偿光信号的功率;The first branch front-end module (2), the second branch front-end module (3), the third branch front-end module (4), the fourth branch front-end module (5), the fifth branch front-end module (6), the sixth branch It is divided into front-end modules (7), and each module is used for dispersion compensation, amplifying optical signals, splitting optical signals, selecting optical signals, distributing optical power, and compensating the power of optical signals;
上述各模块之间的信号传递关系为:将射频电视信号经前端模块(1)调制成第一路光信号和第二路光信号,第一路光信号通过正向光纤(8)依次经第一分前端模块(2)、第二分前端模块(3)、第三分前端模块(4)、第四分前端模块(5)、第五分前端模块(6)、第六分前端模块(7)传递,第二路光信号反向光纤(9)依次经第六分前端模块(7)、第五分前端模块(6)、第四分前端模块(5)、第三分前端模块(4)、第二分前端模块(3)、第一分前端模块(2)传递,实现超长距离上传输数字信号传输。The signal transmission relationship between the above modules is as follows: the radio frequency television signal is modulated into the first optical signal and the second optical signal through the front-end module (1), and the first optical signal passes through the forward optical fiber (8) in turn through the second optical signal. One point front-end module (2), the second point front-end module (3), the third point front-end module (4), the fourth point front-end module (5), the fifth point front-end module (6), the sixth point front-end module ( 7) Transmission, the second optical signal reverse optical fiber (9) passes through the sixth sub-front-end module (7), the fifth sub-front-end module (6), the fourth sub-front-end module (5), the third sub-front-end module ( 4), the second sub-front-end module (3) and the first sub-front-end module (2) are transmitted to realize digital signal transmission over a long distance.
所述的前端模块(1)包括:正向光发射机(11)、反向光发射机(12)、正向切换光开关(13)、反向切换光开关(14)、正向掺铒光纤放大器(15)、反向掺铒光纤放大器(16),其中:、The front-end module (1) includes: forward optical transmitter (11), reverse optical transmitter (12), forward switching optical switch (13), reverse switching optical switch (14), forward erbium-doped Optical fiber amplifier (15), reverse erbium-doped optical fiber amplifier (16), wherein:,
正向光发射机(11)、反向光发射机(12),分别将射频电视信号调制到两个输出光口;The forward optical transmitter (11) and the reverse optical transmitter (12) respectively modulate radio frequency television signals to two output optical ports;
正向切换光开关(13),用于切换出正向光信号,常闭端口连接所述光发射机(17)的第一个输出光口,常开端口连接所述光发射机(18)的第一个输出光口,公共端口与掺铒光纤放大器(21)连接;The forward switching optical switch (13) is used to switch out the forward optical signal, the normally closed port is connected to the first output optical port of the optical transmitter (17), and the normally open port is connected to the optical transmitter (18) The first output optical port of the common port is connected with the erbium-doped fiber amplifier (21);
反向切换光开关(14),用于切换出反向光信号,常闭端口与所述光发射机(17)的第二个输出光口连接,常开端口所述光发射机(18)的第二个输出光口连接,公共端口与掺铒光纤放大器(22)连接;Reverse switching optical switch (14), used to switch out the reverse optical signal, the normally closed port is connected to the second output optical port of the optical transmitter (17), and the normally open port of the optical transmitter (18) The second output optical port is connected, and the common port is connected with the erbium-doped fiber amplifier (22);
正向掺铒光纤放大器(15),用于放大正向光信号,并输出至正向光纤(8);A forward erbium-doped fiber amplifier (15), used to amplify the forward optical signal and output it to the forward optical fiber (8);
反向掺铒光纤放大器(16),用于放大反向光信号,并输出至反向光纤(9);A reverse erbium-doped fiber amplifier (16), used to amplify the reverse optical signal and output it to the reverse optical fiber (9);
所述的第一分前端模块(2)、第二分前端模块(3)、第三分前端模块(4)、第四分前端模块(5)、第五分前端模块(6)、第六分前端模块(7),The first branch front-end module (2), the second branch front-end module (3), the third branch front-end module (4), the fourth branch front-end module (5), the fifth branch front-end module (6), the sixth branch sub-front-end module (7),
所述的第一分前端模块(2)、第二分前端模块(3)、第三分前端模块(4)、第四分前端模块(5)、第五分前端模块(6)、第六分前端模块(7)分别包括:The first branch front-end module (2), the second branch front-end module (3), the third branch front-end module (4), the fourth branch front-end module (5), the fifth branch front-end module (6), the sixth branch Sub-front-end modules (7) include:
正向色散补偿模块(21),用于对正向光纤(8)进行色散补偿,其输出与正向掺铒光纤放大器(23)连接;The forward dispersion compensation module (21) is used to perform dispersion compensation on the forward optical fiber (8), and its output is connected to the forward erbium-doped fiber amplifier (23);
反向色散补偿模块(22),用于对反向光纤(9)的前一中继段进行色散补偿,其输出接掺铒光纤放大器(24)连接;The reverse dispersion compensation module (22) is used to perform dispersion compensation on the previous relay section of the reverse optical fiber (9), and its output is connected to the erbium-doped fiber amplifier (24);
正向掺铒光纤放大器(23),用于放大正向光信号,其输出与正向光分路器(25)连接;The forward erbium-doped fiber amplifier (23) is used to amplify the forward optical signal, and its output is connected to the forward optical splitter (25);
反向掺铒光纤放大器(24),用于放大反向光信号,其输出反向光分路器(26)连接;The reverse erbium-doped fiber amplifier (24) is used to amplify the reverse optical signal, and its output is connected to the reverse optical splitter (26);
正向光分路器(25),用于对正向光信号进行分路,一路输出与正向光纤连接,另一路输出与光选择开关(27)的常闭端口连接;The forward optical splitter (25) is used to split the forward optical signal, one output is connected to the forward optical fiber, and the other output is connected to the normally closed port of the optical selection switch (27);
反向光分路器(26),用于对反向光信号进行分路,一路输出与反向光纤(9)的下一个中继段连接,另一路输出与光选择开关(27)的常开端口连接;The reverse optical splitter (26) is used to split the reverse optical signal, one output is connected to the next relay section of the reverse optical fiber (9), and the other output is connected to the normal optical selector switch (27). open port connection;
光选择开关(27),用于选择正向或反向光信号,输出与分配掺铒光纤放大器(28)连接;Optical selector switch (27), used to select forward or reverse optical signal, the output is connected with distribution erbium-doped fiber amplifier (28);
分配掺铒光纤放大器(28),用于给分前端模块后的光分配网提供足够的光功率;Distribution of erbium-doped fiber amplifiers (28), used to provide sufficient optical power to the optical distribution network after the sub-head-end module;
正向泵浦拉曼放大器(29),当正向光纤(8)的前一光纤段的长度超过100km时,用于补偿正向光信号的功率,输出连接正向色散补偿模块(21);A forward-pumped Raman amplifier (29), used to compensate the power of the forward optical signal when the length of the previous fiber section of the forward optical fiber (8) exceeds 100 km, and the output is connected to the forward dispersion compensation module (21);
反向泵浦拉曼放大器(30),当反向光纤(9)的前一中继段的长度超过100km时,用于补偿反向光信号的功率,输出连接反向色散补偿模块(22)。Reversely pumped Raman amplifier (30), used to compensate the power of the reverse optical signal when the length of the previous trunk section of the reverse optical fiber (9) exceeds 100km, the output is connected to the reverse dispersion compensation module (22) .
上述的正向色散补偿模块(21)包括掺铒光纤放大器(201)和色散补偿光纤(202),反向色散补偿模块(22)包括掺铒光纤放大器(203)和色散补偿光纤(204),其中:掺铒光纤放大器(201)(203),用于补偿色散补偿光纤的损耗,输出与色散补偿光纤连接;色散补偿光纤(202)(204),用于改善由光纤色散和自相位调制引起的系统组合二阶互调指标,色散补偿光纤的长度按如下计算式,其计算式:The above-mentioned forward dispersion compensation module (21) includes an erbium-doped fiber amplifier (201) and a dispersion compensation fiber (202), and the reverse dispersion compensation module (22) includes an erbium-doped fiber amplifier (203) and a dispersion compensation fiber (204), Among them: erbium-doped fiber amplifier (201) (203), used to compensate the loss of dispersion compensation fiber, the output is connected with dispersion compensation fiber; dispersion compensation fiber (202) (204), used to improve fiber dispersion and self-phase modulation caused by The second-order intermodulation index of the system combination, the length of the dispersion compensating fiber According to the following calculation formula, its calculation formula:
式中,为DCF的色散常数,D为传输光纤的色散常数,为入纤光功率,为传输光纤的非线性系数,L为补偿段的光纤长度,为色散补偿光纤的输入光功率,为色散补偿光纤的非线性系数,为色散补偿光纤的长度。α为传输光纤的损耗常数,为DCF的损耗常数。In the formula, is the dispersion constant of DCF, D is the dispersion constant of the transmission fiber, is the optical power into the fiber, is the nonlinear coefficient of the transmission fiber, L is the fiber length of the compensation section, is the input optical power of the dispersion compensating fiber, is the nonlinear coefficient of the dispersion compensating fiber, The length of the fiber for dispersion compensation. α is the loss constant of the transmission fiber, is the loss constant of DCF.
所述的正向色散补偿模块(21)、反向色散补偿模块(22),其分别包括:小功率掺铒光纤放大器、色散补偿光纤。The forward dispersion compensation module (21) and the reverse dispersion compensation module (22) respectively include: a low-power erbium-doped optical fiber amplifier and a dispersion compensation optical fiber.
本发明的一种光纤有线电视超干线传输系统的保护切换过程说明如下:The protection switching process of a kind of optical fiber cable television ultra-trunk line transmission system of the present invention is described as follows:
上述系统中的前端模块(1)的切换过程:The switching process of the front-end module (1) in the above system:
上述系统中的前端模块(1)中光发射机(11)和光发射机(12)输入的射频信号相同。系统正常工作时,光发射机(11)输出的光信号进入光开关(13)的常闭端口,经光开关(13)连接到掺铒光纤放大器(15),经放大后输入至正向光纤。光发射机(12)输出的光信号进入光开关(14)的常闭端口,经光开关(14)连接到掺铒光纤放大器(16),经放大后输入至反向光纤。The radio frequency signals input by the optical transmitter (11) and the optical transmitter (12) in the front-end module (1) in the above system are the same. When the system is working normally, the optical signal output by the optical transmitter (11) enters the normally closed port of the optical switch (13), is connected to the erbium-doped fiber amplifier (15) through the optical switch (13), and is input to the forward optical fiber after being amplified . The optical signal output by the optical transmitter (12) enters the normally closed port of the optical switch (14), is connected to the erbium-doped optical fiber amplifier (16) through the optical switch (14), and is input to the reverse optical fiber after being amplified.
当光发射机(11)损坏,无光输出时,光开关(13)检测到常闭端口无光输入,则切换到常开端口,连通光发射机(12)与掺铒光纤放大器(15),恢复下行正向光信号,当光发射机(12)损坏,无光输出时,光开关(14)检测到常闭端口无光输入,则切换到常开端口,连通光发射机(11)与掺铒光纤放大器(16),恢复下行反向光信号。从而保证了自要有一台发射机工作,就可以产生正向和反向光信号。When the optical transmitter (11) is damaged and there is no optical output, the optical switch (13) detects that the normally closed port has no optical input, then switches to the normally open port, and connects the optical transmitter (12) with the erbium-doped fiber amplifier (15) , restore the downlink forward optical signal, when the optical transmitter (12) is damaged and there is no optical output, the optical switch (14) detects that the normally closed port has no optical input, then switches to the normally open port and connects to the optical transmitter (11) With the erbium-doped fiber amplifier (16), the downlink reverse optical signal is recovered. Therefore, it is ensured that the forward and reverse optical signals can be generated since only one transmitter works.
上述系统中的第二分前端模块(3)的切换过程:The switching process of the second sub-front-end module (3) in the above system:
上述系统正常工作时,正向光纤(8)的上一个光纤段来的正向光信号输入反向泵浦拉曼放大器(29),经掺铒光纤放大器(201)后,输入色散补偿光纤(202),再经正向掺铒光纤放大器(23)输入光分路器(25),光分路器(25)一路输出接下一个正向光纤段,另一路输出接光选择开关(27)常闭端口,再经分配掺铒光纤放大器(28)后输出至光分配网。反向光纤(9)的上一个光纤段来的反向光信号输入反向泵浦拉曼放大器(30),经掺铒光纤放大器(203)后,输入色散补偿光纤(204),再经掺铒光纤放大器(24)输入光分路器(26),反向光分路器(26)一路输出接下一个反向光中继段,另一路输出接光选择开关(27)常开端口。When the above system works normally, the forward optical signal from the last fiber section of the forward optical fiber (8) is input into the reverse pump Raman amplifier (29), and after passing through the erbium-doped optical fiber amplifier (201), it is input into the dispersion compensation optical fiber ( 202), and then input the optical splitter (25) through the forward erbium-doped fiber amplifier (23), the output of the optical splitter (25) is connected to the next forward fiber section, and the other output is connected to the optical selection switch (27) The normally closed port is output to the optical distribution network after distribution of the erbium-doped optical fiber amplifier (28). The reverse optical signal from the last fiber section of the reverse optical fiber (9) is input into the reverse pumped Raman amplifier (30), after passing through the erbium-doped optical fiber amplifier (203), it is input into the dispersion compensation optical fiber (204), and then passed through the doped The erbium fiber amplifier (24) is input to the optical splitter (26), and one output of the reverse optical splitter (26) is connected to the next reverse optical relay section, and the other output is connected to the normally open port of the optical selection switch (27).
当正向光纤断裂或正向光纤路径上某一设备出现故障时,光选择开关(27)检测到常闭端口无光输入,则切换到常开端口,连通反向光分路器(26)与分配掺铒光放大器(28),使反向光路与光分配网连通,恢复光信号。When the forward optical fiber breaks or a certain device on the forward optical fiber path fails, the optical selection switch (27) detects that there is no optical input at the normally closed port, then switches to the normally open port and connects to the reverse optical splitter (26) And distribute the erbium-doped optical amplifier (28), make the reverse optical path communicate with the optical distribution network, restore the optical signal.
为了验证本发明的光纤有线电视超干线传输系统的传输可靠性和干线传输系统的调试时间对该系统的色散补偿光纤长度、载噪比、调制误差比指标进行验证测试:In order to verify the transmission reliability of the optical fiber cable TV ultra-trunk transmission system of the present invention and the debugging time of the trunk transmission system, the dispersion compensation optical fiber length, carrier-to-noise ratio, and modulation error ratio index of the system are verified and tested:
如图3所示,本发明的传输系统中的正向光纤线路的配置图,该配置图的线路总长度为560km,图中省略了对系统指标不产生影响的光选择开关与光分路器。As shown in Figure 3, the configuration diagram of the forward optical fiber line in the transmission system of the present invention, the total length of the line of this configuration diagram is 560km, and the optical selection switch and the optical splitter that do not have an impact on the system index are omitted in the figure .
在光纤段(61)、光纤段(62)、光纤段(63)、光纤段(64)、光纤段(65)分别设置了色散补偿光纤(39、42、46、49、52),光纤段(60)没有采用色散补偿,采用掺铒光纤放大器(41)、掺铒光纤放大器(45)、掺铒光纤放大器(48)、掺铒光纤放大器(51)分别补偿色散补偿光纤的衰减,在超长跨距段(61)、超长跨距段(63)采用14dB反向泵浦拉曼放大器(38)、反向泵浦拉曼放大器(44),以提高输出功率,改善系统载噪比。Dispersion compensating optical fibers (39, 42, 46, 49, 52) are respectively arranged in the optical fiber section (61), optical fiber section (62), optical fiber section (63), optical fiber section (64), and optical fiber section (65), and the optical fiber section (60) Dispersion compensation is not used, and erbium-doped fiber amplifiers (41), erbium-doped fiber amplifiers (45), erbium-doped fiber amplifiers (48), and erbium-doped fiber amplifiers (51) are used to compensate the attenuation of dispersion-compensated optical fibers respectively. The long-span section (61) and the ultra-long-span section (63) use 14dB reverse-pumped Raman amplifiers (38) and reverse-pumped Raman amplifiers (44) to increase output power and improve system carrier-to-noise ratio .
按上述式(1)计算得到最佳的色散补偿光纤长度,采用的DCF参数为:,,,。采用7dBm输出的小功率掺铒光纤放大器补偿色散补偿光纤的衰减,经计算得到的色散补偿光纤长度如表1:Calculate the optimal dispersion compensation fiber length according to the above formula (1) , the DCF parameters used are: , , , . A low-power erbium-doped fiber amplifier with a 7dBm output is used to compensate the attenuation of the dispersion compensation fiber. The calculated length of the dispersion compensation fiber is shown in Table 1:
表1 色散补偿光纤长度Table 1 Dispersion compensation fiber length
如图3所示,按照图中的正向光纤线路配置对本发明的系统进行测试,得到的指标为载噪比CNR>40dB、组合二阶互调指标CSO>55dB、数字电视调制误差比MER>35dB,满足了在超长距离上高质量传输数字电视的传输要求。As shown in Figure 3, the system of the present invention is tested according to the forward optical fiber line configuration in the figure, and the obtained indexes are carrier-to-noise ratio CNR>40dB, combined second-order intermodulation index CSO>55dB, digital TV modulation error ratio MER> 35dB, which meets the transmission requirements of high-quality digital TV transmission over long distances.
由以上叙述可以看出,本发明的一种光纤有线电视超干线传输系统采用双发射机双纤双向冗余传输结构能提高了系统可靠性,通过计算色散补偿光纤的长度的色散补偿效果,改善了组合二阶互调指标;采用反向泵浦分布式拉曼放大器解决了超长跨距无光中继的信号高质量传输问题,改善了载噪比指标。并给出了系统指标的计算方法,能够在系统设计阶段根据实际拓扑结构进行传输设备配置,从而缩短工程调试时间。As can be seen from the above narration, a kind of fiber-optic cable TV ultra-trunk line transmission system of the present invention adopts a dual-transmitter dual-fiber bidirectional redundant transmission structure, which can improve system reliability, and improve the dispersion compensation effect by calculating the length of the dispersion-compensating optical fiber. The combined second-order intermodulation index is obtained; the reverse-pumped distributed Raman amplifier is used to solve the problem of high-quality signal transmission with ultra-long span without optical relay, and the carrier-to-noise ratio index is improved. And the calculation method of the system index is given, which can configure the transmission equipment according to the actual topology in the system design stage, thereby shortening the project debugging time.
Claims (5)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN 201110087696 CN102186066A (en) | 2011-04-08 | 2011-04-08 | Optical fiber wired television super-trunk line transmission system |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN 201110087696 CN102186066A (en) | 2011-04-08 | 2011-04-08 | Optical fiber wired television super-trunk line transmission system |
Publications (1)
Publication Number | Publication Date |
---|---|
CN102186066A true CN102186066A (en) | 2011-09-14 |
Family
ID=44572127
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN 201110087696 Pending CN102186066A (en) | 2011-04-08 | 2011-04-08 | Optical fiber wired television super-trunk line transmission system |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN102186066A (en) |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN109412694A (en) * | 2017-08-17 | 2019-03-01 | 上海长弋通信技术有限公司 | A kind of 1550nm extra long distance DTV fibre-optic transmission system (FOTS) |
CN110336605A (en) * | 2019-07-25 | 2019-10-15 | 广东复安科技发展有限公司 | A kind of fiber optic interferometric sensing positioning system of long range pinpoint accuracy |
CN111404612A (en) * | 2020-03-25 | 2020-07-10 | 武汉光谷信息光电子创新中心有限公司 | Optical signal amplifying device and transmission system |
Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN1452328A (en) * | 2002-04-18 | 2003-10-29 | 华为技术有限公司 | Erbium doped optical fibre light amplifier |
CN1783757A (en) * | 2004-11-30 | 2006-06-07 | 中兴通讯股份有限公司 | Dispersion compensator of dense wave division multiplex system |
CN201541049U (en) * | 2009-10-26 | 2010-08-04 | 福州高意通讯有限公司 | Two-way transmission optical amplifier |
-
2011
- 2011-04-08 CN CN 201110087696 patent/CN102186066A/en active Pending
Patent Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN1452328A (en) * | 2002-04-18 | 2003-10-29 | 华为技术有限公司 | Erbium doped optical fibre light amplifier |
CN1783757A (en) * | 2004-11-30 | 2006-06-07 | 中兴通讯股份有限公司 | Dispersion compensator of dense wave division multiplex system |
CN201541049U (en) * | 2009-10-26 | 2010-08-04 | 福州高意通讯有限公司 | Two-way transmission optical amplifier |
Non-Patent Citations (2)
Title |
---|
《2007国际有线电视技术研讨会》 20071231 岳文道等 500Km双环自愈数字电视光纤传输系统 253-258 1-3 , * |
《http://blog.sina.com.cn/s/blog_6cbcf9ab0100mu1u.html》 20101104 宋英雄,林如俭 超长距离1550nm 光纤传输系统中色散补偿理论的研究 1-18 4 , * |
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN109412694A (en) * | 2017-08-17 | 2019-03-01 | 上海长弋通信技术有限公司 | A kind of 1550nm extra long distance DTV fibre-optic transmission system (FOTS) |
CN110336605A (en) * | 2019-07-25 | 2019-10-15 | 广东复安科技发展有限公司 | A kind of fiber optic interferometric sensing positioning system of long range pinpoint accuracy |
CN111404612A (en) * | 2020-03-25 | 2020-07-10 | 武汉光谷信息光电子创新中心有限公司 | Optical signal amplifying device and transmission system |
CN111404612B (en) * | 2020-03-25 | 2021-05-11 | 武汉光谷信息光电子创新中心有限公司 | Optical signal amplifying device and transmission system |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP3771738B2 (en) | WDM optical transmission system | |
US7668465B2 (en) | Dispersion-managed optical transmission system | |
US20100183305A1 (en) | Optical communication using coupled optically pumped amplifiers | |
JP4294153B2 (en) | WDM optical transmission system | |
JP4487420B2 (en) | Optical amplification transmission system | |
US7376353B2 (en) | Method and apparatus for dispersion management in optical mesh networks | |
US20090022499A1 (en) | Optical signal to noise ratio system | |
CN102186066A (en) | Optical fiber wired television super-trunk line transmission system | |
JP2001094510A (en) | Optical transmission system, optical transmission line, and optical transmission device | |
Foo et al. | Distributed nonlinearity compensation of dual-polarization signals using optoelectronics | |
Chang et al. | Real-time processed 34× 120 Gb/s transmission over 432.8 km unrepeatered link with legacy fiber and span loss of 74.4 dB | |
Sun et al. | Single-Carrier 400Gb/s Unrepeatered Transmission over a Single 482km Span with Single Fiber Configuration | |
US6985285B2 (en) | Optical transmission system using Raman amplification | |
Jamaludin et al. | Remotely pumped hybrid double-pass L-band optical amplifier utilizing chirped fiber Bragg | |
Su et al. | 40-Gb/s transmission over 2000 km of nonzero-dispersion fiber using 100-km amplifier spacing | |
Cai et al. | Long-haul 40 gb/s RZ-DPSK transmission over 4,450 km with 150-km repeater spacing using Raman assisted EDFAs | |
JP4643679B2 (en) | Optical transmission system | |
Rafique et al. | Scaling the advantages of intra-channel nonlinearity compensation in future flexible optical networks | |
Puc et al. | Novel design of very long, high capacity unrepeatered Raman links | |
JP3609008B2 (en) | Optical transmission line | |
Chen et al. | 1-Tb/s (40-Gb/s/spl times/25 ch) WDM transmission experiment over 342 km of TrueWave (R)(non-zero dispersion) fiber | |
Mikhailov et al. | Optimisation of WDM transmission of multi-10 Gbit/s, 50 GHz-spaced channels over standard fibre | |
Adhikari et al. | On the nonlinear tolerance of 42.8-Gb/s DPSK with co-propagating OFDM neighbors | |
Downie et al. | An 11.1 Gb/s WDM/TDM-PON system with 100 km reach using ultra-low loss fiber and duobinary downstream signals | |
Tsuritani et al. | 340 Gbit/s (32× 10.66 Gbit/s) WDM transmission over 6054 km using hybrid fibre spans of large core fibre and dispersion shifted fibre with low dispersion slope |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
C06 | Publication | ||
PB01 | Publication | ||
C10 | Entry into substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
C02 | Deemed withdrawal of patent application after publication (patent law 2001) | ||
WD01 | Invention patent application deemed withdrawn after publication |
Application publication date: 20110914 |