CN102175652A - Second-order perturbation calculation method of transmission characteristic of random rough surface - Google Patents

Second-order perturbation calculation method of transmission characteristic of random rough surface Download PDF

Info

Publication number
CN102175652A
CN102175652A CN2011100319032A CN201110031903A CN102175652A CN 102175652 A CN102175652 A CN 102175652A CN 2011100319032 A CN2011100319032 A CN 2011100319032A CN 201110031903 A CN201110031903 A CN 201110031903A CN 102175652 A CN102175652 A CN 102175652A
Authority
CN
China
Prior art keywords
overbar
perp
prime
phi
rho
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN2011100319032A
Other languages
Chinese (zh)
Other versions
CN102175652B (en
Inventor
陈萍
田岩
华蕾
宋大伟
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Huazhong University of Science and Technology
Xian Institute of Space Radio Technology
Original Assignee
Huazhong University of Science and Technology
Xian Institute of Space Radio Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Huazhong University of Science and Technology, Xian Institute of Space Radio Technology filed Critical Huazhong University of Science and Technology
Priority to CN201110031903.2A priority Critical patent/CN102175652B/en
Publication of CN102175652A publication Critical patent/CN102175652A/en
Application granted granted Critical
Publication of CN102175652B publication Critical patent/CN102175652B/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Optical Modulation, Optical Deflection, Nonlinear Optics, Optical Demodulation, Optical Logic Elements (AREA)

Abstract

The invention provides a second-order perturbation calculation method of the transmission characteristic of a random rough surface. The calculation method considering the influence of a second-order term solution on the transmission characteristics of the rough surface and providing a second-order transmission field, second-order transmissivity and second-order two-way transmission coefficients by utilizing a perturbation method enlarges the application scope, enhances the accuracy and meets the requirements for accuracy of microwave radiation remote-sensing quantitative information inversion.

Description

Second order perturbation method random rough face transmissison characteristic computing method
Technical field
The invention belongs to the electromagnetic radiation field, be specifically related to a kind of perturbation calculus method of random rough face transmissison characteristic.
Background technology
The application need of numerous subjects such as radio wave propagation, communication, Target Recognition classification, environmental system detection, remote sensing, biomedical diagnostic, construction material test, promoted the deep development of random rough surfaces electromagnetic radiation, scattering and transmission research. in analytical method is found the solution, most important two kinds of methods are Kirchhoff approximation method and perturbation method, and other method is all more or less relevant with these two kinds of basic skills.
The applicable elements of perturbation method is, the surface standard deviation is less than about 5% of electromagnetic wavelength, and surperficial average pitch and wave number and surface standard deviation are long-pending the same order of magnitude, and promptly is applicable to small scale roughness situation.Many application in microwave remote sensing all the small scale roughness can occur, as the small scale wave (capillary gravity wave) on sea, and more smooth exposed soil surface, and the regional area of moonscape etc.Studies show that when vertically observing the radiation brightness on atural object surface with microwave radiometer, this small scale roughness can produce material impact to radiation brightness.
Existing perturbation method can be considered the contribution of scatters of zeroth order, single order and second order, wherein to separate be that relevant component is separated when regarding uneven surface as plane to zeroth order, it is that the incoherent component of lowest-order is separated that single order is separated, it then is that the lowest-order of relevant component is corrected that second order is separated, for the energy conservation that keeps algorithm, the computational accuracy that improves reflectivity, emissivity has significance.Existing perturbation method research focuses mostly in the scattering research of uneven surface, research aspect transmission then is short of very much, in fact, the transmissison characteristic of uneven surface is the same with scattering properties important researching value, as in microwave radiation remote sensing to atural objects such as soil, lunar soil, these atural objects are usually visual makes shaggy non-isothermal layered medium, calculate the radiance temperature of these atural objects, must grasp the transmissison characteristic of its rough surface.Existing document only has the transmissison characteristic research of single order perturbation method, surpasses 20% error but only consider that zeroth order and single order are separated to cause, and can't satisfy the demand of practical application.And, have the foreign scholar to suppose recently based on Rayleigh to the second order perturbation method, only provided the two station of second order transmission coefficient, but do not derived the analytic formula of second order transmissivity at periodical media.The present invention is directed to the random rough face, based on Huygens' principle and extinction theorem, derive second order transmitted field, second order two station transmission coefficient and second order transmissivity with perturbation method, obtained complete second order transmissison characteristic and verified second order perturbation method energy conservation situation and the two station of second order transmission coefficient.
Summary of the invention
The present invention ignores second order term in the existing random rough face perturbation method transmission model and separates this weak point for solving, provide a kind of random rough face second order perturbation method transmissison characteristic computing method of considering second order transmission contribution, to satisfy the accuracy requirement of microwave radiation remote sensing quantitative information inverting.
Second order perturbation method random rough face transmissison characteristic computing method comprise the calculation procedure of transmitted field, transmissivity and two-way transmission coefficient, are specially:
(1) described uneven surface transmitted field is expressed as:
E ‾ t ( 2 ) ( r ‾ ) = ∫ dk ‾ ⊥ e ik ‾ i ⊥ · r ‾ ⊥ - ik 1 z z { e ^ 1 ( - k 1 z ) [ f ee t ( 2 ) ( k ‾ ⊥ , k ‾ i ⊥ ) ( e ^ 1 ( - k 1 zi ) · e ^ i ) + f eh t ( 2 ) ( k ‾ ⊥ , k ‾ i ⊥ ) ( h ^ 1 ( - k 1 zi ) · e ^ i ) ]
+ h ^ 1 ( - k 1 z ) [ f he t ( 2 ) ( k ‾ ⊥ , k ‾ i ⊥ ) ( e ^ 1 ( - k 1 zi ) · e ^ i ) + f hh t ( 2 ) ( k ‾ ⊥ , k ‾ i ⊥ ) ( h ^ 1 ( - k 1 zi ) · e ^ i ) ]
Wherein,
f ee t ( 2 ) ( k ‾ ⊥ , k ‾ i ⊥ ) = k iz k iz + k 1 iz k 1 2 - k 2 k 1 z + k z { cos ( φ k - φ i ) · ( k 1 zi - k z ) F ( 2 ) ( k ‾ ⊥ - k ‾ i ⊥ )
- 2 ( k 1 2 - k 2 ) ∫ dk ‾ ⊥ ′ F ( k ‾ ⊥ ′ - k ‾ i ⊥ ) F ( k ‾ ⊥ - k ‾ ⊥ ′ )
· [ - sin ( φ k - φ k ′ ) sin ( φ k ′ - φ i ) k z ′ k 1 z ′ k 1 2 k z ′ + k 2 k 1 z ′ + cos ( φ k - φ k ′ ) cos ( φ k ′ - φ i ) 1 k 1 z ′ + k z ′ ] }
f eh t ( 2 ) ( k ‾ ⊥ , k ‾ i ⊥ ) = k 1 2 - k 2 k 1 z + k z kk iz k 1 2 k iz + k 2 k 1 zi { ( k 1 2 - k 1 zi k z ) F ( 2 ) ( k ‾ ⊥ - k ‾ i ⊥ ) sin ( φ k - φ i )
- 2 ∫ dk ‾ ⊥ ′ F ( k ‾ ⊥ ′ - k ‾ i ⊥ ) F ( k ‾ ⊥ - k ‾ ⊥ ′ ) [ sin ( φ k - φ k ′ ) k 1 2 k ρ ′ k ρi k ρ ′ 2 k + k z ′ k 1 z ′ + ( k 1 2 - k 2 ) k 1 zi k 1 2 k z ′ + k 2 k 1 z ′
· ( sin ( φ k - φ k ′ ) cos ( φ k ′ - φ i ) k z ′ k 1 z ′ + cos ( φ k - φ k ′ ) sin ( φ k ′ - φ i ) ( k ρ ′ 2 + k z ′ k 1 z ′ ) ] }
f he t ( 2 ) ( k ‾ ⊥ , k ‾ i ⊥ ) = k 1 2 - k 2 k 1 zi + k iz k 1 k iz k 1 2 k z + k 2 k 1 z { ( k 2 - k 1 zi k z ) F ( 2 ) ( k ‾ ⊥ - k ‾ i ⊥ ) sin ( φ k - φ i )
+ 2 ∫ dk ‾ ⊥ ′ F ( k ‾ ⊥ ′ - k ‾ i ⊥ ) F ( k ‾ ⊥ - k ‾ ⊥ ′ ) [ sin ( φ k ′ - φ i ) k 1 2 k ρ ′ k ρ k ρ ′ 2 k + k z ′ k 1 z ′ + ( k 1 2 - k 2 ) k z k 1 2 k z ′ + k 2 k 1 z ′
· ( k z ′ k 1 z ′ sin ( φ k - φ k ′ ) cos ( φ k ′ - φ i ) + ( k ρ ′ 2 + k z ′ k 1 z ′ ) cos ( φ k - φ k ′ ) sin ( φ k ′ - φ i ) ) ]
f hh t ( 2 ) ( k ‾ ⊥ , k ‾ i ⊥ ) = ( k 1 2 - k 2 ) ( k 1 2 k z + k 2 k 1 z ) k 1 k iz k 1 2 k iz + k 2 k 1 zi { k ( k 1 2 k z - k 2 k 1 zi ) F ( 2 ) ( k ‾ ⊥ - k ‾ i ⊥ ) sin ( φ k - φ i )
+ 2 ∫ dk ‾ ⊥ ′ F ( k ‾ ⊥ ′ - k ‾ i ⊥ ) F ( k ‾ ⊥ - k ‾ ⊥ ′ ) [ kk z k 1 zi ( k 1 2 - k 2 ) k z ′ + k 1 z ′ sin ( φ k - φ k ′ ) sin ( φ k ′ - φ i )
+ 1 k 1 2 k z ′ + k 2 k 1 z ′ [ - k ( k 1 2 - k 2 ) k ρ k ρ ′ 2 k ρi + k ρ k ρ ′ k 3 ( k z ′ + k 1 z ′ ) k 1 zi cos ( φ k ′ - φ i ) - k ρ ′ k ρi kk 1 2
· ( k z ′ + k 1 z ′ ) k z cos ( φ k - φ k ′ ) - kk z ′ k 1 z ′ ( k 1 2 - k 2 ) k z k 1 zi cos ( φ k - φ k ′ ) cos ( φ k ′ - φ i ) ] }
(2) described transmissivity is expressed as:
t ( π - θ i , φ i ) = k 1 zi k zi | 1 + R ho | 2 ( e ^ ( - k iz ) · e ^ i ) + k 2 k 1 zi k 1 2 k zi | 1 + R vo | 2 ( h ^ ( - k iz ) · e ^ i )
+ 2 Re ( k 1 zi k zi ( 1 + R ho ) f ee t ( 2 ) ( k i ⊥ ) ) ( e ^ ( - k iz ) · e ^ i ) + 2 Re ( kk 1 zi k 1 k zi ( 1 + R vo ) f hh t ( 2 ) ( k i ⊥ ) )
· ( h ^ ( - k iz ) · e ^ i ) + ∫ d k ‾ ⊥ k 1 zi k zi W ( k ‾ ⊥ - k ‾ i ⊥ ) [ | f ee t ( 1 ) ( k ‾ ⊥ , k ‾ i ⊥ ) · ( e ^ ( - k iz ) · e ^ i ) + f eh t ( 1 ) ( k ‾ ⊥ , k ‾ i ⊥ ) · ( h ^ ( - k iz ) · e ^ i ) | 2
+ | f he t ( 1 ) ( e ^ ( - k iz ) · e ^ i ) + f hh t ( 1 ) ( h ^ ( - k iz ) · e ^ i ) | 2 ]
Wherein
Figure BDA0000045826080000035
Be the Fourier conversion of the related function of random fluctuation height,
W ( k ‾ ⊥ - k ‾ i ⊥ ) = h 2 l 2 4 π exp ( - ( k ρ 2 + k ρi 2 ) l 2 4 + k ρ k ρi l 2 2 cos ( φ k - φ i ) ) ;
(3) described two-way transmission coefficient is expressed as:
In incident wave h polarization, the two-way transmission coefficient under the transmitted wave h polarization situation is:
1 4 π γ hh t ( π - θ t , φ t ; π - θ i , φ i ) = [ k 1 zi k zi | 1 + R ho | 2 + 1 Re ( k 1 zi k zi ( 1 + R ho ) f ee t ( 2 ) ( k ‾ i ⊥ ) ) ] δ ( cos θ t - k 1 zi k 1 ) δ ( φ t - φ i )
+ k 1 k 1 z 2 k iz W ( k ‾ ⊥ - k ‾ i ⊥ ) | f ee t ( 1 ) ( k ‾ ⊥ , k ‾ i ⊥ ) | 2
In incident wave v polarization, under the transmitted wave h polarization situation,
1 4 π γ hv t ( π - θ t , φ t ; π - θ i , φ i ) = k 1 k 1 z 2 k iz W ( k ‾ ⊥ - k ‾ i ⊥ ) | f eh t ( 1 ) ( k ‾ ⊥ , k ‾ i ⊥ ) | 2
In incident wave h polarization, under the transmitted wave v polarization situation,
1 4 π γ vh t ( π - θ t , φ t ; π - θ i , φ i ) = k 1 k 1 z 2 k iz W ( k ‾ ⊥ - k ‾ i ⊥ ) | f he t ( 1 ) ( k ‾ ⊥ , k ‾ i ⊥ ) | 2
In incident wave v polarization, under the transmitted wave v polarization situation,
1 4 π γ vv t ( π - θ t , φ t ; π - θ i , φ i ) = [ k 2 k 1 zi k 1 2 k iz | 1 + R vo | 2 + 2 Re ( kk 1 zi k 1 k iz ( 1 + R vo ) f hh t ( 2 ) ( k ‾ i ⊥ ) ) ]
· δ ( cos θ t - k 1 zi k 1 ) δ ( φ t - φ i ) + k 1 k 1 z 2 k iz W ( k ‾ ⊥ - k ‾ i ⊥ ) | f hh t ( 1 ) ( k ‾ ⊥ , k ‾ i ⊥ ) | 2
A wherein, b are respectively two kinds of situations of v polarization and h polarization, and the expression mirror should be with θ to transmission direction t, φ tForm:
Figure BDA00000458260800000313
Wherein
Figure BDA00000458260800000314
The time, θ tJust point to transmission direction, Re () expression is got real part to the number in the bracket;
f ab t ( 2 ) ( k &OverBar; i &perp; ) = < f ab t ( 2 ) ( k &OverBar; &perp; , k &OverBar; i &perp; ) > a , b = v , h
f ee t ( 2 ) ( k &OverBar; i &perp; ) = k iz ( k 1 2 - k 2 ) ( k iz + k 1 zi ) 2 { ( k 1 zi - k iz ) &Integral; - &infin; &infin; d k &OverBar; &perp; W ( k &OverBar; &perp; - k &OverBar; i &perp; ) - 2 ( k 1 2 - k 2 ) &Integral; - &infin; &infin; d k &OverBar; &perp; W ( k &OverBar; &perp; - k &OverBar; i &perp; )
&CenterDot; [ sin 2 ( &phi; k - &phi; i ) k z k 1 z k 1 2 k z + k 2 k 1 z + cos 2 ( &phi; k - &phi; i ) 1 k 1 z + k z ] }
f hh t ( 2 ) ( k &OverBar; i &perp; ) = k 1 ( k 1 2 - k 2 ) k iz ( k 1 2 k iz + k 2 k 1 zi ) 2 { &Integral; - &infin; &infin; d k &OverBar; &perp; W ( k &OverBar; &perp; - k &OverBar; i &perp; ) k ( k 1 2 k iz - k 2 k 1 zi ) +
2 &Integral; - &infin; &infin; d k &OverBar; &perp; W ( k &OverBar; &perp; - k &OverBar; i &perp; ) [ - kk iz k 1 zi ( k 1 2 - k 2 ) k 2 + k 1 z sin 2 ( &phi; k - &phi; i ) +
1 k 1 2 k z + k 2 k 1 z ( - k ( k 1 2 - k 2 ) k &rho;i 2 k &rho; 2 + k &rho; k &rho;i k ( k z + k 1 z ) ( k 2 k 1 zi - k 1 2 k iz )
&CenterDot; cos ( &phi; k - &phi; i ) - kk z k 1 z k iz k 1 zi ( k 1 2 - k 2 ) cos 2 ( &phi; k - &phi; i ) ) ] }
The incident wave vector
The horizontal component of incident wave vector is
Figure BDA0000045826080000048
k ix=ksinθ icosφ i,k iy=ksinθ isinφ i,k iz=kcosθ i,k ρi=ksinθ i
The mould of incident wave horizontal component
Figure BDA0000045826080000049
The scattering wave vector
Figure BDA00000458260800000410
The scattering wave horizontal component
Figure BDA00000458260800000411
The mould of scattering wave horizontal component
Figure BDA00000458260800000412
The mould of scattering wave vertical component
Figure BDA00000458260800000413
The transmitted wave vector
Figure BDA00000458260800000414
The horizontal component of transmitted wave vector is
Figure BDA00000458260800000415
The mould of transmitted wave horizontal component
Figure BDA00000458260800000416
The mould of transmitted wave vertical component
Figure BDA00000458260800000417
k 1 zi = k 1 2 + k i &perp; 2 ,
The incident angle θ of incident wave iAnd position angle The angle of transmission θ of transmitted wave tAnd position angle
Figure BDA00000458260800000420
Figure BDA0000045826080000051
With
Figure BDA0000045826080000052
Represent an initial point and a position vector of putting respectively,
When the incident field is the TE polarization
Figure BDA0000045826080000053
When the incident field is the TM polarization
Figure BDA0000045826080000054
μ oAnd μ 1Represent the magnetic permeability of medium 0 and medium 1 respectively,
ε oAnd ε 1Represent the conductivity of medium 0 and medium 1 respectively,
W is an angular frequency,
η 1Be the wave impedance of medium 1,
The root-mean-square height h of uneven surface and persistence length l,
e ^ ( k z ) = k ^ &times; z ^ / | k ^ &times; z ^ | = ( 1 / k &rho; ) ( x ^ k y - y ^ k x ) ,
e ^ ( - k z ) = ( 1 / k &rho; ) ( x ^ k y - y ^ k x ) ,
e ^ ( - k 1 zi ) = k ^ 1 &times; z ^ / | k ^ 1 &times; z ^ | = ( 1 / k 1 &rho;i ) ( x ^ k 1 yi - y ^ k 1 xi ) ,
e ^ 1 ( k 1 z ) = k ^ 1 &times; z ^ / | k ^ 1 &times; z ^ | = ( 1 / k &rho; ) ( x ^ k y - y ^ k x ) ,
h ^ ( k z ) = 1 k e ^ &times; k ^ = - k z kk &rho; ( x ^ k x + y ^ k y ) + k &rho; k z ^ ,
h ^ ( - k z ) = k z kk &rho; ( x ^ k x + y ^ k y ) + k &rho; k z ^ ,
h ^ 1 ( k 1 z ) = 1 k 1 e ^ 1 &times; k ^ 1 = - k 1 z k 1 k &rho; ( x ^ k x + y ^ k y ) + k &rho; k 1 z ^ ,
h ^ 1 ( - k 1 z ) = k 1 z k 1 k &rho; ( x ^ k 1 x + y ^ k 1 y ) + k &rho; k 1 z ^ ,
h ^ 1 ( - k 1 zi ) = k 1 zi k 1 k &rho;i ( x ^ k xi + y ^ k yi ) + k &rho;i k 1 z ^ ,
Fourier transform
Figure BDA00000458260800000514
1 4 &pi; 2 &Integral; d r &OverBar; &perp; e - i k &OverBar; &perp; &CenterDot; r &OverBar; &perp; f 2 ( r &OverBar; &perp; ) = F 2 ( k &OverBar; &perp; ) ,
F 2 ( k &OverBar; &perp; ) = &Integral; - &infin; &infin; d k &OverBar; &prime; &perp; F ( k &OverBar; &prime; &perp; ) F ( k &OverBar; &perp; - k &OverBar; &prime; &perp; ) ,
Figure BDA0000045826080000062
Be the Fresnel transmission coefficient of TE ripple,
Be the Fresnel transmission coefficient of TM ripple,
φ ' k, k ' ρ, k ' zAnd k ' 1zIt is the needed intermediate variable of integration.
The present invention has following advantage compared to existing technology:
At the random rough face, existing perturbation method has only provided the computing formula of single order transmitted field and single order transmissivity, and the scope of application of single order transmitting formula is:
Figure BDA0000045826080000065
Even if but in this scope, the transmissivity and the reflectivity that calculate do not meet energy conservation, with the error that causes near 20%, can't satisfy the demand of practical application.The present invention utilizes perturbation method, provided the computing formula of second order transmitted field, second order transmissivity and second order two-way transmission coefficient through strict theoretical, and verified the energy conservation of single order, second order perturbation method, the result shows that the scope of application of second order transmitting formula is wideer than the single order, and in its scope of application, the transmissivity and the reflectivity that calculate meet energy conservation, can satisfy the demand of practical application.
Description of drawings
Fig. 1 is a two-dimensional random uneven surface synoptic diagram;
Fig. 2 is at the energy conservation proof diagram of roughness in the single order scope of application, and wherein Fig. 2 (a) is the v polarization, and Fig. 2 (a) is the h polarization.
Fig. 3 is the energy conservation proof diagram that exceeds the single order scope of application in roughness, and wherein Fig. 3 (a) is the v polarization, and Fig. 3 (a) is the h polarization.
Embodiment
At first calculate the second order transmitted field, calculate the second order transmissivity then.
One, transmitted field is found the solution
Suppose to have a plane wave: Incided by medium 0 and to enter on the random rough face in the medium 1, the specific inductive capacity of medium 0 is ε 0, the DIELECTRIC CONSTANT of medium 1 1Incident wave vector wherein
Figure BDA0000045826080000071
The horizontal component of incident wave vector is
Figure BDA0000045826080000072
The random rough face is set up three-dimensional cartesian coordinate system, by z=f (x, y) random function is described this uneven surface, to function get ensemble average get<f (x, y) 〉=0.(as Fig. 1) f MinAnd f MaxReplace uneven surface f (x, minimum y) and maximal value respectively.
Utilize Huygens' principle and delustring principle to know the scattering electric field in the medium 0
Figure BDA0000045826080000073
And magnetic field
Figure BDA0000045826080000074
With transmission electric field in the medium 1
Figure BDA0000045826080000075
And magnetic field
Figure BDA0000045826080000076
Satisfy:
E &OverBar; i ( r &OverBar; ) + &Integral; S &prime; d S &prime; { iw &mu; o G &OverBar; &OverBar; ( r &OverBar; , r &OverBar; &prime; ) &CenterDot; [ n ^ &times; H &OverBar; ( r &OverBar; &prime; ) ] + &dtri; &times; G &OverBar; &OverBar; ( r &OverBar; , r &OverBar; &prime; ) &CenterDot; [ n ^ &times; E &OverBar; ( r &OverBar; &prime; ) ] } = E &OverBar; z > f ( r &OverBar; ) ( a ) 0 z < f ( r &OverBar; ) ( b )
&Integral; S &prime; d S &prime; { iw &mu; 1 G &OverBar; &OverBar; 1 ( r &OverBar; , r &OverBar; &prime; ) &CenterDot; [ n ^ d &times; H &OverBar; 1 ( r &OverBar; &prime; ) + &dtri; &times; G &OverBar; &OverBar; 1 ( r &OverBar; , r &OverBar; &prime; ) &CenterDot; [ n ^ d &times; E &OverBar; 1 ( r &OverBar; &prime; ) ] } = 0 z > f ( r &OverBar; ) ( a ) E &OverBar; 1 ( r &OverBar; ) z < f ( r &OverBar; ) ( b ) - - - ( 2 )
S ' expression is carried out integration to whole uneven surface,
Figure BDA0000045826080000079
Be the bin unit normal vector that points to medium 0, The unit normal vector of medium 1 is pointed in expression.
Figure BDA00000458260800000711
With
Figure BDA00000458260800000712
Green function in expression medium 0 and the medium 1.
According to electric field and the continuous boundary condition of magnetic field tangential component, can make
d r &OverBar; &prime; &perp; a &OverBar; ( r &OverBar; &prime; &perp; ) = d S &prime; &eta; n ^ &times; H &OverBar; ( r &OverBar; &prime; ) = d S &prime; &eta; n ^ &times; H &OverBar; 1 ( r &OverBar; &prime; &perp; ) , d r &OverBar; &prime; &perp; b &OverBar; ( r &OverBar; &prime; &perp; ) = d S &prime; n ^ &times; E &OverBar; ( r &OverBar; &prime; ) = d S &prime; n ^ &times; E &OverBar; 1 ( r &OverBar; &prime; &perp; ) - - - ( 3 )
n ^ ( r &OverBar; &prime; &perp; ) &CenterDot; a &OverBar; ( r &OverBar; &prime; &perp; ) = 0 , n ^ ( r &OverBar; &prime; &perp; ) &CenterDot; b &OverBar; ( r &OverBar; &prime; &perp; ) = 0
Because
Figure BDA00000458260800000715
Can release:
a z ( r &OverBar; &prime; &perp; ) = ( x ^ &PartialD; f ( r &OverBar; &prime; &perp; ) &PartialD; x &prime; + y ^ &PartialD; f ( r &OverBar; &prime; &perp; ) &PartialD; y &prime; ) &CenterDot; a &OverBar; ( r &OverBar; &prime; &perp; ) , b z ( r &OverBar; &prime; &perp; ) = ( x ^ &PartialD; f ( r &OverBar; &prime; &perp; ) &PartialD; x &prime; + y ^ &PartialD; f ( r &OverBar; &prime; &perp; ) &PartialD; y &prime; ) &CenterDot; b &OverBar; ( r &OverBar; &prime; &perp; ) - - - ( 5 )
Then by (1b) and (2a) can push away:
E &OverBar; i ( r &OverBar; ) = 1 8 &pi; 2 &Integral; d k &OverBar; &perp; e i k &OverBar; i &perp; &CenterDot; r &OverBar; &perp; e - ik z z k k z &Integral; d r &OverBar; &prime; &perp; e - i k &OverBar; i &perp; &CenterDot; r &OverBar; &prime; &perp; e i k z f ( r &OverBar; &prime; &perp; ) &times; { [ e ^ ( - k z ) e ^ ( - k z ) + h ^ ( - k z ) &CenterDot; h ^ ( - k z ) ] &CenterDot; a &OverBar; ( r &OverBar; &prime; &perp; ) - - - ( 6 )
+ [ - h ^ ( - k z ) e ^ ( - k z ) + e ^ ( - k z ) &CenterDot; h ^ ( - k z ) ] &CenterDot; b &OverBar; ( r &OverBar; &prime; &perp; ) }
0 = 1 8 &pi; 2 &Integral; d k &OverBar; &perp; e i k &OverBar; i &perp; &CenterDot; r &OverBar; &perp; e ik 1 z z k 1 k 1 z &Integral; d r &OverBar; &prime; &perp; e - i k &OverBar; i &perp; &CenterDot; r &OverBar; &prime; &perp; e - ik 1 z f ( r &OverBar; &prime; &perp; ) &times; { k k 1 [ e ^ 1 ( k 1 z ) e ^ 1 ( k 1 z ) + h ^ 1 ( k 1 z ) &CenterDot; h ^ 1 ( k 1 z ) ] &CenterDot; a &OverBar; ( r &OverBar; &prime; &perp; ) - - - ( 7 )
+ [ - h ^ 1 ( kk 1 z ) e ^ 1 ( k 1 z ) + e ^ 1 ( k 1 z ) &CenterDot; h ^ 1 ( k 1 z ) ] &CenterDot; b &OverBar; ( r &OverBar; &prime; &perp; ) }
Scattering wave vector wherein
k &OverBar; = k &OverBar; &perp; + z ^ k z = x ^ k x + y ^ k y + z ^ k z , k = &omega; &mu; 0 &epsiv; 0 - - - ( 8 )
The horizontal component of scattering wave vector is
k &OverBar; &perp; = x ^ k x + y ^ k y - - - ( 9 )
Transmitted wave vector wherein
k &OverBar; 1 = k &OverBar; &perp; + z ^ k 1 z = x ^ k x + y ^ k y + z ^ k 1 z , k 1 = &omega; &mu; 0 &epsiv; 0 - - - ( 10 )
The horizontal component of transmitted wave vector is
k &OverBar; 1 &perp; = x ^ k x + y ^ k y = - k &OverBar; &perp; - - ( 11 )
The mould of horizontal component
k &rho; = k x 2 + k y 2 , k z = k 2 - k &rho; 2 , k 1 z = k 1 2 - k &rho; 2 - - - ( 12 )
e ^ ( k z ) = k ^ &times; z ^ / | k ^ &times; z ^ | = ( 1 / k &rho; ) ( x ^ k y - y ^ k x ) - - - ( 13 )
h ^ ( k z ) = 1 k e ^ &times; k ^ = - k z kk &rho; ( x ^ k x + y ^ k y ) + k &rho; k z ^ - - - ( 14 )
e ^ 1 ( k 1 z ) = k ^ 1 &times; z ^ / | k ^ 1 &times; z ^ | = ( 1 / k &rho; ) ( x ^ k y - y ^ k x ) - - - ( 15 )
h ^ 1 ( k 1 z ) = 1 k 1 e ^ 1 &times; k ^ 1 = - k 1 z k 1 k &rho; ( x ^ k x + y ^ k y ) + k &rho; k 1 z ^ - - - ( 16 )
We can determine the surface field of uneven surface with (6) and (7), promptly solve two unknown quantitys
Figure BDA00000458260800000810
With
Figure BDA00000458260800000811
In case we determine the surface field of this uneven surface, the scattered field of medium 0 and the transmitted field of medium 1 just can by (1a) and (2b) formula determine.
Can know by inference by (1a) with (2b)
E &OverBar; s ( r &OverBar; &perp; ) = - 1 8 &pi; 2 &Integral; d k &OverBar; &perp; e i k &OverBar; &perp; &CenterDot; r &OverBar; &perp; e ik z z k k z &Integral; d r &OverBar; &prime; &perp; &perp; e - i k &OverBar; &perp; &CenterDot; r &OverBar; &prime; &perp; e - ik z f ( r &OverBar; &prime; &perp; )
&times; { [ e ^ ( k z ) e ^ ( k z ) + h ^ ( k z ) h ^ ( k z ) ] &CenterDot; a &OverBar; ( r &OverBar; &prime; &perp; ) - - - ( 17 )
+ [ - h ^ ( k z ) e ^ ( k z ) + e ^ ( k z ) h ^ ( k z ) ] &CenterDot; b &OverBar; ( r &OverBar; &prime; &perp; ) }
E &OverBar; t ( r &OverBar; &perp; ) = 1 8 &pi; 2 &Integral; d k &OverBar; &perp; e i k &OverBar; &perp; &CenterDot; r &OverBar; &perp; e ik 1 z z k 1 k 1 z &Integral; d r &OverBar; &prime; &perp; &perp; e - i k &OverBar; i &perp; &CenterDot; r &OverBar; &prime; &perp; e - ik 1 z f ( r &OverBar; &prime; &perp; )
&times; { k k 1 [ e ^ 1 ( - k 1 z ) e ^ 1 ( - k 1 z ) + h ^ 1 ( - k 1 z ) h ^ 1 ( - k 1 z ) ] &CenterDot; a &OverBar; ( r &OverBar; &perp; &prime; ) - - - ( 18 )
+ [ - h ^ 1 ( - k 1 z ) e ^ 1 ( - k 1 z ) + e ^ 1 ( - k 1 z ) h ^ 1 ( - k 1 z ) ] &CenterDot; b &OverBar; ( r &OverBar; &perp; &prime; ) }
Utilize the perturbation method calculating of further deriving below, decompose
Figure BDA0000045826080000091
With
Figure BDA0000045826080000092
As follows:
a &OverBar; ( r &OverBar; &perp; &prime; ) = &Sigma; m = 0 &infin; a &OverBar; ( m ) ( r &OverBar; &perp; &prime; ) , b &OverBar; ( r &OverBar; &perp; &prime; ) = &Sigma; m = 0 &infin; b &OverBar; ( m ) ( r &OverBar; &perp; &prime; ) - - - ( 19 )
Here
Figure BDA0000045826080000094
Representative
Figure BDA0000045826080000095
The component on m rank.
Can obtain by Taylor series expansion:
e &PlusMinus; ik z f ( r &OverBar; &perp; &prime; ) = &Sigma; m = 0 &infin; [ &PlusMinus; ik z f ( r &OverBar; &perp; &prime; ) ] m m ! , e &PlusMinus; ik 1 z f ( r &OverBar; &perp; &prime; ) = &Sigma; m = 0 &infin; [ &PlusMinus; ik 1 z f ( r &OverBar; &perp; &prime; ) ] m m ! - - - ( 20 )
In perturbation method, And Slope Parameters all to require be the small scale parameter, promptly false
Figure BDA0000045826080000098
Utilize (5) and (19) can obtain following relation:
a &OverBar; z ( 0 ) ( r &OverBar; &perp; &prime; ) = b &OverBar; z ( 0 ) ( r &OverBar; &perp; &prime; ) = 0 - - - ( 21 )
a z ( m ) ( r &OverBar; &perp; &prime; ) = ( x ^ &PartialD; f ( r &OverBar; &perp; &prime; ) &PartialD; x &prime; + y ^ &PartialD; f ( r &OverBar; &perp; &prime; ) &PartialD; y &prime; ) &CenterDot; a &OverBar; &perp; ( m - 1 ) ( r &OverBar; &perp; &prime; ) , b z ( m ) ( r &OverBar; &perp; &prime; ) = ( x ^ &PartialD; f ( r &OverBar; &perp; &prime; ) &PartialD; x &prime; + y ^ &PartialD; f ( r &OverBar; &perp; &prime; ) &PartialD; y &prime; ) &CenterDot; b &OverBar; &perp; ( m - 1 ) ( r &OverBar; &perp; &prime; ) - - - ( 22 )
(19) and (20) formula is brought into (5), and (6) are with (7) and keep identical exponent number, can calculate each rank surface field, and with surface field substitution (17), (18) formula then can obtain the scattering and the transmitted field on each rank.Owing to utilize perturbation method to study the characteristic of second order transmitted field, so be that example illustrates with the second order.
We define the Fourier transform of surface field:
A &OverBar; ( k &OverBar; ) = 1 ( 2 &pi; ) 2 &Integral; d r &OverBar; &perp; &prime; a &OverBar; ( r &OverBar; &perp; &prime; ) e - i k &OverBar; &perp; &CenterDot; r &OverBar; &perp; &prime; , B &OverBar; ( k &OverBar; ) = 1 ( 2 &pi; ) 2 &Integral; d r &OverBar; &perp; &prime; b &OverBar; ( r &OverBar; &perp; &prime; ) e - i k &OverBar; &perp; &CenterDot; r &OverBar; &perp; &prime; - - - ( 23 )
Below
Figure BDA00000458260800000912
With Be respectively right
Figure BDA00000458260800000914
Fourier transform, at spectral domain, (23) can obtain in conjunction with (22) formula:
A z ( k &OverBar; &perp; ) = i &Integral; - &infin; &infin; d k &OverBar; &perp; &prime; ( k &OverBar; &perp; - k &OverBar; &perp; &prime; ) A &OverBar; &perp; ( k &OverBar; &perp; &prime; ) F ( k &OverBar; &perp; - k &OverBar; &perp; &prime; ) , B z ( k &OverBar; &perp; ) = i &Integral; - &infin; &infin; d k &OverBar; &perp; &prime; ( k &OverBar; &perp; - k &OverBar; &perp; &prime; ) B &OverBar; &perp; ( k &OverBar; &perp; &prime; ) F ( k &OverBar; &perp; - k &OverBar; &perp; &prime; ) - - - ( 24 )
Because what derive is second order, so Taylor expansion is also approximate to second order promptly:
e &PlusMinus; ik 1 z f ( r &OverBar; &perp; &prime; ) = 1 &PlusMinus; ik 1 z f ( r &OverBar; &perp; &prime; ) - k 1 z 2 2 f 2 ( r &OverBar; &perp; &prime; ) - - - ( 25 )
Again to f, f 2Carry out Fourier transform,
1 4 &pi; 2 &Integral; d r &OverBar; &perp; e - i k &OverBar; &perp; &CenterDot; r &OverBar; &perp; f ( r &OverBar; &perp; ) = F ( k &OverBar; &perp; ) , 1 4 &pi; 2 &Integral; d r &OverBar; &perp; e - i k &OverBar; &perp; &CenterDot; r &OverBar; &perp; f 2 ( r &OverBar; &perp; ) = F 2 ( k &OverBar; &perp; ) - - - ( 26 )
Can prove
F 2 ( k &OverBar; &perp; ) = &Integral; - &infin; &infin; d k &OverBar; &perp; &prime; F ( k &OverBar; &perp; &prime; ) F ( k &OverBar; &perp; - k &OverBar; &perp; &prime; ) - - - ( 27 )
(23) and (24) and above-mentioned Taylors approximation substitution (6) (7) formula can be obtained:
E &OverBar; i ( r &OverBar; ) = 1 2 &Integral; d k &OverBar; &perp; e i k &OverBar; i &perp; &CenterDot; r &OverBar; &perp; - ik z z k k z { [ e ^ ( - k z ) e ^ ( - k z ) + h ^ ( - k z ) &CenterDot; h ^ ( - k z ) ] &CenterDot; [ A &OverBar; ( k &OverBar; &perp; ) + ik z &Integral; d k &OverBar; &perp; &prime; A &OverBar; &perp; ( k &OverBar; &perp; &prime; )
&CenterDot; F ( k &OverBar; &perp; - k &OverBar; &perp; &prime; ) - k z 2 2 &Integral; d k &OverBar; &perp; &prime; A &OverBar; &perp; ( k &OverBar; &perp; &prime; ) F ( 2 ) ( k &OverBar; &perp; - k &OverBar; &perp; &prime; ) ] + [ - h ^ ( - k z ) e ^ ( - k z ) + e ^ ( - k z ) &CenterDot; h ^ ( - k z ) ] - - - ( 28 )
&CenterDot; [ B &OverBar; ( k &OverBar; &perp; ) + ik z &Integral; d k &OverBar; &perp; &prime; B &OverBar; &perp; ( k &OverBar; &perp; &prime; ) F ( k &OverBar; &perp; - k &OverBar; &perp; &prime; ) - k z 2 2 &Integral; d k &OverBar; &perp; &prime; A &OverBar; &perp; ( k &OverBar; &perp; &prime; ) F ( 2 ) ( k &OverBar; &perp; - k &OverBar; &perp; &prime; ) ] }
0 = 1 2 &Integral; d k &OverBar; &perp; e i k &OverBar; &perp; &CenterDot; r &OverBar; &perp; + ik 1 z z k 1 k 1 z { k k 1 [ e ^ ( k 1 z ) e ^ 1 ( k 1 z ) + h ^ 1 ( k 1 z ) &CenterDot; h ^ 1 ( k 1 z ) ] &CenterDot; [ A &OverBar; ( k &OverBar; &perp; ) - ik 1 z &Integral; d k &OverBar; &perp; &prime; A &OverBar; &perp; ( k &OverBar; &perp; &prime; )
&CenterDot; F ( k &OverBar; &perp; - k &OverBar; &perp; &prime; ) - k 1 z 2 2 &Integral; d k &OverBar; &perp; &prime; A &OverBar; &perp; ( k &OverBar; &perp; &prime; ) F ( 2 ) ( k &OverBar; &perp; - k &OverBar; &perp; &prime; ) ] + [ - h ^ 1 ( k 1 z ) e ^ 1 ( k 1 z ) + e ^ 1 ( k 1 z ) &CenterDot; h ^ 1 ( k 1 z ) ] - - - ( 29 )
[ B &OverBar; ( k &OverBar; &perp; ) - ik 1 z &Integral; d k &OverBar; &perp; &prime; B &OverBar; &perp; ( k &OverBar; &perp; &prime; ) F ( k &OverBar; &perp; - k &OverBar; &perp; &prime; ) - k 1 z 2 2 &Integral; d k &OverBar; &perp; &prime; B &OverBar; &perp; ( k &OverBar; &perp; &prime; ) F ( 2 ) ( k &OverBar; &perp; - k &OverBar; &perp; &prime; ) ] }
In like manner can obtain approximate transmitted field to second order is:
E &OverBar; t ( r &OverBar; ) = 1 2 &Integral; d k &OverBar; &perp; e i k &OverBar; &perp; &CenterDot; r &OverBar; &perp; e - i k 1 z z k 1 k 1 z { k k 1 [ e ^ 1 ( - k 1 z ) e ^ 1 ( - k 1 z ) + h ^ 1 ( - k 1 z ) h ^ 1 ( k 1 z ) ]
[ A &OverBar; ( k &OverBar; &perp; ) + ik 1 z &Integral; d k &OverBar; &perp; &prime; A &OverBar; ( k &OverBar; &perp; &prime; ) F ( k &OverBar; &perp; - k &OverBar; &perp; &prime; ) - k 1 z 2 2 &Integral; d k &OverBar; &perp; &prime; A &OverBar; ( k &OverBar; &perp; &prime; ) F ( 2 ) ( k &OverBar; &perp; - k &OverBar; &perp; &prime; ) ] - - - ( 30 )
+ [ - h ^ 1 ( - k 1 z ) e ^ 1 ( - k 1 z ) + e ^ 1 ( - k 1 z ) h ^ 1 ( - k 1 z ) ] [ B &OverBar; ( k &OverBar; &perp; ) + ik 1 z &Integral; d k &OverBar; &perp; &prime; B &OverBar; ( k &OverBar; &perp; &prime; ) F ( k &OverBar; &perp; - k &OverBar; &perp; &prime; )
- k 1 z 2 2 &Integral; d k &OverBar; &perp; &prime; B &OverBar; ( k &OverBar; &perp; &prime; ) F ( 2 ) ( k &OverBar; &perp; - k &OverBar; &perp; &prime; ) ] }
(5) formula is carried out Fourier transform can release the horizontal component of uneven surface and the relation between the z axle component:
A z ( m ) ( k &OverBar; &perp; ) = i &Integral; - &infin; &infin; d k &OverBar; &perp; &prime; F ( k &OverBar; &perp; - k &OverBar; &perp; &prime; ) ( k &OverBar; &perp; - k &OverBar; &perp; &prime; ) A &OverBar; &perp; ( m - 1 ) ( k &OverBar; &perp; &prime; ) - - - ( 31 )
B z ( m ) ( k &OverBar; &perp; ) = i &Integral; - &infin; &infin; d k &OverBar; &perp; &prime; F ( k &OverBar; &perp; - k &OverBar; &perp; &prime; ) ( k &OverBar; &perp; - k &OverBar; &perp; &prime; ) B &OverBar; &perp; ( m - 1 ) ( k &OverBar; &perp; &prime; ) - - - ( 32 )
The z axle component that is to say m rank uneven surface can be calculated by the horizontal component of m-1 rank uneven surface.Then (6) formula can be write as:
&Integral; - &infin; &infin; d k &OverBar; &perp; e i k &OverBar; i &perp; &CenterDot; r &OverBar; &perp; - ik z z e ^ i &delta; ( k &OverBar; &perp; - k &OverBar; i &perp; ) = i 8 &pi; 2 &Integral; d k &OverBar; &perp; e i k &OverBar; i &perp; &CenterDot; r &OverBar; &perp; - ik z z k k z &Integral; d r &OverBar; &prime; &perp; e - i k &OverBar; i &perp; &CenterDot; r &OverBar; &perp; &prime; ( 1 + ik z f ( r &OverBar; &perp; &prime; ) - k z 2 2 f 2 ( r &OverBar; &perp; &prime; ) )
&times; { [ e ^ ( - k z ) e ^ ( - k z ) + h ^ ( - k z ) &CenterDot; h ^ ( - k z ) ] &CenterDot; &Integral; d k &OverBar; &perp; &prime; A &OverBar; ( k &OverBar; &perp; &prime; ) e + i k &OverBar; &perp; &CenterDot; r &OverBar; &perp; &prime; - - - ( 33 )
+ [ - h ^ ( - k z ) e ^ ( - k z ) + e ^ ( - k z ) &CenterDot; h ^ ( - k z ) ] &CenterDot; &Integral; d k &OverBar; &perp; &prime; B &OverBar; ( k &OverBar; &perp; &prime; ) e + i k &OverBar; &perp; &CenterDot; r &OverBar; &perp; &prime; }
Abbreviation (33) can obtain:
e ^ i &delta; ( k &OverBar; &perp; - k &OverBar; i &perp; ) = 1 2 k k z [ e ^ ( - k z ) e ^ ( - k z ) + h ^ ( - k z ) &CenterDot; h ^ ( - k z ) ]
&CenterDot; [ A &OverBar; ( k &OverBar; &perp; ) + ik z &Integral; d k &OverBar; &perp; &prime; A &OverBar; ( k &OverBar; &perp; &prime; ) F ( k &OverBar; &perp; - k &OverBar; &perp; &prime; ) - k z 2 2 &Integral; d k &OverBar; &perp; &prime; A &OverBar; ( k &OverBar; &perp; &prime; ) F ( 2 ) ( k &OverBar; &perp; - k &OverBar; &perp; &prime; ) ] - - - ( 34 )
+ 1 2 k k z [ - h ^ ( - k z ) e ^ ( - k z ) + e ^ ( - k z ) h ^ ( - k z ) ] + 1 2 k k z [ - h ^ ( - k z ) e ^ ( - k z ) + e ^ ( - k z ) h ^ ( - k z ) ]
&CenterDot; [ B &OverBar; ( k &OverBar; &perp; ) + ik z &Integral; d k &OverBar; &perp; &prime; B &OverBar; ( k &OverBar; &perp; &prime; ) F ( k &OverBar; &perp; - k &OverBar; &perp; &prime; ) - k z 2 2 &Integral; d k &OverBar; &perp; &prime; B &OverBar; ( k &OverBar; &perp; &prime; ) F ( 2 ) ( k &OverBar; &perp; - k &OverBar; &perp; &prime; ) ]
Can obtain with identical abbreviation mode (7) formula
0 = 1 2 k k 1 z [ e ^ 1 ( k 1 z ) e ^ ( k 1 z ) + h ^ 1 ( k 1 z ) &CenterDot; h ^ 1 ( k 1 z ) ]
&CenterDot; [ A &OverBar; ( k &OverBar; &perp; ) - ik 1 z &Integral; d k &OverBar; &perp; &prime; A &OverBar; ( k &OverBar; &perp; &prime; ) F ( k &OverBar; &perp; - k &OverBar; &perp; &prime; ) - k 1 z 2 2 &Integral; d k &OverBar; &perp; &prime; A &OverBar; ( k &OverBar; &perp; &prime; ) F ( 2 ) ( k &OverBar; &perp; - k &OverBar; &perp; &prime; ) ] - - - ( 35 )
+ 1 2 k 1 k 1 z [ - h ^ 1 ( k 1 z ) e ^ 1 ( - k 1 z ) + e ^ 1 ( k 1 z ) h ^ 1 ( k 1 z ) ]
&CenterDot; [ B &OverBar; ( k &OverBar; &perp; ) - ik 1 z &Integral; d k &OverBar; &perp; &prime; B &OverBar; ( k &OverBar; &perp; &prime; ) F ( k &OverBar; &perp; - k &OverBar; &perp; &prime; ) - k 1 z 2 2 &Integral; d k &OverBar; &perp; &prime; B &OverBar; ( k &OverBar; &perp; &prime; ) F ( 2 ) ( k &OverBar; &perp; - k &OverBar; &perp; &prime; ) ]
Following sublevel is found the solution (34) and (35) equation, and provides the derivation of single order and second order transmitted field.
1, zeroth order and single order transmitted field are found the solution
(1) zeroth order field
Can derive zero Jie's transmitted field by (30) formula is:
E &OverBar; t ( 0 ) ( r &OverBar; ) = 1 2 d k &OverBar; &perp; e i k &OverBar; &perp; &CenterDot; r &OverBar; &perp; - ik 1 z z k 1 k 1 z { k k 1 [ e ^ 1 ( - k 1 z ) e ^ 1 ( - k 1 z ) + h ^ 1 ( - k 1 z ) h ^ 1 ( k 1 z ) ] &CenterDot; A &OverBar; ( 0 ) ( k &OverBar; &perp; ) - - - ( 36 )
+ [ - h ^ 1 ( - k 1 z ) e ^ 1 ( - k 1 z ) + e ^ 1 ( - k 1 z ) h ^ 1 ( - k 1 z ) ] &CenterDot; B &OverBar; ( 0 ) ( k &OverBar; &perp; ) }
0 rank transmission is separated the corresponding flat ripple and is incided a transmission on the plane, (34) and the expression formula of (35) these two extinction theorems is approximate can get to zeroth order:
e ^ i &delta; ( k &OverBar; &perp; - k &OverBar; i &perp; ) = k 2 k z [ e ^ ( - k z ) e ^ ( - k z ) + h ^ ( - k z ) h ^ ( - k z ) ] &CenterDot; A &OverBar; &perp; ( 0 ) - - - ( 37 )
+ k k z [ - h ^ ( - k z ) e ^ ( - k z ) + e ^ ( - k z ) h ^ ( - k z ) ] &CenterDot; B &OverBar; &perp; ( 0 )
0 = k 2 k 1 z [ e ^ 1 ( k 1 z ) e ^ 1 ( k 1 z ) + h ^ 1 ( k 1 z ) h ^ 1 ( k 1 z ) ] &CenterDot; A &OverBar; &perp; ( 0 ) - - - ( 38 )
+ k 2 k 1 z [ - h ^ 1 ( k 1 z ) e ^ 1 ( - k 1 z ) + e ^ 1 ( k 1 z ) h ^ 1 ( k 1 z ) ] &CenterDot; B &OverBar; &perp; ( 0 )
Can obtain zero Jie's surface field by (36) and (37) With Substitution (36) formula can be released the expression formula of zeroth order transmitted field:
E &OverBar; t ( 0 ) = { ( 1 + R h 0 ) [ e ^ ( - k iz ) &CenterDot; e ^ i ] e ^ 1 ( - k 1 zi ) + k k 1 ( 1 + R v 0 ) [ h ^ ( - k iz ) &CenterDot; e ^ i ] h ^ 1 ( - k 1 zi ) } e i k &OverBar; i &perp; r &OverBar; &perp; - ik 1 zi z - - - ( 39 )
R wherein H0Be the Fresnel reflection coefficient of TE ripple, R V0Be the Fresnel reflection coefficient of TM ripple,
R h 0 = k iz - k 1 iz k iz + k 1 iz ; R v 0 = k 1 2 k iz - k 2 k 1 iz k 1 2 k iz + k 2 k 1 iz
(2) derivation of single order transmitted field
Can derive the single order transmitted field by (30) formula is
E &OverBar; t ( 1 ) ( r &OverBar; ) = 1 2 &Integral; d k &OverBar; &perp; e i k &OverBar; &perp; &CenterDot; r &OverBar; &perp; - i k 1 z z k 1 k 1 z { k k 1 [ e ^ 1 ( - k 1 z ) e ^ 1 ( - k 1 z ) + h ^ 1 ( - k 1 z ) h ^ 1 ( k 1 z ) ]
&CenterDot; [ A &OverBar; ( 1 ) ( k &OverBar; &perp; ) + ik 1 z &Integral; d k &OverBar; &perp; &prime; A &OverBar; ( 0 ) ( k &OverBar; &perp; &prime; ) F ( k &OverBar; &perp; - k &OverBar; &perp; &prime; ) ] + [ - h ^ 1 ( - k 1 z ) e ^ 1 ( - k 1 z ) + e ^ 1 ( - k 1 z ) h ^ 1 ( - k 1 z ) ] - - - ( 40 )
&CenterDot; [ B &OverBar; ( 1 ) ( k &OverBar; &perp; ) + ik 1 z &Integral; d k &OverBar; &perp; &prime; B &OverBar; ( 0 ) ( k &OverBar; &perp; &prime; ) F ( k &OverBar; &perp; - k &OverBar; &perp; &prime; ) ]
Can get to single order by the expression formula of (34) and (35) these two extinction theorems is approximate:
e ^ i &delta; ( k &OverBar; &perp; - k &OverBar; i &perp; ) = k 2 k z [ e ^ ( - k z ) e ^ ( - k z ) + h ^ ( - k z ) h ^ ( - k z ) ]
&CenterDot; [ A &OverBar; ( 1 ) ( k &OverBar; &perp; ) + ik 1 z &Integral; d k &OverBar; &perp; &prime; A &OverBar; ( 0 ) ( k &OverBar; &perp; &prime; ) F ( k &OverBar; &perp; - k &OverBar; &perp; &prime; ) ] - - - ( 41 )
+ k k z [ - h ^ ( - k z ) e ^ ( - k z ) + e ^ ( - k z ) h ^ ( - k z ) ]
&CenterDot; [ B &OverBar; ( 1 ) ( k &OverBar; &perp; ) + ik 1 z &Integral; d k &OverBar; &perp; &prime; B &OverBar; ( 0 ) ( k &OverBar; &perp; &prime; ) F ( k &OverBar; &perp; - k &OverBar; &perp; &prime; ) ]
0 = k 2 k 1 z [ e ^ 1 ( k 1 z ) e ^ 1 ( k 1 z ) + h ^ 1 ( k 1 z ) h ^ 1 ( k 1 z ) ]
&CenterDot; [ A &OverBar; ( 1 ) ( k &OverBar; &perp; ) + ik 1 z &Integral; d k &OverBar; &perp; &prime; A &OverBar; ( 0 ) ( k &OverBar; &perp; &prime; ) F ( k &OverBar; &perp; - k &OverBar; &perp; &prime; ) ] - - - ( 42 )
+ k 1 2 k 1 z [ - h ^ 1 ( k 1 z ) e ^ 1 ( - k 1 z ) + e ^ 1 ( k 1 z ) h ^ 1 ( k 1 z ) ]
&CenterDot; [ B &OverBar; ( 1 ) ( k &OverBar; &perp; ) + ik 1 z &Integral; d k &OverBar; &perp; &prime; B &OverBar; ( 0 ) ( k &OverBar; &perp; &prime; ) F ( k &OverBar; &perp; - k &OverBar; &perp; &prime; ) ]
Can solve the surface field of single order by (41) and (42)
Figure BDA0000045826080000131
With
Figure BDA0000045826080000132
Again will With Substitution (40) can draw single order transmitted field expression formula:
E &OverBar; t ( 1 ) ( r &OverBar; ) = &Integral; d k &OverBar; &perp; e i k &OverBar; i &perp; &CenterDot; r &OverBar; &perp; - ik 1 z z iF ( k &OverBar; &perp; - k &OverBar; i &perp; ) { e ^ 1 ( - k 1 z ) [ f ee t ( 1 ) ( k &OverBar; &perp; , k &OverBar; i &perp; ) ( e ^ 1 ( - k 1 zi ) &CenterDot; e ^ 1 )
+ f he t ( 1 ) ( k &OverBar; &perp; , k &OverBar; i &perp; ) ( h ^ 1 ( - k 1 zi ) &CenterDot; e ^ 1 ) ] + h ^ 1 ( - k 1 z ) [ f he t ( 1 ) ( k &OverBar; &perp; , k &OverBar; i &perp; ) ( e ^ 1 ( - k 1 zi ) &CenterDot; e ^ 1 ) - - - ( 43 )
+ f hh t ( 1 ) ( k &OverBar; &perp; , k &OverBar; i &perp; ) ( h ^ 1 ( - k 1 zi ) &CenterDot; e ^ 1 ) ]
When the incident field is the TE polarization
Figure BDA0000045826080000138
When the incident field is the TM polarization
Figure BDA0000045826080000139
We define and are released by the coordinate relation:
f ee t ( 1 ) ( k &OverBar; &perp; , k &OverBar; i &perp; ) = ( k 1 2 - k 2 ) k z + k 1 z ( 2 k iz k iz + k 1 zi ) cos ( &phi; k - &phi; i ) - - - ( 44 )
In like manner:
f he t ( 1 ) ( k &OverBar; &perp; , k &OverBar; i &perp; ) = k z k 1 ( k 1 2 - k 2 ) k 1 2 k z + k 2 k 1 z ( 2 k iz k iz + k 1 zi ) sin ( &phi; k - &phi; i ) - - - ( 45 )
f eh t ( 1 ) ( k &OverBar; &perp; , k &OverBar; i &perp; ) = k iz ( k 1 2 - k 2 ) k z + k 1 z ( 2 kk 1 zi k 1 2 k iz + k 2 k 1 zi ) sin ( &phi; k - &phi; i ) - - - ( 46 )
f hh t ( 1 ) ( k &OverBar; &perp; , k &OverBar; i &perp; ) = ( k 1 2 - k 2 ) k 1 2 k z + k 2 k 1 z ( 2 k k 1 k iz k 1 2 k iz + k 2 k 1 zi ) { k &rho; k &rho;i + k 1 zi k z cos ( &phi; k - &phi; i ) } - - - ( 47 )
φ k, φ iRefer to transmission position angle and incident orientation angle respectively.
2, the second order transmitted field is found the solution
Can derive the second order transmitted field by (30) formula is
E &OverBar; t ( 2 ) ( r &OverBar; ) = 1 2 &Integral; d k &OverBar; &perp; e i k &OverBar; i &perp; &CenterDot; r &OverBar; &perp; - ik 1 z z k 1 k 1 z { k k 1 [ e ^ 1 ( - k 1 z ) e ^ 1 ( - k 1 z ) + h ^ 1 ( - k 1 z ) h ^ 1 ( k 1 z ) ] &CenterDot; [ A &OverBar; ( 2 ) ( k &OverBar; &perp; )
+ ik 1 z &Integral; d k &OverBar; &perp; &prime; A &OverBar; ( 1 ) ( k &OverBar; &perp; &prime; ) F ( k &OverBar; &perp; - k &OverBar; &perp; &prime; ) - k 1 z 2 2 d k &OverBar; &perp; &prime; A &OverBar; ( 0 ) ( k &OverBar; &perp; &prime; ) F ( 2 ) ( k &OverBar; &perp; - k &OverBar; &perp; &prime; ) ] - - - ( 48 )
+ [ - h ^ 1 ( - k 1 z ) e ^ 1 ( - k 1 z ) + e ^ 1 ( - k 1 z ) h ^ 1 ( - k 1 z ) ] &CenterDot; [ B &OverBar; ( 2 ) ( k &OverBar; &perp; ) + ik 1 z &Integral; d k &OverBar; &perp; &prime; B &OverBar; ( 1 ) ( k &OverBar; &perp; &prime; )
&CenterDot; F ( k &OverBar; &perp; - k &OverBar; &perp; &prime; ) - k 1 z 2 2 &Integral; d k &OverBar; &perp; &prime; B &OverBar; ( 0 ) ( k &OverBar; &perp; &prime; ) F ( 2 ) ( k &OverBar; &perp; - k &OverBar; &perp; &prime; ) ]
Can write out the expression formula of the extinction theorem of second order by (34) and (35) formula:
e ^ i &delta; ( k &OverBar; &perp; - k &OverBar; i &perp; ) = k 2 k z [ e ^ ( - k z ) e ^ ( - k z ) + h ^ ( - k z ) h ^ ( - k z ) ] &CenterDot; [ A &OverBar; ( 2 ) ( k &OverBar; &perp; ) + ik iz &Integral; d k &OverBar; &perp; &prime; A &OverBar; ( 1 ) ( k &OverBar; &perp; &prime; ) F ( k &OverBar; &perp; - k &OverBar; &perp; &prime; )
- k 1 z 2 2 &Integral; d k &OverBar; &perp; &prime; A &OverBar; ( 0 ) ( k &OverBar; &perp; &prime; ) F ( 2 ) ( k &OverBar; &perp; - k &OverBar; &perp; &prime; ) ] + k k z [ - h ^ ( - k z ) e ^ ( - k z ) + e ^ ( - k z ) h ^ ( - k z ) ] - - - ( 49 )
&CenterDot; [ B &OverBar; ( 2 ) ( k &OverBar; &perp; ) + ik 1 z &Integral; d k &OverBar; &perp; &prime; B &OverBar; ( 1 ) ( k &OverBar; &perp; &prime; ) F ( k &OverBar; &perp; - k &OverBar; &perp; &prime; ) - k 1 z 2 2 d k &OverBar; &perp; &prime; B &OverBar; ( 0 ) ( k &OverBar; &perp; &prime; ) F ( 2 ) ( k &OverBar; &perp; - k &OverBar; &perp; &prime; ) ]
0 = k 2 k 1 z [ e ^ 1 ( k 1 z ) e ^ 1 ( k 1 z ) + h ^ 1 ( k 1 z ) h ^ 1 ( k 1 z ) ] &CenterDot; [ A &OverBar; ( 2 ) ( k &OverBar; &perp; ) + ik 1 z &Integral; d k &OverBar; &perp; &prime; A &OverBar; ( 1 ) ( k &OverBar; &perp; &prime; ) F ( k &OverBar; &perp; - k &OverBar; &perp; &prime; )
- k 1 z 2 2 &Integral; d k &OverBar; &perp; &prime; A &OverBar; ( 0 ) ( k &OverBar; &perp; &prime; ) F ( 2 ) ( k &OverBar; &perp; - k &OverBar; &perp; &prime; ) ] + k 1 2 k 1 z [ - h ^ 1 ( k 1 z ) e ^ 1 ( - k 1 z ) + e ^ 1 ( k 1 z ) h ^ 1 ( k 1 z ) ] - - - ( 50 )
[ B &OverBar; ( 2 ) ( k &OverBar; &perp; ) + i k 1 z &Integral; d k &OverBar; &perp; &prime; B &OverBar; ( 1 ) ( k &OverBar; &perp; &prime; ) F ( k &OverBar; &perp; - k &OverBar; &perp; &prime; ) - k 1 z 2 2 &Integral; d k &OverBar; &perp; &prime; B &OverBar; ( 0 ) ( k &OverBar; &perp; &prime; ) F ( 2 ) ( k &OverBar; &perp; - k &OverBar; &perp; &prime; ) ]
By (49), (50) two formulas can solve the surface field of second order
Figure BDA0000045826080000147
With
Figure BDA0000045826080000148
Again will
Figure BDA0000045826080000149
Figure BDA00000458260800001410
With Substitution (48) can be released out the second order transmitted field
E &OverBar; t ( 2 ) ( r &OverBar; ) = &Integral; d k &OverBar; &perp; e i k &OverBar; i &perp; &CenterDot; r &OverBar; &perp; - ik 1 z z { e ^ 1 ( - k 1 z ) [ f ee t ( 2 ) ( k &OverBar; &perp; , k &OverBar; i &perp; ) ( e ^ 1 ( - k 1 zi ) &CenterDot; e ^ 1 ) + f eh t ( 2 ) ( k &OverBar; &perp; , k &OverBar; i &perp; ) ( h ^ 1 ( - k 1 zi ) &CenterDot; e ^ i ) ] - - - ( 51 )
+ h ^ 1 ( - k 1 z ) [ f he t ( 2 ) ( k &OverBar; &perp; , k &OverBar; i &perp; ) ( e ^ 1 ( - k 1 zi ) &CenterDot; e ^ i ) + f hh t ( 2 ) ( k &OverBar; &perp; , k &OverBar; i &perp; ) ( h ^ 1 ( - k 1 zi ) &CenterDot; e ^ i ) ]
f ee t ( 2 ) ( k &OverBar; &perp; , k &OverBar; i &perp; ) = k iz k iz + k 1 iz k 1 2 - k 2 k 1 z + k z { cos ( &phi; k - &phi; i ) &CenterDot; ( k 1 zi - k z ) F ( 2 ) ( k &OverBar; &perp; - k &OverBar; i &perp; )
- 2 ( k 1 2 - k 2 ) &Integral; d k &OverBar; &perp; &prime; F ( k &OverBar; &perp; &prime; - k &OverBar; i &perp; ) F ( k &OverBar; &perp; - k &OverBar; &perp; &prime; ) - - - ( 52 )
&CenterDot; [ - sin ( &phi; k - &phi; k &prime; ) sin ( &phi; k &prime; - &phi; i ) k z &prime; k 1 z &prime; k 1 2 k z &prime; + k 2 k 1 z &prime; + cos ( &phi; k - &phi; k &prime; ) cos ( &phi; k &prime; - &phi; i ) 1 k 1 z &prime; + k z &prime; ] }
f eh t ( 2 ) ( k &OverBar; &perp; , k &OverBar; i &perp; ) = k 1 2 - k 2 k 1 z + k z k k iz k 1 2 k iz + k 2 k 1 zi { ( k 1 2 - k 1 zi k z ) F ( 2 ) ( k &OverBar; &perp; - k &OverBar; i &perp; ) sin ( &phi; k - &phi; i )
- 2 &Integral; d k &OverBar; &perp; &prime; F ( k &OverBar; &perp; &prime; - k &OverBar; i &perp; ) F ( k &OverBar; &perp; - k &OverBar; &perp; &prime; ) [ sin ( &phi; k - &phi; k &prime; ) k 1 2 k &rho; &prime; k &rho;i k &rho; &prime; 2 k + k z &prime; k 1 z &prime; + ( k 1 2 - k 2 ) k 1 zi k 1 2 k z &prime; + k 2 k 1 z &prime; - - - ( 53 )
&CenterDot; ( sin ( &phi; k - &phi; k &prime; ) cos ( &phi; k &prime; - &phi; i ) k z &prime; k 1 z &prime; + cos ( &phi; k - &phi; k &prime; ) sin ( &phi; k &prime; - &phi; i ) ( k &rho; &prime; 2 + k z &prime; k 1 z &prime; ) ] }
f he t ( 2 ) ( k &OverBar; &perp; , k &OverBar; i &perp; ) = k 1 2 - k 2 k 1 zi + k iz k 1 k iz k 1 2 k z + k 2 k 1 z { ( k 2 - k 1 zi k z ) F ( 2 ) ( k &OverBar; &perp; - k &OverBar; i &perp; ) sin ( &phi; k - &phi; i )
+ 2 &Integral; d k &OverBar; &perp; &prime; F ( k &OverBar; &perp; &prime; - k &OverBar; i &perp; ) F ( k &OverBar; &perp; - k &OverBar; &perp; &prime; ) [ sin ( &phi; k &prime; - &phi; i ) k 1 2 k &rho; &prime; k &rho; k &rho; &prime; 2 + k z &prime; k 1 z &prime; + ( k 1 2 - k 2 ) k z k 1 2 k z &prime; + k 2 k 1 z &prime; - - - ( 54 )
&CenterDot; ( k z &prime; k 1 z &prime; sin ( &phi; k - &phi; k &prime; ) cos ( &phi; k &prime; - &phi; i ) + ( k &rho; &prime; 2 + k z &prime; k 1 z &prime; ) cos ( &phi; k - &phi; k &prime; ) sin ( &phi; k &prime; - &phi; i ) ) ]
f hh t ( 2 ) ( k &OverBar; &perp; , k &OverBar; i &perp; ) = ( k 1 2 - k 2 ) ( k 1 2 k z + k 2 k 1 z ) k 1 k iz k 1 2 k iz + k 2 k 1 zi { k ( k 1 2 k z - k 2 k 1 zi ) F ( 2 ) ( k &OverBar; &perp; - k &OverBar; i &perp; ) cos ( &phi; k - &phi; i )
+ 2 &Integral; d k &OverBar; &perp; &prime; F ( k &OverBar; &perp; &prime; - k &OverBar; i &perp; ) F ( k &OverBar; &perp; - k &OverBar; &perp; &prime; ) [ kk z k 1 zi ( k 1 2 - k 2 ) k z &prime; + k 1 z &prime; sin ( &phi; k - &phi; k &prime; ) sin ( &phi; k &prime; - &phi; i ) - - - ( 55 )
+ 1 k 1 2 k z &prime; + k 2 k 1 z &prime; [ - k ( k 1 2 - k 2 ) k &rho; k &prime; &rho; 2 k &rho;i + k &rho; k &rho; &prime; k 3 ( k z &prime; + k 1 z &prime; ) k 1 zi cos ( &phi; k &prime; - &phi; i ) - k &rho; &prime; k &rho;i kk 1 2
&CenterDot; ( k z &prime; + k 1 z &prime; ) k z cos ( &phi; k - &phi; k &prime; ) - kk z &prime; k 1 z &prime; ( k 1 2 - k 2 ) k z k 1 zi cos ( &phi; k - &phi; k &prime; ) cos ( &phi; k &prime; - &phi; i ) ] }
Two, two-way transmission coefficient and transmissivity
Can know the total transmission electric field that is accurate to second order by inference by the formula of above 0 rank, single order and second order is:
E &OverBar; t ( r &OverBar; ) = E &OverBar; t ( 0 ) ( r &OverBar; ) + E &OverBar; t ( 1 ) ( r &OverBar; ) + E &OverBar; t ( 2 ) ( r &OverBar; )
= { ( 1 + R h 0 ) [ e ^ ( - k iz ) &CenterDot; e ^ i ] e ^ 1 ( - k 1 zi ) + k k 1 ( 1 + R v 0 ) [ h ^ ( - k iz ) &CenterDot; e ^ i ] h ^ 1 ( - k 1 zi ) } e i k &OverBar; i &perp; &CenterDot; r &OverBar; &perp; - i k 1 zi z
+ &Integral; d k &OverBar; &perp; e i k &OverBar; i &perp; &CenterDot; r &OverBar; &perp; - i k 1 z z iF ( k &OverBar; &perp; - k &OverBar; i &perp; ) { e ^ 1 ( - k 1 z ) [ f ee t ( 1 ) ( k &OverBar; &perp; , k &OverBar; i &perp; ) ( e ^ 1 ( - k 1 zi ) &CenterDot; e ^ 1 ) + f ee t ( 1 ) ( k &OverBar; &perp; , k &OverBar; i &perp; ) - - - ( 56 )
&CenterDot; ( h ^ 1 ( - k 1 zi ) &CenterDot; e ^ 1 ) ] + h ^ 1 ( - k 1 z ) [ f he t ( 1 ) ( k &OverBar; &perp; , k &OverBar; i &perp; ) ( e ^ 1 ( - k 1 zi ) &CenterDot; e ^ 1 ) + f hh t ( 1 ) ( k &OverBar; &perp; , k &OverBar; i &perp; ) ( h ^ 1 ( - k 1 zi ) &CenterDot; e ^ 1 ) ] }
+ &Integral; d k &OverBar; &perp; e i k &OverBar; i &perp; &CenterDot; r &OverBar; &perp; - ik 1 z z { e ^ 1 ( - k 1 z ) [ f ee t ( 2 ) ( k &OverBar; &perp; , k &OverBar; i &perp; ) ( e ^ 1 ( - k 1 zi ) &CenterDot; e ^ i ) + f eh t ( 2 ) ( k &OverBar; &perp; , k &OverBar; i &perp; ) ( h ^ 1 ( - k 1 zi ) &CenterDot; e ^ i ) ]
+ h ^ 1 ( - k 1 z ) [ f he t ( 2 ) ( k &OverBar; &perp; , k &OverBar; i &perp; ) ( e ^ 1 ( - k 1 zi ) &CenterDot; e ^ i ) + f hh t ( 2 ) ( k &OverBar; &perp; , k &OverBar; i &perp; ) ( h ^ 1 ( - k 1 zi ) &CenterDot; e ^ i ) ]
Again by formula
Figure BDA00000458260800001512
η 1Be wave impedance, can know by inference:
H &OverBar; t ( r &OverBar; ) = H &OverBar; t ( 0 ) ( r &OverBar; ) + H &OverBar; t ( 1 ) ( r &OverBar; ) + H &OverBar; t ( 2 ) ( r &OverBar; )
= e i k &OverBar; i &perp; &CenterDot; r &OverBar; &perp; - i k 1 zi z { - h ^ 1 ( - k 1 zi ) ( 1 + R h 0 ) [ e ^ ( - k iz ) &CenterDot; e ^ ] + e ^ 1 ( - k 1 iz ) k k 1 ( 1 + R v 0 ) [ h ^ ( - k iz ) &CenterDot; e ^ i ] }
+ 1 &eta; 1 &Integral; d k &OverBar; &perp; e i k &OverBar; i &perp; &CenterDot; r &OverBar; &perp; - ik 1 z z iF ( k &OverBar; &perp; - k &OverBar; i &perp; ) { - h ^ 1 ( - k 1 z ) [ f ee t ( 1 ) ( k &OverBar; &perp; , k &OverBar; i &perp; ) ( e ^ 1 ( - k 1 zi ) &CenterDot; e ^ 1 ) + f he t ( 1 ) ( k &OverBar; &perp; , k &OverBar; i &perp; ) - - - ( 57 )
&CenterDot; ( h ^ 1 ( - k 1 zi ) &CenterDot; e ^ 1 ) ] + e ^ 1 ( - k 1 z ) [ f he t ( 1 ) ( k &OverBar; &perp; , k &OverBar; i &perp; ) ( e ^ 1 ( - k 1 zi ) &CenterDot; e ^ 1 ) + f hh t ( 1 ) ( k &OverBar; &perp; , k &OverBar; i &perp; ) ( h ^ 1 ( - k 1 zi ) &CenterDot; e ^ 1 ) ] }
+ 1 &eta; 1 &Integral; d k &OverBar; &perp; e i k &OverBar; i &perp; &CenterDot; r &OverBar; &perp; - ik 1 z z { - h ^ 1 ( - k 1 z ) [ f ee t ( 2 ) ( k &OverBar; &perp; , k &OverBar; i &perp; ) ( e ^ 1 ( - k 1 zi ) &CenterDot; e ^ 1 ) + f eh t ( 2 ) ( k &OverBar; &perp; , k &OverBar; i &perp; ) ( h ^ 1 ( - k 1 zi ) &CenterDot; e ^ i ) ]
+ e ^ 1 ( - k 1 z ) [ f he t ( 2 ) ( k &OverBar; &perp; , k &OverBar; i &perp; ) ( e ^ 1 ( - k 1 zi ) &CenterDot; e ^ i ) + f hh t ( 2 ) ( k &OverBar; &perp; , k &OverBar; i &perp; ) ( h ^ 1 ( - k 1 zi ) &CenterDot; e ^ i ) ]
Incident wave on the unit area
Figure BDA00000458260800001519
The power of axle component is respectively:
S &OverBar; i &CenterDot; z ^ = - cos &theta; i 2 &eta; - - - ( 58 )
< S &OverBar; t &CenterDot; z ^ > = 1 2 Re < E &OverBar; t &times; H &OverBar; t * > &CenterDot; z ^
= 1 2 Re E &OverBar; t ( 0 ) &times; H &OverBar; t ( 0 ) * &CenterDot; z ^ + 1 2 Re E &OverBar; t ( 0 ) &times; < H &OverBar; t ( 2 ) * > &CenterDot; z ^ + 1 2 Re < E &OverBar; t ( 2 ) > &times; H &OverBar; t ( 0 ) * &CenterDot; z ^ - - - ( 59 )
+ 1 2 Re < E &OverBar; t ( 1 ) &times; H &OverBar; t ( 1 ) * > &CenterDot; z ^
Wherein
Figure BDA0000045826080000161
For prolonging the booth vector in the average slope of incident wave,
Figure BDA0000045826080000162
The booth vector is prolonged on the average slope that is the transmitted wave in the medium 1.
t ( &pi; - &theta; i , &phi; i ) = < S &OverBar; t &CenterDot; z ^ > S &OverBar; i &CenterDot; z ^
= k 1 zi k zi | 1 + R ho | 2 ( e ^ ( - k iz ) &CenterDot; e ^ i ) + k 2 k 1 zi k 1 2 k zi | 1 + R vo | 2 ( h ^ ( - k iz ) &CenterDot; e ^ i )
+ 2 Re ( k 1 zi k zi ( 1 + R ho ) f ee * t ( 2 ) ( k i &perp; ) ) ( e ^ ( - k iz ) &CenterDot; e ^ i ) + 2 Re ( kk 1 zi k 1 k zi ( 1 + R vo ) f hh * t ( 2 ) ( k i &perp; ) )
&CenterDot; ( h ^ ( - k iz ) &CenterDot; e ^ i ) + &Integral; d k &OverBar; &perp; k 1 zi k zi W ( k &OverBar; &perp; - k &OverBar; i &perp; ) [ | f ee t ( 1 ) ( k &OverBar; &perp; , k &OverBar; i &perp; ) &CenterDot; ( e ^ ( - k iz ) &CenterDot; e ^ i ) + f eh t ( 1 ) ( k &OverBar; &perp; , k &OverBar; i &perp; ) &CenterDot; ( h ^ ( - k iz ) &CenterDot; e ^ i ) | 2
+ | f he t ( 1 ) ( e ^ ( - k iz ) &CenterDot; e ^ i ) + f hh t ( 1 ) ( h ^ ( - k iz ) &CenterDot; e ^ i ) | 2 - - - ( 60 )
Wherein
Figure BDA0000045826080000168
It is the Fourier conversion of the related function of random fluctuation height.Then
W ( k &OverBar; &perp; - k &OverBar; i &perp; ) = h 2 l 2 4 &pi; exp ( - ( k &rho; 2 + k &rho;i 2 ) l 2 4 + k &rho; k &rho;i l 2 2 cos ( &phi; k - &phi; i ) ) .
So our more concern two-way transmission coefficient in application is with transmissivity t (π-θ i, φ i) write as two-way transmission coefficient
Figure BDA00000458260800001610
Form:
t b ( &pi; - &theta; i , &phi; i ) = 1 4 &pi; &Integral; 0 &pi; / 2 d &theta; t sin &theta; t &Integral; 0 2 &pi; d &phi; t ( &gamma; ab t ( &pi; - &theta; t , &phi; t ; &pi; - &theta; i , &phi; i ) + &gamma; bb t ( &pi; - &theta; t , &phi; t ; &pi; - &theta; i , &phi; i ) ) - - - ( 61 )
A wherein, b are respectively two kinds of situations of v polarization and h polarization, and the expression mirror should be with θ to transmission direction t, φ tForm:
Figure BDA00000458260800001612
Wherein
Figure BDA00000458260800001613
θ tJust point to transmission direction.
Polarize at incident wave h as can be known through deriving, the two-way transmission coefficient under the transmitted wave h polarization situation is:
1 4 &pi; &gamma; hh t ( &pi; - &theta; t , &phi; t ; &pi; - &theta; i , &phi; i ) = [ k 1 zi k zi | 1 + R ho | 2 + 2 Re ( k 1 zi k zi ( 1 + R ho ) f ee t * ( 2 ) ( k &OverBar; i &perp; ) ) ] &delta; ( cos &theta; t - k 1 zi k 1 ) &delta; ( &phi; t - &phi; i )
+ k 1 k 1 z 2 k iz W ( k &OverBar; &perp; - k &OverBar; i &perp; ) | f ee t * ( 1 ) ( k &OverBar; &perp; , k &OverBar; i &perp; ) | 2 - - - ( 62 )
In like manner, in incident wave v polarization, under the transmitted wave h polarization situation,
1 4 &pi; &gamma; hv t ( &pi; - &theta; t , &phi; t ; &pi; - &theta; i , &phi; i ) = k 1 k 1 z 2 k iz W ( k &OverBar; &perp; - k &OverBar; i &perp; ) | f eh t * ( 1 ) ( k &OverBar; &perp; , k &OverBar; i &perp; ) | 2 - - - ( 63 )
In incident wave h polarization, under the transmitted wave v polarization situation,
1 4 &pi; &gamma; vh t ( &pi; - &theta; t , &phi; t ; &pi; - &theta; i , &phi; i ) = k 1 k 1 z 2 k iz W ( k &OverBar; &perp; - k &OverBar; i &perp; ) | f he t * ( 1 ) ( k &OverBar; &perp; , k &OverBar; i &perp; ) | 2 - - - ( 64 )
In incident wave v polarization, under the transmitted wave v polarization situation,
1 4 &pi; &gamma; vv t ( &pi; - &theta; t , &phi; t ; &pi; - &theta; i , &phi; i ) = [ k 2 k 1 zi k 1 2 k iz | 1 + R vo | 2 + 2 Re ( kk 1 zi k 1 k iz ( 1 + R vo ) f hh t * ( 2 ) ( k &OverBar; i &perp; ) ) ] - - - ( 65 )
&CenterDot; &delta; ( cos &theta; t - k 1 zi k 1 ) &delta; ( &phi; t - &phi; i ) + k 1 k 1 z 2 k iz W ( k &OverBar; &perp; - k &OverBar; i &perp; ) | f hh t * ( 1 ) ( k &OverBar; &perp; , k &OverBar; i &perp; ) | 2
Wherein f ab t ( 2 ) ( k &OverBar; i &perp; ) = < f ab t ( 2 ) ( k &OverBar; &perp; , k &OverBar; i &perp; ) > a , b = v , h
f ee t ( 2 ) ( k &OverBar; i &perp; ) = k iz ( k 1 2 - k 2 ) ( k iz + k 1 zi ) 2 { ( k 1 zi - k iz ) &Integral; - &infin; &infin; d k &OverBar; &perp; W ( k &OverBar; &perp; - k &OverBar; i &perp; ) - 2 ( k 1 2 - k 2 ) &Integral; - &infin; &infin; d k &OverBar; &perp; W ( k &OverBar; &perp; - k &OverBar; i &perp; ) - - - ( 66 )
&CenterDot; [ sin 2 ( &phi; k - &phi; i ) k z k 1 z k 1 2 k z + k 2 k 1 z cos 2 ( &phi; k - &phi; i ) 1 k 1 z + k z ] }
f hh t ( 2 ) ( k &OverBar; i &perp; ) = k 1 ( k 1 2 - k 2 ) k iz ( k 1 2 k iz + k 2 k 1 zi ) 2 { &Integral; - &infin; &infin; d k &OverBar; &perp; W ( k &OverBar; &perp; - k &OverBar; i &perp; ) k ( k 1 2 k iz - k 2 k 1 zi ) +
2 &Integral; - &infin; &infin; d k &OverBar; &perp; W ( k &OverBar; &perp; - k &OverBar; i &perp; ) [ - kk iz k 1 zi ( k 1 2 - k 2 ) k z + k 1 z sin 2 ( &phi; k - &phi; i ) + - - - ( 67 )
1 k 1 2 k z + k 2 k 1 z ( - k ( k 1 2 - k 2 ) k &rho;i 2 k &rho; 2 + k &rho; k &rho;i k ( k z + k 1 z ) ( k 2 k 1 zi - k 1 2 k iz ) )
&CenterDot; cos ( &phi; k - &phi; i ) - kk z k 1 z k iz k 1 zi ( k 1 2 - k 2 ) cos 2 ( &phi; k - &phi; i ) ] }
Below the present invention program is verified:
For two-dimentional uneven surface as shown in Figure 1, incident wave incides on this uneven surface from free space (medium 0), wherein known media 0 μ 0=4 π * 10 -7, needing setup parameter simultaneously is the incident angle θ of incident wave iAnd position angle
Figure BDA00000458260800001713
The DIELECTRIC CONSTANT of the latter half medium 1, the standard deviation σ of uneven surface and persistence length l.
At first utilize incident angle θ iAnd position angle
Figure BDA00000458260800001714
Calculate: k Ix=ksin θ iCos φ i, k Iy=ksin θ iSin φ i, k Iz=kcos θ i, k ρ i=ksin θ i,
Figure BDA00000458260800001715
Utilize formula (56) can calculate transmissivity again.The implication and the value of each variable see correlation formula for details in the formula (56).
Second order dispersion field that perturbation method is calculated and second-order reflection rate have been derived by forefathers and have been obtained, be checking second order transmitted field and second order transmissivity that this paper derived, be provided with down in different parameters, press this paper method and calculate second order transmissivity (emissivity), calculate the second-order reflection rate by the formula that provides, with reflectivity and transmissivity addition, think and meet energy conservation that promptly the derivation result of this paper second order transmitted field and second order transmissivity is correct if equal 1.Be used for contrast, also emulation single order perturbation method transmissivity and reflectivity, and energy conservation situation.
1, the scope of application that meets the single order perturbation method when surfaceness.
Make DIELECTRIC CONSTANT=6, root-mean-square height h=0.0398 λ, persistence length l=λ, frequency f=37Ghz, wherein λ is the wavelength of free space under this frequency.This parameter setting is satisfied the scope of application of single order perturbation method.Fig. 2 has shown transmissivity (second order, single order), reflectivity (second order, single order), and transmissivity+reflectivity (second order, single order), changes situation about changing with incident angle.
The corresponding h polarization of Fig. 2 (a) situation meets the scope of application of single order perturbation method though find out surfaceness, and the single order perturbation method does not also meet energy conservation, and when 0 degree incident angle, error is 18%; And the second order perturbation method to all incident angles, comprises the glancing incidence situation when h polarizes, and all keeps energy conservation;
The corresponding v of Fig. 2 (b) polarization situation, the single order perturbation method polarizes at v, to all incident angle energy nonconservation all.The second order perturbation method polarizes at v, nonconservation of energy during glancing incidence, and when other most of incident angles, are conservations.
For the second order perturbation method, when glancing incidence, have only the h polarization to meet energy conservation, and the v polarization is not meet energy conservation.This point and existing document are consistent about the scope of application research conclusion of second order perturbation method.
Find out that from this example the transmissivity computational accuracy of second order perturbation method is greatly improved than the transmissivity computational accuracy of single order perturbation method.
At Fig. 3 (a), among 3 (b), specific inductive capacity is ε=6, root-mean-square height σ=0.07 λ, and persistence length l=0.15 λ, frequency f=37Ghz, λ are the wavelength of free space under this frequency.This surfaceness and correlation parameter have exceeded the scope of application of single order perturbation method.Fig. 2 (a), 2 (b), 3 (a), among 3 (b), r1, r2 represent single order and second order emissivity respectively; T1, t2 represent the transmissivity of single order and second order respectively.
2, when the scope of application of surfaceness single order perturbation method.
The corresponding h polarization of Fig. 3 (a) situation finds out that when surfaceness exceeds the scope of application of single order perturbation method the situation of the single order perturbation method nonconservation of energy is all more remarkable, and especially when 0 spent, error was near 40%; And the second order perturbation method to all incident angles, comprises the glancing incidence situation when h polarizes, and all keeps energy conservation;
The corresponding v of Fig. 3 (b) polarization situation, the single order perturbation method polarizes at v, and to all incident angle energy nonconservation all, error is many about 40%.The second order perturbation method polarizes at v, and nonconservation of energy during glancing incidence, error are less than 20%, and energy is a conservation when other most of incident angles.
Find out that from this example second order perturbation method transmissivity computing formula is than single order, the scope of application has enlarged, and precision has improved.

Claims (1)

1. second order perturbation method random rough face transmissison characteristic computing method comprise the calculation procedure of transmitted field, transmissivity and two-way transmission coefficient, are specially:
(1) described transmitted field is expressed as:
E &OverBar; t ( 2 ) ( r &OverBar; ) = &Integral; dk &OverBar; &perp; e ik &OverBar; i &perp; &CenterDot; r &OverBar; &perp; - ik 1 z z { e ^ 1 ( - k 1 z ) [ f ee t ( 2 ) ( k &OverBar; &perp; , k &OverBar; i &perp; ) ( e ^ 1 ( - k 1 zi ) &CenterDot; e ^ i ) + f eh t ( 2 ) ( k &OverBar; &perp; , k &OverBar; i &perp; ) ( h ^ 1 ( - k 1 zi ) &CenterDot; e ^ i ) ]
+ h ^ 1 ( - k 1 z ) [ f he t ( 2 ) ( k &OverBar; &perp; , k &OverBar; i &perp; ) ( e ^ 1 ( - k 1 zi ) &CenterDot; e ^ i ) + f hh t ( 2 ) ( k &OverBar; &perp; , k &OverBar; i &perp; ) ( h ^ 1 ( - k 1 zi ) &CenterDot; e ^ i ) ]
Wherein,
f ee t ( 2 ) ( k &OverBar; &perp; , k &OverBar; i &perp; ) = k iz k iz + k 1 iz k 1 2 - k 2 k 1 z + k z { cos ( &phi; k - &phi; i ) &CenterDot; ( k 1 zi - k z ) F ( 2 ) ( k &OverBar; &perp; - k &OverBar; i &perp; )
- 2 ( k 1 2 - k 2 ) &Integral; dk &OverBar; &perp; &prime; F ( k &OverBar; &perp; &prime; - k &OverBar; i &perp; ) F ( k &OverBar; &perp; - k &OverBar; &perp; &prime; )
&CenterDot; [ - sin ( &phi; k - &phi; k &prime; ) sin ( &phi; k &prime; - &phi; i ) k z &prime; k 1 z &prime; k 1 2 k z &prime; + k 2 k 1 z &prime; + cos ( &phi; k - &phi; k &prime; ) cos ( &phi; k &prime; - &phi; i ) 1 k 1 z &prime; + k z &prime; ] }
f eh t ( 2 ) ( k &OverBar; &perp; , k &OverBar; i &perp; ) = k 1 2 - k 2 k 1 z + k z kk iz k 1 2 k iz + k 2 k 1 zi { ( k 1 2 - k 1 zi k z ) F ( 2 ) ( k &OverBar; &perp; - k &OverBar; i &perp; ) sin ( &phi; k - &phi; i )
- 2 &Integral; dk &OverBar; &perp; &prime; F ( k &OverBar; &perp; &prime; - k &OverBar; i &perp; ) F ( k &OverBar; &perp; - k &OverBar; &perp; &prime; ) [ sin ( &phi; k - &phi; k &prime; ) k 1 2 k &rho; &prime; k &rho;i k &rho; &prime; 2 k + k z &prime; k 1 z &prime; + ( k 1 2 - k 2 ) k 1 zi k 1 2 k z &prime; + k 2 k 1 z &prime;
&CenterDot; ( sin ( &phi; k - &phi; k &prime; ) cos ( &phi; k &prime; - &phi; i ) k z &prime; k 1 z &prime; + cos ( &phi; k - &phi; k &prime; ) sin ( &phi; k &prime; - &phi; i ) ( k &rho; &prime; 2 + k z &prime; k 1 z &prime; ) ] }
f he t ( 2 ) ( k &OverBar; &perp; , k &OverBar; i &perp; ) = k 1 2 - k 2 k 1 zi + k iz k 1 k iz k 1 2 k z + k 2 k 1 z { ( k 2 - k 1 zi k z ) F ( 2 ) ( k &OverBar; &perp; - k &OverBar; i &perp; ) sin ( &phi; k - &phi; i )
+ 2 &Integral; d k &OverBar; &perp; &prime; F ( k &OverBar; &perp; &prime; - k &OverBar; i &perp; ) F ( k &OverBar; &perp; - k &OverBar; &perp; &prime; ) [ sin ( &phi; k &prime; - &phi; i ) k 1 2 k &rho; &prime; k &rho; k &rho; &prime; 2 + k z &prime; k 1 z &prime; + ( k 1 2 - k 2 ) k z k 1 2 k z &prime; + k 2 k 1 z &prime;
&CenterDot; ( k z &prime; k 1 z &prime; sin ( &phi; k - &phi; k &prime; ) cos ( &phi; k &prime; - &phi; i ) + ( k &rho; &prime; 2 + k z &prime; k 1 z &prime; ) cos ( &phi; k - &phi; k &prime; ) sin ( &phi; k &prime; - &phi; i ) ) ]
f hh t ( 2 ) ( k &OverBar; &perp; , k &OverBar; i &perp; ) = ( k 1 2 - k 2 ) ( k 1 2 k z + k 2 k 1 z ) k 1 k iz k 1 2 k iz + k 2 k 1 zi { k ( k 1 2 k z - k 2 k 1 zi ) F ( 2 ) ( k &OverBar; &perp; - k &OverBar; i &perp; ) sin ( &phi; k - &phi; i )
+ 2 &Integral; dk &OverBar; &perp; &prime; F ( k &OverBar; &perp; &prime; - k &OverBar; i &perp; ) F ( k &OverBar; &perp; - k &OverBar; &perp; &prime; ) [ kk z k 1 zi ( k 1 2 - k 2 ) k z &prime; + k 1 z &prime; sin ( &phi; k - &phi; k &prime; ) sin ( &phi; k &prime; - &phi; i )
+ 1 k 1 2 k z &prime; + k 2 k 1 z &prime; [ - k ( k 1 2 - k 2 ) k &rho; k &rho; &prime; 2 k &rho;i + k &rho; k &rho; &prime; k 3 ( k z &prime; + k 1 z &prime; ) k 1 zi cos ( &phi; k &prime; - &phi; i ) - k &rho; &prime; k &rho;i kk 1 2
&CenterDot; ( k z &prime; + k 1 z &prime; ) k z cos ( &phi; k - &phi; k &prime; ) - kk z &prime; k 1 z &prime; ( k 1 2 - k 2 ) k z k 1 zi cos ( &phi; k - &phi; k &prime; ) cos ( &phi; k &prime; - &phi; i ) ] }
Described transmissivity is expressed as:
t ( &pi; - &theta; i , &phi; i ) = k 1 zi k zi | 1 + R ho | 2 ( e ^ ( - k iz ) &CenterDot; e ^ i ) + k 2 k 1 zi k 1 2 k zi | 1 + R vo | 2 ( h ^ ( - k iz ) &CenterDot; e ^ i )
+ 2 Re ( k 1 zi k zi ( 1 + R ho ) f ee t ( 2 ) ( k i &perp; ) ) ( e ^ ( - k iz ) &CenterDot; e ^ i ) + 2 Re ( kk 1 zi k 1 k zi ( 1 + R vo ) f hh t ( 2 ) ( k i &perp; ) )
&CenterDot; ( h ^ ( - k iz ) &CenterDot; e ^ i ) + &Integral; d k &OverBar; &perp; k 1 zi k zi W ( k &OverBar; &perp; - k &OverBar; i &perp; ) [ | f ee t ( 1 ) ( k &OverBar; &perp; , k &OverBar; i &perp; ) &CenterDot; ( e ^ ( - k iz ) &CenterDot; e ^ i ) + f eh t ( 1 ) ( k &OverBar; &perp; , k &OverBar; i &perp; ) &CenterDot; ( h ^ ( - k iz ) &CenterDot; e ^ i ) | 2
+ | f he t ( 1 ) ( e ^ ( - k iz ) &CenterDot; e ^ i ) + f hh t ( 1 ) ( h ^ ( - k iz ) &CenterDot; e ^ i ) | 2 ]
Wherein
Figure FDA0000045826070000025
Be the Fourier conversion of the related function of random fluctuation height,
W ( k &OverBar; &perp; - k &OverBar; i &perp; ) = h 2 l 2 4 &pi; exp ( - ( k &rho; 2 + k &rho;i 2 ) l 2 4 + k &rho; k &rho;i l 2 2 cos ( &phi; k - &phi; i ) ) ;
(3) described two-way transmission coefficient is expressed as:
In incident wave h polarization, the two-way transmission coefficient under the transmitted wave h polarization situation is:
1 4 &pi; &gamma; hh t ( &pi; - &theta; t , &phi; t ; &pi; - &theta; i , &phi; i ) = [ k 1 zi k zi | 1 + R ho | 2 + 1 Re ( k 1 zi k zi ( 1 + R ho ) f ee t ( 2 ) ( k &OverBar; i &perp; ) ) ] &delta; ( cos &theta; t - k 1 zi k 1 ) &delta; ( &phi; t - &phi; i )
+ k 1 k 1 z 2 k iz W ( k &OverBar; &perp; - k &OverBar; i &perp; ) | f ee t ( 1 ) ( k &OverBar; &perp; , k &OverBar; i &perp; ) | 2
In incident wave v polarization, under the transmitted wave h polarization situation,
1 4 &pi; &gamma; hv t ( &pi; - &theta; t , &phi; t ; &pi; - &theta; i , &phi; i ) = k 1 k 1 z 2 k iz W ( k &OverBar; &perp; - k &OverBar; i &perp; ) | f eh t ( 1 ) ( k &OverBar; &perp; , k &OverBar; i &perp; ) | 2
In incident wave h polarization, under the transmitted wave v polarization situation,
1 4 &pi; &gamma; vh t ( &pi; - &theta; t , &phi; t ; &pi; - &theta; i , &phi; i ) = k 1 k 1 z 2 k iz W ( k &OverBar; &perp; - k &OverBar; i &perp; ) | f he t ( 1 ) ( k &OverBar; &perp; , k &OverBar; i &perp; ) | 2
In incident wave v polarization, under the transmitted wave v polarization situation,
1 4 &pi; &gamma; vv t ( &pi; - &theta; t , &phi; t ; &pi; - &theta; i , &phi; i ) = [ k 2 k 1 zi k 1 2 k iz | 1 + R vo | 2 + 2 Re ( kk 1 zi k 1 k iz ( 1 + R vo ) f hh t ( 2 ) ( k &OverBar; i &perp; ) ) ]
&CenterDot; &delta; ( cos &theta; t - k 1 zi k 1 ) &delta; ( &phi; t - &phi; i ) + k 1 k 1 z 2 k iz W ( k &OverBar; &perp; - k &OverBar; i &perp; ) | f hh t ( 1 ) ( k &OverBar; &perp; , k &OverBar; i &perp; ) | 2
A wherein, b are respectively two kinds of situations of v polarization and h polarization, and the expression mirror should be with θ to transmission direction t, φ tForm:
Figure FDA00000458260700000213
Wherein
Figure FDA00000458260700000214
The time, θ tJust point to transmission direction, Re () expression is got real part to the number in the bracket;
f ab t ( 2 ) ( k &OverBar; i &perp; ) = < f ab t ( 2 ) ( k &OverBar; &perp; , k &OverBar; i &perp; ) > a , b = v , h
f ee t ( 2 ) ( k &OverBar; i &perp; ) = k iz ( k 1 2 - k 2 ) ( k iz + k 1 zi ) 2 { ( k 1 zi - k iz ) &Integral; - &infin; &infin; d k &OverBar; &perp; W ( k &OverBar; &perp; - k &OverBar; i &perp; ) - 2 ( k 1 2 - k 2 ) &Integral; - &infin; &infin; d k &OverBar; &perp; W ( k &OverBar; &perp; - k &OverBar; i &perp; )
&CenterDot; [ sin 2 ( &phi; k - &phi; i ) k z k 1 z k 1 2 k z + k 2 k 1 z + cos 2 ( &phi; k - &phi; i ) 1 k 1 z + k z ] }
f hh t ( 2 ) ( k &OverBar; i &perp; ) = k 1 ( k 1 2 - k 2 ) k iz ( k 1 2 k iz + k 2 k 1 zi ) 2 { &Integral; - &infin; &infin; d k &OverBar; &perp; W ( k &OverBar; &perp; - k &OverBar; i &perp; ) k ( k 1 2 k iz - k 2 k 1 zi ) +
2 &Integral; - &infin; &infin; d k &OverBar; &perp; W ( k &OverBar; &perp; - k &OverBar; i &perp; ) [ - kk iz k 1 zi ( k 1 2 - k 2 ) k 2 + k 1 z sin 2 ( &phi; k - &phi; i ) +
1 k 1 2 k z + k 2 k 1 z ( - k ( k 1 2 - k 2 ) k &rho;i 2 k &rho; 2 + k &rho; k &rho;i k ( k z + k 1 z ) ( k 2 k 1 zi - k 1 2 k iz )
&CenterDot; cos ( &phi; k - &phi; i ) - kk z k 1 z k iz k 1 zi ( k 1 2 - k 2 ) cos 2 ( &phi; k - &phi; i ) ) ] }
The incident wave vector
The horizontal component of incident wave vector is
k ix=ksinθ icosφ i,k iy=ksinθ isinφ i,k iz=kcosθ i,k ρi=ksinθ i
The mould of incident wave horizontal component
Figure FDA0000045826070000039
The scattering wave vector
Figure FDA00000458260700000310
The scattering wave horizontal component
Figure FDA00000458260700000311
The mould of scattering wave horizontal component
The mould of scattering wave vertical component
Figure FDA00000458260700000313
The transmitted wave vector
Figure FDA00000458260700000314
The horizontal component of transmitted wave vector is
The mould of transmitted wave horizontal component
The mould of transmitted wave vertical component
Figure FDA00000458260700000317
k 1 zi = k 1 2 + k i &perp; 2 ,
The incident angle θ of incident wave iAnd position angle
Figure FDA00000458260700000319
The angle of transmission θ of transmitted wave tAnd position angle
Figure FDA00000458260700000320
Figure FDA0000045826070000041
With
Figure FDA0000045826070000042
Represent an initial point and a position vector of putting respectively,
When the incident field is the TE polarization
Figure FDA0000045826070000043
When the incident field is the TM polarization
Figure FDA0000045826070000044
μ oAnd μ 1Represent the magnetic permeability of medium 0 and medium 1 respectively,
ε oAnd ε 1Represent the conductivity of medium 0 and medium 1 respectively,
W is an angular frequency,
η 1Be the wave impedance of medium 1,
The root-mean-square height h of uneven surface and persistence length l,
e ^ ( k z ) = k ^ &times; z ^ / | k ^ &times; z ^ | = ( 1 / k &rho; ) ( x ^ k y - y ^ k x ) ,
e ^ ( - k z ) = ( 1 / k &rho; ) ( x ^ k y - y ^ k x ) ,
e ^ ( - k 1 zi ) = k ^ 1 &times; z ^ / | k ^ 1 &times; z ^ | = ( 1 / k 1 &rho;i ) ( x ^ k 1 yi - y ^ k 1 xi ) ,
e ^ 1 ( k 1 z ) = k ^ 1 &times; z ^ / | k ^ 1 &times; z ^ | = ( 1 / k &rho; ) ( x ^ k y - y ^ k x ) ,
h ^ ( k z ) = 1 k e ^ &times; k ^ = - k z kk &rho; ( x ^ k x + y ^ k y ) + k &rho; k z ^ ,
h ^ ( - k z ) = k z kk &rho; ( x ^ k x + y ^ k y ) + k &rho; k z ^ ,
h ^ 1 ( k 1 z ) = 1 k 1 e ^ 1 &times; k ^ 1 = - k 1 z k 1 k &rho; ( x ^ k x + y ^ k y ) + k &rho; k 1 z ^ ,
h ^ 1 ( - k 1 z ) = k 1 z k 1 k &rho; ( x ^ k 1 x + y ^ k 1 y ) + k &rho; k 1 z ^ ,
h ^ 1 ( - k 1 zi ) = k 1 zi k 1 k &rho;i ( x ^ k xi + y ^ k yi ) + k &rho;i k 1 z ^ ,
Fourier transform
Figure FDA00000458260700000414
1 4 &pi; 2 &Integral; d r &OverBar; &perp; e - i k &OverBar; &perp; &CenterDot; r &OverBar; &perp; f 2 ( r &OverBar; &perp; ) = F 2 ( k &OverBar; &perp; ) ,
F 2 ( k &OverBar; &perp; ) = &Integral; - &infin; &infin; d k &OverBar; &prime; &perp; F ( k &OverBar; &prime; &perp; ) F ( k &OverBar; &perp; - k &OverBar; &prime; &perp; ) ,
Be the Fresnel transmission coefficient of TE ripple,
Figure FDA0000045826070000053
Be the Fresnel transmission coefficient of TM ripple,
Figure FDA0000045826070000054
φ ' k, k ' ρ, k ' zAnd k ' 1zIt is the needed intermediate variable of integration.
CN201110031903.2A 2011-01-28 2011-01-28 Second-order perturbation calculation method of transmission characteristic of random rough surface Expired - Fee Related CN102175652B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201110031903.2A CN102175652B (en) 2011-01-28 2011-01-28 Second-order perturbation calculation method of transmission characteristic of random rough surface

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201110031903.2A CN102175652B (en) 2011-01-28 2011-01-28 Second-order perturbation calculation method of transmission characteristic of random rough surface

Publications (2)

Publication Number Publication Date
CN102175652A true CN102175652A (en) 2011-09-07
CN102175652B CN102175652B (en) 2015-03-04

Family

ID=44518859

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201110031903.2A Expired - Fee Related CN102175652B (en) 2011-01-28 2011-01-28 Second-order perturbation calculation method of transmission characteristic of random rough surface

Country Status (1)

Country Link
CN (1) CN102175652B (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103512663A (en) * 2013-09-13 2014-01-15 华中科技大学 Calculation method for undulating lunar surface microwave radiation brightness temperature
CN104077482A (en) * 2014-06-27 2014-10-01 上海无线电设备研究所 Quick calculation method of super-low-altitude target and land-sea rough surface composite scattering
CN109844501A (en) * 2016-10-13 2019-06-04 大连天岛海洋科技有限公司 Pass through transition region interface resonance wave reflectivity calculation method
CN109901086A (en) * 2019-03-29 2019-06-18 电子科技大学 A kind of matched quasi-optical cellular construction of realization wave beam

Non-Patent Citations (4)

* Cited by examiner, † Cited by third party
Title
LEUNG TSANG 等: "Random Rough Surface Effects on Wave Propagation in Interconnects", 《IEEE TRANSACTIONS ON ADVANCED PACKAGING》 *
METIN A. DEMIR等: "Fourth- and higher-order small-perturbation solution for scattering from dielectric rough surfaces", 《J. OPT. SOC. AM. A》 *
任新成 等: "分层高斯分布介质粗糙面电磁波透射问题的微扰法研究", 《延安大学学报(自然科学版)》 *
任新成 等: "改进的一维分形海面模型在分层海面电磁波透射问题中的应用", 《海洋通报》 *

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103512663A (en) * 2013-09-13 2014-01-15 华中科技大学 Calculation method for undulating lunar surface microwave radiation brightness temperature
CN103512663B (en) * 2013-09-13 2016-03-02 华中科技大学 A kind of computing method of the bright temperature of lunar surface microwave that rises and falls
CN104077482A (en) * 2014-06-27 2014-10-01 上海无线电设备研究所 Quick calculation method of super-low-altitude target and land-sea rough surface composite scattering
CN109844501A (en) * 2016-10-13 2019-06-04 大连天岛海洋科技有限公司 Pass through transition region interface resonance wave reflectivity calculation method
CN109901086A (en) * 2019-03-29 2019-06-18 电子科技大学 A kind of matched quasi-optical cellular construction of realization wave beam

Also Published As

Publication number Publication date
CN102175652B (en) 2015-03-04

Similar Documents

Publication Publication Date Title
Squire Of ocean waves and sea-ice revisited
US8874374B2 (en) Optical turbulence sensor
CN103235301B (en) Polarimetric synthetic aperture radar interferometry (POLInSAR) vegetation height inversion method based on complex field adjustment theory
US20110307177A1 (en) System and method for detecting volumetric soil water content
CN102175652B (en) Second-order perturbation calculation method of transmission characteristic of random rough surface
Craig et al. The surface signature of internal waves
CN102306217B (en) Method for estimating electromagnetic scattering coefficient on the basis of nonlinear one-dimensional sea surface fractal model
Masuda et al. Short Note Efficient method of computing a geometric optics integral for light scattering by nonspherical particles
Eyyuboğlu Estimation of aperture averaged scintillations in weak turbulence regime for annular, sinusoidal and hyperbolic Gaussian beams using random phase screen
Iooss et al. Statisticalmoments of travel times at second order in isotropicand anisotropic random media
CN101782516A (en) Method for calculating light scattering characteristic of compactibility granule medium
CN103471968B (en) A kind of method utilizing index with single-frequency modulation laser irradiation commercial measurement spherical particle spectrum complex refractive index
Ginio et al. Efficient machine learning method for spatio-temporal water surface waves reconstruction from polarimetric images
Shmirko et al. Coating effect on light scattering by irregularly shaped particles
Ostiguy et al. In situ mechanical characterization of isotropic structures using guided wave propagation
CN105701284A (en) Parallel computing method for time-varying multi-scale electrically-large-area sea-surface electromagnetic scattering vector field
Zohdi On high-frequency radiation scattering sensitivity to surface roughness in particulate media
CN104850754A (en) Electromagnetic scattering calculation method for dynamic sea surface in a storm-surge mixed mode
Lemaire et al. Two-scale models for rough surface scattering: Comparison between the boundary perturbation method and the integral equation method
Casselgren Road surface classification using near infrared spectroscopy
Sun et al. Finite-difference time-domain solution of light scattering by arbitrarily shaped particles and surfaces
Wang et al. Numerical simulations wave scattering from two-layered rough interface
Ostashev et al. Spherical wave propagation through inhomogeneous, anisotropic turbulence: log-amplitude and phase correlations
Tran et al. Quasi-online method for the identification of heat flux densities and trajectories of two mobile heating sources
Demarty et al. Modelling of the electromagnetic scattering by sea surfaces at grazing incidence. Application to HF surface wave radars

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C14 Grant of patent or utility model
GR01 Patent grant
CF01 Termination of patent right due to non-payment of annual fee

Granted publication date: 20150304

Termination date: 20160128

EXPY Termination of patent right or utility model