CN102184460A - 基于协同过滤的煤矿瓦斯涌出量预测方法 - Google Patents

基于协同过滤的煤矿瓦斯涌出量预测方法 Download PDF

Info

Publication number
CN102184460A
CN102184460A CN2011100831069A CN201110083106A CN102184460A CN 102184460 A CN102184460 A CN 102184460A CN 2011100831069 A CN2011100831069 A CN 2011100831069A CN 201110083106 A CN201110083106 A CN 201110083106A CN 102184460 A CN102184460 A CN 102184460A
Authority
CN
China
Prior art keywords
bar
coal seam
numerical value
gas emission
record
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN2011100831069A
Other languages
English (en)
Other versions
CN102184460B (zh
Inventor
刘永利
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Henan University of Technology
Original Assignee
Henan University of Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Henan University of Technology filed Critical Henan University of Technology
Priority to CN 201110083106 priority Critical patent/CN102184460B/zh
Publication of CN102184460A publication Critical patent/CN102184460A/zh
Application granted granted Critical
Publication of CN102184460B publication Critical patent/CN102184460B/zh
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Management, Administration, Business Operations System, And Electronic Commerce (AREA)

Abstract

本发明提出一种基于协同过滤的煤矿瓦斯涌出量预测方法GEPCF(Gas Emission Prediction using Collaborative Filtering),该方法将协同过滤技术应用到煤矿领域的研究中,用兴趣预测的方法可以比较准确地预测矿井瓦斯涌出量,提高煤矿生产的安全性。

Description

基于协同过滤的煤矿瓦斯涌出量预测方法
技术领域
本申请属于计算机技术在煤矿安全领域中的应用。
背景技术
安全是煤矿生产过程中的重中之重。为了确保安全,必须对矿井的安全状况进行严格的监控,矿井瓦斯涌出量是需要监控的一个重要指标之一。矿井瓦斯中包含了有害气体,若涌出量过大,极可能导致井下工作人员窒息甚至发生爆炸。为了避免此类事故的发生,需要根据瓦斯含量高的煤层特征对矿井瓦斯涌出量进行准确预测。
协同过滤是电子商务推荐系统中一种重要的技术。与传统的基于内容过滤直接分析内容进行推荐不同,协同过滤分析用户兴趣,在用户群中找到指定用户的相似(兴趣)用户,综合这些相似用户对某一信息的评价,形成系统对该指定用户对此信息的喜好程度预测。
发明内容
本发明提出一种基于协同过滤的煤矿瓦斯涌出量预测方法GEPCF(Gas Emission Prediction using Collaborative Filtering),该方法将协同过滤技术应用到煤矿领域的研究中,用兴趣预测的方法可以比较准确地预测矿井瓦斯涌出量,提高煤矿生产的安全性。
具体实施方式
GEPCF方法的具体步骤为:
1.数据准备
影响瓦斯涌出量的因素较多,如煤层瓦斯含量、煤层厚度、埋藏深度等,不同的因素对瓦斯涌出量的影响程度也不同。本发明选择其中最为关键的4个因素作为预测瓦斯涌出量的依据,即煤层瓦斯含量、煤层埋藏深度、煤层厚度和开采强度。假设已有n条影响因素与涌出量之间关系的统计记录,表示为r1,r2,…,rn,将这n条记录作为预测的基础,其中ri表示第i条记录,1≤i≤n。ri可表示为ri={xi1,xi2,xi3,xi4,ci},其中xi1、xi2、xi3、xi4分别表示第i条记录中的煤层瓦斯含量、煤层埋藏深度、煤层厚度和开采强度数值,ci表示第i条记录中的瓦斯涌出量。
由于上述4个影响因素数量单位不同,数值差别较大,因此需将已有的n条记录的数据标准化,标准化采用的公式为:其中j=1,2,3,4,x′ij表示第i条记录第j个影响因素经标准化后的数值, x ‾ j = Σ i = 1 n x ij n , S j = Σ i = 1 n ( x ij - x ‾ j ) 2 n .
经数据标准化后,已有的n条记录可表示为r′i={x′i1,x′i2,x′i3,x′i4,ci},r′i表示标准化后的第i条记录。
2.使用协同过滤技术预测瓦斯涌出量
假设根据监测结果得知某回采工作面的4个影响因素数值分别为x1、x2、x3、x4,其中x1、x2、x3、x4分别煤层瓦斯含量、煤层埋藏深度、煤层厚度和开采强度数值,现需要根据x1、x2、x3、x4的数值预测瓦斯涌出量。
1)首先对x1、x2、x3、x4进行数据标准化,可得
Figure BSA00000466360500021
x′j表示标准化之后的影响因素数值,j=1,2,3,4。
2)从n条记录中选择与x′1,x′2,x′3,x′4最为相似的TOPk条记录,k为大于1的自然数。相似性计算选用余弦相似度计算方法,即
Figure BSA00000466360500022
其中r′表示标准化后的现有因素数值,即r′={x′1,x′2,x′3,x′4},rf′i表示r′i的影响因素数值,即rf′i={x′i1,x′i2,x′i3,x′i4}。
3)用选出的TOP k条记录预测瓦斯涌出量,计算公式为
Figure BSA00000466360500023
其中c表示预测出的瓦斯涌出量,km表示TOPk条记录中第m条记录在原来n条记录中的序号,1≤m≤k,1≤km≤n。

Claims (1)

1.一种基于协同过滤的煤矿瓦斯涌出量预测方法,其特征在于,该方法的具体步骤为:
1)数据准备
选择煤层瓦斯含量、煤层埋藏深度、煤层厚度和开采强度4个因素作为预测瓦斯涌出量的依据,假设已有n条影响因素与涌出量之间关系的统计记录,表示为ri,r2,…,rn,将这n条记录作为预测的基础,其中ri表示第i条记录,i为自然数,1≤i≤n,ri可表示为ri={xi1,xi2,xi3,xi4,ci},其中xi1、xi2、xi3、xi4分别表示第i条记录中的煤层瓦斯含量、煤层埋藏深度、煤层厚度和开采强度数值,ci表示第i条记录中的瓦斯涌出量;
将已有的n条记录的数据标准化,标准化公式为:
Figure FSA00000466360400011
其中j=1,2,3,4,x′ij表示第i条记录第j个影响因素经标准化后的数值,
Figure FSA00000466360400012
Figure FSA00000466360400013
经数据标准化后,n条记录可表示为ri′={x′i1,x′i2,x′i3,x′i4,ci},ri′表示标准化后的第i条记录;
2)使用协同过滤技术预测瓦斯涌出量
假设根据监测结果得知某回采工作面的4个影响因素数值分别为x1、x2、x3、x4,其中x1、x2、x3、x4分别表示煤层瓦斯含量、煤层埋藏深度、煤层厚度和开采强度数值,
(1)首先对x1、x2、x3、x4进行数据标准化,可得
Figure FSA00000466360400014
x′j表示标准化之后的影响因素数值,j=1,2,3,4;
(2)从n条记录中选择与x′1,x′2,x′3,x′4最为相似的前k条记录,k为大于1的自然数,相似性计算选用余弦相似度计算方法,即
Figure FSA00000466360400015
其中r′表示标准化后的现有因素数值,即r′={x′1,x′2,x′3,x′4},rf′i表示r′i的影响因素数值,即rf′i={x′i1,x′i2,x′i3,x′i4};
(3)用选出的前k条记录预测瓦斯涌出量,计算公式为其中c表示预测出的瓦斯涌出量,km表示前k条记录中第m条记录在原来n条记录中的序号,且1≤m≤k,1≤km≤n。
CN 201110083106 2011-03-31 2011-03-31 基于协同过滤的煤矿瓦斯涌出量预测方法 Expired - Fee Related CN102184460B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN 201110083106 CN102184460B (zh) 2011-03-31 2011-03-31 基于协同过滤的煤矿瓦斯涌出量预测方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN 201110083106 CN102184460B (zh) 2011-03-31 2011-03-31 基于协同过滤的煤矿瓦斯涌出量预测方法

Publications (2)

Publication Number Publication Date
CN102184460A true CN102184460A (zh) 2011-09-14
CN102184460B CN102184460B (zh) 2013-04-10

Family

ID=44570632

Family Applications (1)

Application Number Title Priority Date Filing Date
CN 201110083106 Expired - Fee Related CN102184460B (zh) 2011-03-31 2011-03-31 基于协同过滤的煤矿瓦斯涌出量预测方法

Country Status (1)

Country Link
CN (1) CN102184460B (zh)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102354381A (zh) * 2011-10-25 2012-02-15 阳泉市联宇星信息技术有限公司 煤矿瓦斯涌出量动态预测分析技术
CN104899392A (zh) * 2015-06-19 2015-09-09 贵州省矿山安全科学研究院 一种基于gis的煤矿瓦斯涌出超限预测智能分析方法
CN113743637A (zh) * 2020-05-29 2021-12-03 青岛海尔电冰箱有限公司 基于协同过滤的煤气浓度预测方法、设备及冰箱

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101320461A (zh) * 2008-07-01 2008-12-10 浙江大学 基于电阻网络和稀疏数据预测的协同过滤方法
US7689452B2 (en) * 2004-05-17 2010-03-30 Lam Chuck P System and method for utilizing social networks for collaborative filtering

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7689452B2 (en) * 2004-05-17 2010-03-30 Lam Chuck P System and method for utilizing social networks for collaborative filtering
CN101320461A (zh) * 2008-07-01 2008-12-10 浙江大学 基于电阻网络和稀疏数据预测的协同过滤方法

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102354381A (zh) * 2011-10-25 2012-02-15 阳泉市联宇星信息技术有限公司 煤矿瓦斯涌出量动态预测分析技术
CN104899392A (zh) * 2015-06-19 2015-09-09 贵州省矿山安全科学研究院 一种基于gis的煤矿瓦斯涌出超限预测智能分析方法
CN104899392B (zh) * 2015-06-19 2017-11-14 贵州省矿山安全科学研究院 一种基于gis的煤矿瓦斯涌出超限预测智能分析方法
CN113743637A (zh) * 2020-05-29 2021-12-03 青岛海尔电冰箱有限公司 基于协同过滤的煤气浓度预测方法、设备及冰箱

Also Published As

Publication number Publication date
CN102184460B (zh) 2013-04-10

Similar Documents

Publication Publication Date Title
Wang et al. Long-term outlook for global rare earth production
Drielsma et al. Mineral resources in life cycle impact assessment—defining the path forward
Guo et al. Assessment of rockburst risk using multivariate adaptive regression splines and deep forest model
Dimitrakopoulos et al. A maximum upside/minimum downside approach to the traditional optimization of open pit mine design
Browning et al. Barnett shale production outlook
Gülen et al. Well economics across ten tiers in low and high Btu (British thermal unit) areas, Barnett Shale, Texas
Heuberger Risk analysis in the mining industry
Zhou et al. Development of a quantitative assessment approach for the coal and gas outbursts in coal mines using rock engineering systems
Wang et al. Intelligent classification model of surrounding rock of tunnel using drilling and blasting method
CN102184460B (zh) 基于协同过滤的煤矿瓦斯涌出量预测方法
Liu et al. Assessment of water inrush risk using the principal component logistic regression model in the Pandao coal mine, China
Babyr Topical themes and new trends in mining industry: Scientometric analysis and research visualization
Muñoz et al. Development of a methodology that integrates environmental and social attributes in the ore resource evaluation and mine planning
Li et al. Cross-project utilisation of tunnel boring machine (TBM) construction data: A case study using big data from Yin-Song diversion project in China
Tu et al. Comprehensive risk assessment and engineering application of mine water inrush based on normal cloud model and local variable weight
Ji et al. Study on key technology of identification of mine water inrush source by PSO-LightGBM
Qin et al. Analysis of the space–time synergy of coal and gas co-mining
Hou et al. Study on recognition of mine water sources based on statistical analysis
Qiu et al. Risk prediction of coal and gas outburst based on abnormal gas concentration in blasting driving face
Wang et al. A review of selected solutions on the evaluation of coal-rock cutting performances of shearer picks under complex geological conditions
Wang et al. Study on stability and economic evaluation of two-well-vertical salt cavern energy storage
Jiao et al. Prediction method of coal mine gas occurrence law based on multi-source data fusion
Ning et al. Influence of stress distribution in coal seams of non-uniform extremely thick key stratum and disaster-causing mechanisms
Li et al. Investigation on coal seam distribution and gas occurrence law in Guizhou, China
Schatzel et al. A study of leakage rates through mine seals in underground coal mines

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C14 Grant of patent or utility model
GR01 Patent grant
CF01 Termination of patent right due to non-payment of annual fee
CF01 Termination of patent right due to non-payment of annual fee

Granted publication date: 20130410

Termination date: 20160331