CN102183951A - Device for monitoring state of rotary bearing and diagnosing fault based on laboratory virtual instrument engineering workbench (Lab VIEW) - Google Patents
Device for monitoring state of rotary bearing and diagnosing fault based on laboratory virtual instrument engineering workbench (Lab VIEW) Download PDFInfo
- Publication number
- CN102183951A CN102183951A CN 201110072759 CN201110072759A CN102183951A CN 102183951 A CN102183951 A CN 102183951A CN 201110072759 CN201110072759 CN 201110072759 CN 201110072759 A CN201110072759 A CN 201110072759A CN 102183951 A CN102183951 A CN 102183951A
- Authority
- CN
- China
- Prior art keywords
- fault diagnosis
- signal
- slewing bearing
- data acquisition
- module
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 238000012544 monitoring process Methods 0.000 title abstract description 9
- 238000003745 diagnosis Methods 0.000 claims abstract description 47
- 230000001133 acceleration Effects 0.000 claims abstract description 21
- 238000012545 processing Methods 0.000 claims abstract description 15
- 238000011161 development Methods 0.000 claims abstract description 14
- 230000003750 conditioning effect Effects 0.000 claims abstract description 10
- 238000001514 detection method Methods 0.000 claims abstract description 9
- 239000000284 extract Substances 0.000 claims abstract description 5
- 238000000605 extraction Methods 0.000 claims abstract description 4
- 238000005070 sampling Methods 0.000 claims abstract description 4
- 238000003860 storage Methods 0.000 claims abstract description 4
- 238000013528 artificial neural network Methods 0.000 claims description 11
- 238000000034 method Methods 0.000 claims description 9
- 238000005516 engineering process Methods 0.000 description 6
- 239000013598 vector Substances 0.000 description 4
- 238000010276 construction Methods 0.000 description 3
- 238000010586 diagram Methods 0.000 description 3
- 238000013473 artificial intelligence Methods 0.000 description 2
- 238000013461 design Methods 0.000 description 2
- 238000013507 mapping Methods 0.000 description 2
- 238000005096 rolling process Methods 0.000 description 2
- 238000004458 analytical method Methods 0.000 description 1
- 238000013459 approach Methods 0.000 description 1
- 230000009286 beneficial effect Effects 0.000 description 1
- 230000005540 biological transmission Effects 0.000 description 1
- 238000004891 communication Methods 0.000 description 1
- 238000005336 cracking Methods 0.000 description 1
- 238000000354 decomposition reaction Methods 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 230000007613 environmental effect Effects 0.000 description 1
- 238000001125 extrusion Methods 0.000 description 1
- 238000007689 inspection Methods 0.000 description 1
- 238000012423 maintenance Methods 0.000 description 1
- 238000004519 manufacturing process Methods 0.000 description 1
- 238000005259 measurement Methods 0.000 description 1
- 238000004377 microelectronic Methods 0.000 description 1
- 230000001105 regulatory effect Effects 0.000 description 1
- 238000007493 shaping process Methods 0.000 description 1
- 238000012360 testing method Methods 0.000 description 1
Images
Landscapes
- Measurement Of Mechanical Vibrations Or Ultrasonic Waves (AREA)
- Testing Of Devices, Machine Parts, Or Other Structures Thereof (AREA)
Abstract
本发明涉及一种基于虚拟仪器开发平台(LabVIEW)的回转支承监测与故障诊断装置,包括工控机、检测装置、稳压电源、数据采集模块、数据处理模块和故障诊断模块,工控机中设有一个包含模拟输入通道的PCI数据采集卡,检测装置中设有加速度传感器和信号调理电路。信号调理电路用于对加速度传感器拾取的信号进行放大、滤波等;数据采集模块将采集到的信号通过程序控制输入工控机中,在LabVIEW平台中编写DAQmx数据采集驱动程序,控制信号的采样频率,输入和输出等。数据处理模块包括信号的去噪显示、存储、特征提取,数据处理模块剔除噪声的干扰,提取信号的时域和频域特征量,为故障诊断做准备;故障诊断模块根据提取的回转支承的特征数据得出故障信息,输出诊断结果和处理意见。本装置构成简单,开放性高,实时性好,人机界面友好,无需诊断专家的参与,便能自动识别回转支承的故障,并且具有较高的可信度。
The invention relates to a slewing bearing monitoring and fault diagnosis device based on a virtual instrument development platform (LabVIEW), including an industrial computer, a detection device, a voltage stabilized power supply, a data acquisition module, a data processing module and a fault diagnosis module. The industrial computer is equipped with A PCI data acquisition card including an analog input channel, an acceleration sensor and a signal conditioning circuit are arranged in the detection device. The signal conditioning circuit is used to amplify and filter the signal picked up by the acceleration sensor; the data acquisition module inputs the collected signal into the industrial computer through program control, and writes the DAQmx data acquisition driver program on the LabVIEW platform to control the sampling frequency of the signal. input and output etc. The data processing module includes signal denoising display, storage, and feature extraction. The data processing module eliminates noise interference, extracts the time domain and frequency domain feature quantities of the signal, and prepares for fault diagnosis; the fault diagnosis module is based on the extracted characteristics of the slewing bearing. The fault information is obtained from the data, and the diagnosis results and processing opinions are output. The device has the advantages of simple structure, high openness, good real-time performance, friendly human-machine interface, and can automatically identify the fault of the slewing bearing without the participation of diagnostic experts, and has high reliability.
Description
技术领域technical field
本发明属于机械设备故障诊断领域,具体涉及一种基于虚拟仪器开发平台(LabVIEW)的回转支承监测与故障诊断装置。The invention belongs to the field of mechanical equipment fault diagnosis, in particular to a slewing bearing monitoring and fault diagnosis device based on a virtual instrument development platform (LabVIEW).
背景技术Background technique
大型回转支承是各类工程机械设备,如塔式起重机、门座式起重机、挖掘机等的重要组成部件。其故障与否直接影响整台机器的作业,又关系到施工人员和生产设备的安全。然而由于其价格昂贵、拆装比较困难、维修周期长,因此需要对大型回转支承进行状态监测以及早期的故障诊断,可以避免突发性故障和不必要的拆检,从而提高经济效益。Large-scale slewing bearings are important components of various construction machinery and equipment, such as tower cranes, portal cranes, and excavators. Its failure or not directly affects the operation of the whole machine, and is also related to the safety of construction personnel and production equipment. However, due to its high price, difficult disassembly and assembly, and long maintenance cycle, it is necessary to carry out condition monitoring and early fault diagnosis of large slewing bearings, which can avoid sudden failures and unnecessary disassembly and inspection, thereby improving economic benefits.
在回转支承的运行过程中,由于存在故障而发生事故的现象是屡见不鲜的。特别是工作过程中回转支承各部件受到挤压力或零部件磨损的作用,造成其工作状态的不断变换导致其故障难以识别。传统的回转支承故障诊断通常是根据工程师的经验判断或者离线信号分析。这种方法的缺点是诊断效率低下,并且过于依赖诊断专家的专业知识。During the operation of the slewing bearing, it is not uncommon for accidents to occur due to faults. Especially during the working process, the components of the slewing bearing are subjected to extrusion force or component wear, which causes the continuous change of its working state and makes it difficult to identify its faults. The traditional slewing bearing fault diagnosis is usually based on the engineer's experience judgment or offline signal analysis. The disadvantage of this approach is that it is inefficient in diagnosis and relies too much on the expertise of diagnostic experts.
近年来,随着计算机技术、微电子技术、传感器技术以及人工智能技术的发展,智能故障诊断系统已经运用于很多大型工程机械设备中。本专利提出了一种基于NI虚拟仪器平台LabVIEW的大型回转支承故障诊断系统,可以快速准确地定位回转支承的故障,并自动给出故障信息。In recent years, with the development of computer technology, microelectronics technology, sensor technology and artificial intelligence technology, intelligent fault diagnosis system has been applied to many large construction machinery equipment. This patent proposes a large-scale slewing bearing fault diagnosis system based on the NI virtual instrument platform LabVIEW, which can quickly and accurately locate the fault of the slewing bearing and automatically provide fault information.
发明内容Contents of the invention
本发明的目的在于提供一种基于虚拟仪器开发平台LabVIEW的回转支承状态监测与故障诊断装置。该装置无需故障诊断专家参与就能在线诊断出回转支承常见故障,并且具有较高的准确率。The purpose of the present invention is to provide a slewing bearing state monitoring and fault diagnosis device based on the virtual instrument development platform LabVIEW. The device can diagnose common faults of slewing bearings online without the participation of fault diagnosis experts, and has a high accuracy rate.
本发明利用近年来信号处理领域、人工智能领域以及计算机领域的重大成就,结合美国NI公司的以LabVIEW为代表的虚拟仪器技术,开发了一种基于LabVIEW的回转支承状态监测与故障诊断装置。The present invention utilizes the major achievements in the signal processing field, the artificial intelligence field and the computer field in recent years, and combines the virtual instrument technology represented by LabVIEW of NI Corporation of the United States to develop a slewing bearing state monitoring and fault diagnosis device based on LabVIEW.
本发明提出的基于虚拟仪器开发平台的回转支承故障诊断装置,由工控机1、检测装置3、稳压电源7、数据采集模块11、数据处理模块12和故障诊断模块13组成,工控机1中设有一个包含模拟输入通道的PCI数据采集卡2,检测装置3中设有加速度传感器5和信号调理电路4,信号调理电路4用于对加速度传感器5拾取的信号进行放大、滤波等;数据采集模块11将采集到的信号通过程序控制输入工控机1中,在LabVIEW平台中编写DAQmx数据采集驱动程序,控制信号的采样频率,输入和输出等。数据处理模块12包括信号的去噪显示、存储、特征提取,均基于LabVIEW自带的函数库研发而成。数据处理模块12剔除噪声的干扰,提取信号的时域和频域特征量,为故障诊断做准备;故障诊断模块13根据提取的回转支承的特征数据得出故障信息,输出诊断结果和处理意见。The slewing bearing fault diagnosis device based on the virtual instrument development platform proposed by the present invention is composed of an industrial computer 1, a detection device 3, a voltage stabilized power supply 7, a
本发明中,所述PCI数据采集卡2采用NI公司推出的PIC-6023E数据采集插卡,通过计算机标准接口PCI插槽将拾取的信号采集到工控机1中。In the present invention, the PCI data acquisition card 2 adopts the PIC-6023E data acquisition plug-in card released by NI Company, and collects the picked-up signals into the industrial computer 1 through the standard computer interface PCI slot.
本发明中,所述加速度传感器5包括径向加速度传感器和轴向加速度传感器,分别沿着回转支承的定圈均匀布置,拾取回转支承各个测点的径向和轴向的振动信号。In the present invention, the acceleration sensor 5 includes a radial acceleration sensor and an axial acceleration sensor, which are uniformly arranged along the fixed circle of the slewing support respectively, and pick up the radial and axial vibration signals of each measuring point of the slewing support.
本发明中,所述故障诊断模块11采用BP神经网络进行故障分类,通过提取信号的均方值作为神经网络的输入。In the present invention, the
本发明中,所述故障诊断模块13采用在LabVIEW开发平台中通过函数库中的MatlabScript节点调用设计好的MATLAB神经网络程序的方法,构建回转支承在线故障诊断系统。In the present invention, the
本发明的有益效果是:The beneficial effects of the present invention are:
1、采用模块化的结构,可靠性高。人机界面友好,操作简便。1. Modular structure is adopted, which has high reliability. Friendly man-machine interface, easy to operate.
2、故障诊断具有实时性,并且自动显示故障信息。2. Fault diagnosis is real-time, and fault information is displayed automatically.
3、系统采用虚拟仪器技术,具有开放性的特点,可以集成对多种部件的故障诊断。3. The system adopts virtual instrument technology, which has the characteristics of openness and can integrate fault diagnosis of various components.
附图说明Description of drawings
图1 为本发明的结构示意图。Fig. 1 is the structural representation of the present invention.
图2 为本发明的回转支承振动测点布置图。Fig. 2 is the arrangement diagram of the vibration measuring points of the slewing bearing of the present invention.
图3 为本发明的程序结构示意图。Fig. 3 is a schematic diagram of the program structure of the present invention.
图中标号:1为工控机,2为PCI数据采集卡,3为检测装置,4为信号调理电路,5为加速度传感器,6为回转支承测试平台,7为稳压电源,8为外圈,9为滚动体,10为内圈,11为数据采集模块,12为数据处理模块,13为故障诊断模块。Numbers in the figure: 1 is industrial computer, 2 is PCI data acquisition card, 3 is detection device, 4 is signal conditioning circuit, 5 is acceleration sensor, 6 is slewing bearing test platform, 7 is regulated power supply, 8 is outer ring, 9 is a rolling body, 10 is an inner ring, 11 is a data acquisition module, 12 is a data processing module, and 13 is a fault diagnosis module.
具体实施方式Detailed ways
下面结合附图,将进一步叙述本发明的具体实施方案。Below in conjunction with accompanying drawing, will further describe the specific embodiment of the present invention.
实施例1:本发明提出的基于LabVIEW的回转支承状态监测与故障诊断装置,其采用的虚拟仪器LabVIEW开发平台是由NI公司研制开发的图形化编程系统。它是一个功能强大的集成开发环境,拥有庞大函数库,完整地集成了与GPIB、VXI、PCI和内插式数据采集卡等硬件的通讯。Embodiment 1: The LabVIEW-based slewing bearing state monitoring and fault diagnosis device proposed by the present invention uses a virtual instrument LabVIEW development platform which is a graphical programming system developed by NI Corporation. It is a powerful integrated development environment with a huge function library, which completely integrates communication with hardware such as GPIB, VXI, PCI and plug-in data acquisition cards.
附图1为本发明的硬件结构框图,包括工控机1、检测装置3和稳压电源7,工控机1中设有一个包含模拟输入通道的PCI数据采集卡2,检测装置3中设有加速度传感器5和信号调理电路4。本发明以回转支承的振动加速度为监测参量,因此加速度传感器5的布置以回转支承的振动特性为依据。由于回转支承承受较大的轴向力和倾覆力矩,并且每个滚动体承受的载荷不尽相同,因此必须分别测取回转支承轴向和径向的加速度振动信号,并且沿定圈均匀布置。本发明中加速度传感器的布置如附图2所示,沿定圈均匀布置4个测点。Accompanying drawing 1 is the block diagram of hardware structure of the present invention, comprises industrial computer 1, detection device 3 and stabilized voltage supply 7, is provided with a PCI data acquisition card 2 that comprises analog input channel in the industrial computer 1, is provided with acceleration in the detection device 3 Sensor 5 and signal conditioning circuit 4. The present invention takes the vibration acceleration of the slewing bearing as the monitoring parameter, so the arrangement of the acceleration sensor 5 is based on the vibration characteristics of the slewing bearing. Since the slewing bearing bears a large axial force and overturning moment, and each rolling element bears a different load, it is necessary to measure the axial and radial acceleration vibration signals of the slewing bearing separately, and arrange them evenly along the fixed ring . The layout of the acceleration sensor in the present invention is shown in Figure 2, and 4 measuring points are evenly arranged along the fixed circle.
从加速度传感器5获得的电流或电压信号幅值很低,一般为毫安或毫伏级,不适合采集和传送,并且由于引起回转支承振动的因素较多,存在较多的干扰,因此必须通过信号调理电路4对加速度传感器5检测到的信号进行放大和滤波,整型后输出适合的电压或电流。The amplitude of the current or voltage signal obtained from the acceleration sensor 5 is very low, generally in the milliamp or millivolt level, which is not suitable for collection and transmission, and because there are many factors causing the vibration of the slewing bearing, there are many interferences, so it must be passed The signal conditioning circuit 4 amplifies and filters the signal detected by the acceleration sensor 5, and outputs a suitable voltage or current after shaping.
回转支承回转频率较低,内外圈故障频率较为接近,因此在监测诊断过程中需要有较高的信号采集精度和分辨率。本发明中的PCI数据采集卡2采用NI公司推出的基于PCI插槽的数据采集卡PCI-6023E,包括16路模拟输入通道、8个数字I/0端口,回转支承的8路振动信号运用差分输入的方法将信号采集到LabVIEW界面。The rotation frequency of the slewing bearing is low, and the fault frequency of the inner and outer rings is relatively close. Therefore, high signal acquisition accuracy and resolution are required in the monitoring and diagnosis process. The PCI data acquisition card 2 in the present invention adopts the data acquisition card PCI-6023E based on the PCI slot introduced by NI Company, including 16 analog input channels, 8 digital I/O ports, and 8 vibration signals of the slewing ring using differential The input method captures the signal into the LabVIEW interface.
本发明中LabVIEW的模块如附图3所示,包括:数据采集模块11、数据处理模块12、故障诊断模块13。数据采集模块11是用DAQmx中的函数编写完成,位于LabVIEW的测量I/O函数模块中,由于本发明是实时的故障诊断,因此须采用连续采样的方法。数据处理模块12的功能包括信号的去噪、显示、存储和特征量的提取,回转支承在运转过程中各组成部分发出各自确定的特征信号,这些信号随单个元件的损坏或磨损程度以及压力变化而变化。回转支承通常处于低速重载的环境下工作,其低频故障特征信号往往受复杂环境噪声的干扰,影响最终的诊断效果。本发明运用小波阈值除噪的方法剔除回转支承振动信号中的噪声干扰,选择db4小波,进行7级分解,通过阈值函数和小波重构去除噪声。此程序在Matlab中编写完成,并在LabVIEW中通过MatlabScript节点调用此程序。小波变换有效的滤除了噪声,通过对重构的小波系数求取均方根值提取故障的特征向量。The module of LabVIEW among the present invention is as shown in accompanying drawing 3, comprises:
本发明的故障诊断模块13采用基于BP神经网络的故障诊断方法,利用其强大的非线性映射功能,实现故障分类。研究表明具有3层网络拓扑结构(输入层、中间层、输出层)的神经网络可以任意逼近任何复杂的连续函数,因此可以实现从特征空间到故障空间的复杂非线性映射。由于本发明一共测取8路振动信号,因此BP神经网络有8个输入接口分别输入8路振动信号的均方根,并进行归一化处理,作为特征向量。回转支承的运行状态主要有正常、点蚀、螺栓松动、结构变形或开裂、局部阻力大,将其分成五种模式编码,因此BP神经网络的一共设置5个输出端口,作为故障的输出向量。本发明中BP神经网络的设计在Matlab中编程实现,并在LabVIEW中通过MatlabScript节点调用此程序。The
本发明对于不同类型的回转支承,需要训练不同的神经网络,因此在BP神经网络用于故障诊断之前必须获取回转支承故障的振动加速度信号,提取特征向量,并在Matlab中设计网络训练程序,修正网络权值,再进行故障诊断。The present invention needs to train different neural networks for different types of slewing bearings, so before the BP neural network is used for fault diagnosis, it is necessary to obtain the vibration acceleration signal of the slewing bearing fault, extract the feature vector, and design the network training program in Matlab, correct Network weights, and then perform fault diagnosis.
Claims (5)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN 201110072759 CN102183951A (en) | 2011-03-25 | 2011-03-25 | Device for monitoring state of rotary bearing and diagnosing fault based on laboratory virtual instrument engineering workbench (Lab VIEW) |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN 201110072759 CN102183951A (en) | 2011-03-25 | 2011-03-25 | Device for monitoring state of rotary bearing and diagnosing fault based on laboratory virtual instrument engineering workbench (Lab VIEW) |
Publications (1)
Publication Number | Publication Date |
---|---|
CN102183951A true CN102183951A (en) | 2011-09-14 |
Family
ID=44570138
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN 201110072759 Pending CN102183951A (en) | 2011-03-25 | 2011-03-25 | Device for monitoring state of rotary bearing and diagnosing fault based on laboratory virtual instrument engineering workbench (Lab VIEW) |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN102183951A (en) |
Cited By (10)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN102819219A (en) * | 2012-06-13 | 2012-12-12 | 南京工业大学 | Intelligent motion control method for prolonging service life of slewing bearing |
CN104007724A (en) * | 2014-05-15 | 2014-08-27 | 华侨大学 | Excavator remote fault diagnosis system and method based on LabVIEW |
CN106762340A (en) * | 2016-12-02 | 2017-05-31 | 国家电网公司 | A kind of hydraulic turbine servomotor intelligence leak detection system and its method |
CN107063666A (en) * | 2017-05-15 | 2017-08-18 | 江苏省特种设备安全监督检验研究院 | The detecting system and detection method of the pivoting support of high pedestal jib crane |
CN107229271A (en) * | 2017-06-14 | 2017-10-03 | 王东红 | A kind of intelligent transportation development platform method for diagnosing faults and device |
CN108500498A (en) * | 2018-03-26 | 2018-09-07 | 华中科技大学 | A kind of appearance of weld quality monitoring method |
CN109949631A (en) * | 2019-02-19 | 2019-06-28 | 同济大学 | A kind of common signal classification and observation experimental device and application method |
CN110736506A (en) * | 2019-10-29 | 2020-01-31 | 青岛四方思锐智能技术有限公司 | Remote environment monitoring system and method |
CN111897220A (en) * | 2020-09-01 | 2020-11-06 | 北京清立科技有限公司 | Engineering project control method and control system based on neural network operation mode |
CN111982500A (en) * | 2020-08-30 | 2020-11-24 | 东科克诺尔商用车制动技术有限公司 | Data detection and analysis system of power steering gear safety unloading valve |
Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2005071620A2 (en) * | 2004-01-14 | 2005-08-04 | Abb Inc. | Method and apparatus to diagnose mechanical problems in machinery |
CN1825082A (en) * | 2006-03-31 | 2006-08-30 | 洛阳轴研科技股份有限公司 | Automatic diagnosing system for rolling bearing fault |
CN101334335A (en) * | 2008-07-10 | 2008-12-31 | 武汉科技大学 | An online monitoring and diagnosing device for the initial fault of a synchronous gearbox |
CN201740656U (en) * | 2010-05-27 | 2011-02-09 | 山东理工大学 | Bulldozer dynamic parameter testing device based on LabVIEW |
-
2011
- 2011-03-25 CN CN 201110072759 patent/CN102183951A/en active Pending
Patent Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2005071620A2 (en) * | 2004-01-14 | 2005-08-04 | Abb Inc. | Method and apparatus to diagnose mechanical problems in machinery |
CN1825082A (en) * | 2006-03-31 | 2006-08-30 | 洛阳轴研科技股份有限公司 | Automatic diagnosing system for rolling bearing fault |
CN101334335A (en) * | 2008-07-10 | 2008-12-31 | 武汉科技大学 | An online monitoring and diagnosing device for the initial fault of a synchronous gearbox |
CN201740656U (en) * | 2010-05-27 | 2011-02-09 | 山东理工大学 | Bulldozer dynamic parameter testing device based on LabVIEW |
Non-Patent Citations (3)
Title |
---|
《噪声与振动控制》 20030831 龚群协 等 大型回转支承振动诊断技术应用研究 39-42 , 第4期 * |
《工程机械》 20090331 朱飞 等 基于LabVIEW的回转友承测试系统设计 45-48 第40卷, 第3期 * |
《自动测量与控制》 20081130 刘洪昌 等 基于虚拟仪器的某型导弹发射台检测系统 67-69 第27卷, 第11期 * |
Cited By (13)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN102819219B (en) * | 2012-06-13 | 2014-10-29 | 南京工业大学 | Intelligent motion control method for prolonging service life of slewing bearing |
CN102819219A (en) * | 2012-06-13 | 2012-12-12 | 南京工业大学 | Intelligent motion control method for prolonging service life of slewing bearing |
CN104007724A (en) * | 2014-05-15 | 2014-08-27 | 华侨大学 | Excavator remote fault diagnosis system and method based on LabVIEW |
CN104007724B (en) * | 2014-05-15 | 2017-01-04 | 华侨大学 | A kind of excavator remote failure diagnosis system based on LabVIEW and method |
CN106762340B (en) * | 2016-12-02 | 2019-02-26 | 国家电网公司 | A kind of hydraulic turbine servomotor intelligence leak detection system and its method |
CN106762340A (en) * | 2016-12-02 | 2017-05-31 | 国家电网公司 | A kind of hydraulic turbine servomotor intelligence leak detection system and its method |
CN107063666A (en) * | 2017-05-15 | 2017-08-18 | 江苏省特种设备安全监督检验研究院 | The detecting system and detection method of the pivoting support of high pedestal jib crane |
CN107229271A (en) * | 2017-06-14 | 2017-10-03 | 王东红 | A kind of intelligent transportation development platform method for diagnosing faults and device |
CN108500498A (en) * | 2018-03-26 | 2018-09-07 | 华中科技大学 | A kind of appearance of weld quality monitoring method |
CN109949631A (en) * | 2019-02-19 | 2019-06-28 | 同济大学 | A kind of common signal classification and observation experimental device and application method |
CN110736506A (en) * | 2019-10-29 | 2020-01-31 | 青岛四方思锐智能技术有限公司 | Remote environment monitoring system and method |
CN111982500A (en) * | 2020-08-30 | 2020-11-24 | 东科克诺尔商用车制动技术有限公司 | Data detection and analysis system of power steering gear safety unloading valve |
CN111897220A (en) * | 2020-09-01 | 2020-11-06 | 北京清立科技有限公司 | Engineering project control method and control system based on neural network operation mode |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN102183951A (en) | Device for monitoring state of rotary bearing and diagnosing fault based on laboratory virtual instrument engineering workbench (Lab VIEW) | |
Jiao et al. | Deep coupled dense convolutional network with complementary data for intelligent fault diagnosis | |
Zhao et al. | Deep convolutional neural network based planet bearing fault classification | |
CN103471841B (en) | A kind of rotating machinery vibrating failure diagnosis method | |
CN108982107B (en) | A Quantitative Trend Diagnosis Method for Bearing Faults Based on Morphology and Multiscale Arrangement Entropy Mean | |
CN202083555U (en) | Fault Feature Extraction and Diagnosis System of Gasoline Engine | |
CN103835882A (en) | Large wind generating set state monitoring and fault diagnosis system | |
CN105571638A (en) | Machinery device fault combination prediction system and method | |
CN201666248U (en) | Natural gas compressor state detection and failure predication system | |
CN108152033A (en) | A kind of compound Weak fault diagnostic method of the gear-box of sparse disjunctive model | |
CN103901882A (en) | Online monitoring fault diagnosis system and method of train power system | |
CN105134456B (en) | Hydraulic turbine fault pre-diagnosing method based on on-line monitoring | |
CN104198184A (en) | Bearing fault diagnostic method based on second generation wavelet transform and BP neural network | |
CN202075305U (en) | State recording device of full-function rotating machine | |
CN102521604A (en) | Device and method for estimating performance degradation of equipment based on inspection system | |
Chen et al. | A visualized classification method via t-distributed stochastic neighbor embedding and various diagnostic parameters for planetary gearbox fault identification from raw mechanical data | |
Pan et al. | Remote online machine condition monitoring system | |
CN114689298A (en) | Fault detection method and device for walking part of shearer | |
CN110632484A (en) | ELM-based GIS partial discharge defect diagnosis and classification system and method | |
CN115993531A (en) | A double-closed-loop fault prediction and health management method and device for permanent magnet synchronous motors | |
CN117740242A (en) | Dynamic balance test system of power turbine | |
Fu et al. | A novel semi-supervised prototype network with two-stream wavelet scattering convolutional encoder for TBM main bearing few-shot fault diagnosis | |
CN105784364A (en) | Bearing fault diagnosis method based on total experience mode decomposition and fractal box dimensions | |
CN108537260A (en) | A kind of crane transmission axis method for diagnosing faults and system | |
CN203011692U (en) | Portable fault diagnosing device for rolling bearing |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
C06 | Publication | ||
PB01 | Publication | ||
C10 | Entry into substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
C02 | Deemed withdrawal of patent application after publication (patent law 2001) | ||
WD01 | Invention patent application deemed withdrawn after publication |
Application publication date: 20110914 |