CN102175646A - 一种测量高折射率玻璃微珠折射率的装置及方法 - Google Patents

一种测量高折射率玻璃微珠折射率的装置及方法 Download PDF

Info

Publication number
CN102175646A
CN102175646A CN 201110052161 CN201110052161A CN102175646A CN 102175646 A CN102175646 A CN 102175646A CN 201110052161 CN201110052161 CN 201110052161 CN 201110052161 A CN201110052161 A CN 201110052161A CN 102175646 A CN102175646 A CN 102175646A
Authority
CN
China
Prior art keywords
glass microballoon
refractive index
glass
receiving screen
catoptron
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN 201110052161
Other languages
English (en)
Other versions
CN102175646B (zh
Inventor
李大海
郭东华
薄健康
包左军
吕虎
张智勇
王琼华
苏文英
陆宇红
马学锋
李丹
马骏
王玮
刘恒权
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sichuan University
Research Institute of Highway Ministry of Transport
Original Assignee
Sichuan University
Research Institute of Highway Ministry of Transport
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sichuan University, Research Institute of Highway Ministry of Transport filed Critical Sichuan University
Priority to CN 201110052161 priority Critical patent/CN102175646B/zh
Publication of CN102175646A publication Critical patent/CN102175646A/zh
Application granted granted Critical
Publication of CN102175646B publication Critical patent/CN102175646B/zh
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Investigating Or Analysing Materials By Optical Means (AREA)

Abstract

一种测量高折射率玻璃微珠折射率的装置及方法,摄像头11安装在升降装置上;摄像头11的下方安装接收屏10;读数器13安装在升降装置的移动台上,用于读取玻璃微珠9到接收屏10之间的距离;在接收屏10的下方有用于放置载玻片8的载物台;载物台安装在X、Y平移结构7的移动平台上;激光器1的出射光经透镜3、光阑5从载物台的下方向上穿过载物台上的光孔照射到玻璃微珠9上,在接收屏10上形成二次彩虹图像,测量该二次彩虹图像的半径,通过所述玻璃微珠9到接收屏10之间的距离和该半径计算所述高折射率玻璃微珠折射率。

Description

一种测量高折射率玻璃微珠折射率的装置及方法
技术领域
本发明涉及一种测量高折射率玻璃微珠折射率的装置及方法,属于测量技术领域。
背景技术
随着我国公路建设的快速发展,与道路逆反射材料配合使用的玻璃珠的用量迅速增加。玻璃珠在反光膜、反光油墨、反光标线、反光布、反光革、反光织带、反光安全性丝织物等交通安全产品和设施中正发挥着越来越重要的作用。
玻璃珠是一种硅酸盐材料,具有良好的化学稳定性、机械强度和电绝缘性,最独特的特性是对光具有回归反射特性。利用玻璃珠回归反射特性的材料使用的玻璃珠基本上均为玻璃微珠。玻璃微珠有实心、空心、多孔玻璃微珠之分,直径0.8mm-5mm的玻璃微珠称为大珠(或细珠),0.8mm以下的称为微珠。目前,道路逆反射材料普遍使用的玻璃微珠是实心微珠,通过其对光线的回归反射特性,保证了逆反射材料类交通安全产品和设施的可见性,从而起到了保护道路使用者安全的作用。
道路逆反射材料使用的玻璃微珠有折射率低于1.7的低折射率玻璃微珠和折射率不小于1.9的高折射率玻璃微珠。低折射率的玻璃微珠主要应用在逆反射特性要求相对不高的材料,如反光标线,而高折射率玻璃微珠则应用在要求具有高的回归反射特性的材料,如反光膜中。两类玻璃微珠的制造工艺已经趋于成熟,市场上可购买到不同折射率的玻璃微珠,而且许多新型玻璃微珠,如镀膜玻璃微珠和雨夜反光玻璃微珠不断地被研发生产出来,国内许多玻璃微珠厂生产的玻璃微珠性能非常优越,而且远销国外,在保证道路逆反射材料的可视性中发挥着重要的作用。
道路逆反射材料用玻璃微珠测试技术中最关键的项目是折射率的测试。玻璃材料折射率的直接精确测量,大都是基于棱镜的最小偏转角法或全反射临界角法进行的,被测样品必须制成一定大小的精密棱镜才能进行测量。对于不便于制作成精密棱镜的颗粒材料,浸液法是最为常用的折射率测量方法,其对低折射率玻璃微珠是行之有效的,但对高折射率玻璃微珠,由于浸液法所需的高折射率匹配液体都有毒性,给测量带来很大的不便。对于高折射率玻璃微珠,通过制作棱镜的方法测量其折射率既费时又不能直接反映实际情况,由于成珠环境条件不同,实际微珠的折射率往往与用同样材料溶成块料的折射率有差异。国内外许多机构在高折射率玻璃微珠的测试方面均进行了卓有成效的研究,取得了一些研究成果,目前可采用彩虹法、干涉-剪像法、固体介质熔融比较法等一些方法,其中彩虹法是最为有效的方法。
专利CN 2581980Y公开了一种激光照明玻璃微珠折射率测量的装置,该装置主要由He-Ne激光器、正透镜、载玻片及接收屏等组成,依据玻璃微珠在平行光照明下所产生的彩虹现象来进行折射率的测量。该装置的主要特征是采用平行激光使用长焦距正透镜使激光会聚后直接照射到吸附在载玻片上的单个玻璃微珠整体上,并利用五维可调节支架支撑长焦距正透镜和载玻片获取玻璃微珠被照明的最佳位置。该测量装置存在的主要缺陷是:(1)由于玻璃微珠通过吸附作用吸附于载玻片上,支撑载玻片的五维可调节支架在调节过程中容易造成玻璃微珠脱落,不能进行连续多次测量,以实现统计分析;(2)激光与玻璃微珠的对准通过五维可调节支架分别调整长焦距正透镜和载玻片来实现,调准误差增加了测量误差;(3)无法保存形成的彩虹环和相关参数,不能实现测试数据的统计分析。
发明内容
鉴于上述问题,本发明提供了一种测量高折射率玻璃微珠折射率的装置及方法。所述装置克服了现有技术测量玻璃微珠折射率的缺陷,利用玻璃微珠在激光照明下产生的二次彩虹现象,测出多个玻璃微珠的最小偏向角后,根据相关计算公式从而统计得出被测量玻璃微珠的折射率。
为实现本发明的目的,本发明提供了一种测量高折射率玻璃微珠折射率的装置,主要包括:激光器1、透镜3、光阑5、X、Y平移结构7、载玻片8、玻璃微珠9、接收屏10、摄像头11、升降装置、读数器13、采集卡15,所述摄像头11安装在升降装置上;摄像头11的下方安装所述接收屏10;读数器13安装在升降装置的移动台上,用于读取玻璃微珠9到接收屏10之间的距离;在接收屏10的下方有用于放置载玻片8的载物台;载物台安装在X、Y平移结构7的移动平台上;激光器1的出射光经透镜3、光阑5从载物台的下方向上穿过载物台上的光孔照射到玻璃微珠9上,在接收屏10上形成二次彩虹图像,测量该二次彩虹图像的半径,通过所述玻璃微珠9到接收屏10之间的距离和该半径计算所述高折射率玻璃微珠折射率。
优选地,在载玻片8上一次放置有多个玻璃微珠9,在测试完一个玻璃微珠9后,通过调节X、Y平移结构7和升降装置,继续下一个玻璃微珠9的测量,直到完成对多个玻璃微珠9的测量,然后统计分析所述多个玻璃微珠9的测量结果;优选地,所述多个玻璃微珠为200个以上。
优选地,所述装置还包括第一反射镜2、第二反射镜4、第三反射镜6,激光器1的光路前方依次安装第一反射镜2、所述透镜3、第二反射镜4、所述光阑5和第三反射镜6,激光器1发出的激光,被第一反射镜2反射经过透镜3,透射光经第二反射镜4反射,通过光阑5的光束再经第三反射镜6反射,光束垂直向上后透过载物台上载玻片8,使光束射到玻璃微珠9上。
优选地,所述升降装置包括三角架14,升降台,所述三脚架连接有所述升降台,在所述升降台上安装有所述摄像头11;优选地,所述升降装置还包括升降旋钮12,通过调节该升降旋钮12来调节升降台的高度;优选地,在所述升降台的下部安装所述接收屏10;优选地,所述X、Y平移结构7包括螺旋机构或者齿轮齿条机构。
优选地,将测量到的玻璃微珠9到接收屏10之间的距离和摄像头11拍摄下来的二次彩虹图像传输到采集卡15;优选地,所述采集卡15上的数据通过计算机进行分析。
本发明还提供一种测量高折射率玻璃微珠折射率的方法,其特征在于:
激光器发出激光,经过透镜,透射光经过光阑的光束垂直向上后透过载物台上载玻片,利用X、Y平移结构调节载玻片上的玻璃微珠,使光束照射到玻璃微珠上,从而会在接收屏上得到二次彩虹图像;测量玻璃微珠到接收屏之间的距离(s),采集所述二次彩虹环半径(r),从而计算出待测玻璃微珠二次彩虹的最小偏向角,结合该最小偏向角和玻璃微珠的内反射次数来确定玻璃微珠的折射率。
优选地,在测试完一个玻璃微珠后,通过调节X、Y平移结构和升降装置,继续下一个玻璃微珠的测量,直到完成对多个玻璃微珠的测量,然后统计分析所述多个玻璃微珠的测量结果。
优选地,激光器发出的激光,被第一反射镜反射经过透镜,透射光经第二反射镜反射,通过光阑的光束再经第三反射镜反射,光束垂直向上后透过载物台上载玻片,利用X、Y平移结构调节载玻片上的玻璃微珠,使光束射到玻璃微珠上,从而在接收屏上得到二次彩虹图像;优选地,所述计算玻璃微珠二次彩虹的最小偏向角的方法如下:
玻璃微珠到接收屏之间的距离为s,彩虹环半径为r,用下面的算式(3)计算出待测玻璃微珠二次彩虹的最小偏向角θmin
θ min = tg - 1 ( r s ) - - - ( 3 )
优选地,确定玻璃微珠的折射率的方法如下:
入射角i、折射角z的光线在折射率为n的玻璃微珠内经过k次内反射后,偏向角θ可以表示为:
θ=kπ+2i-2z(k+1)    (1)
i与z之间满足Snell定理sini=nsinz,代入(1)式可得到最小偏向角θmin与玻璃微珠折射率n及内反射次数k的关系:
θ min = kπ + 2 arcsin ( k + 1 ) 2 - n 2 k ( k + 2 ) - 2 ( k + 1 ) arcsin ( 1 n ( k + 1 ) 2 - n 2 k ( k + 2 ) ) - - - ( 2 )
(2)式表明,最小偏向角θmin大小只与玻璃微珠折射率n和内反射次数k有关,当确定了内反射次数k,将所述θmin代入(2)式即可确定玻璃微珠的折射率;优选地,取k=2。
优选地,在接收屏上得到二次彩虹图像的步骤为:旋转固定在三脚架上的升降旋钮,使观察到的二次彩虹图像达到要求,从而摄像头拍摄到适当大小而又清晰的二次彩虹图像;优选地,其中测量玻璃微珠到接收屏之间的距离s的步骤为:使用读数器,读数器上显示玻璃微珠到接收屏之间的距离s。
本发明与现有技术相比具有以下优点:
1、载玻片及载玻片上的玻璃微珠水平放置,激光器发出的激光垂直向上照射到玻璃微珠上,克服了玻璃微珠在测试过程中容易脱落的缺陷,并能够进行连续多次测量。
2、测量过程中仅需调节X、Y平移结构就可以使光束射到玻璃微珠上,并在接收屏上得到二次彩虹图像,减少了激光与玻璃微珠对准时的误差。
3、利用摄像头拍摄储存二次彩虹图像,并可利用计算机进行统计分析得到玻璃微珠的折射率,提高了计算的精度。
附图说明
当结合附图考虑时,通过参照下面的详细描述,能够更完整更好地理解本发明以及容易得知其中许多伴随的优点,但此处所说明的附图用来提供对本发明的进一步理解,构成本发明的一部分,本发明的示意性实施例及其说明用于解释本发明,并不构成对本发明的不当限定,其中:
图1(a)是本发明的装置结构俯视示意图;
图1(b)是本发明的装置结构示意图;
图2(a)是二次彩虹条纹图;
图2(b)是二次彩虹条纹图;
图3是数据统计直方图。
具体实施方式
参照图1至图3对本发明的实施例进行说明。
显然,本领域技术人员基于本发明的宗旨所做的许多修改和变化属于本发明的保护范围。
图1(a)中,第一反射镜2,第二反射镜4,第三反射镜6都呈45度角放置,激光器1发出激光,被第一反射镜2反射经过透镜3,透射光经第二反射镜4反射,通过光阑5的光束再经图1(b)中第三反射镜6反射,光束垂直向上后透过载物台上载玻片8,利用X、Y平移结构7调节载玻片8上的玻璃微珠9,使光束射到玻璃微珠9上,从而会在接收屏10上得到二次彩虹图像。这时,再旋转固定在三脚架14上的升降旋钮12,使观察到的二次彩虹图像达到要求,从而摄像头11可以拍摄到适当大小而又清晰的二次彩虹图像。读出读数器13上显示的玻璃微珠9到接收屏10之间的距离,以及采集卡15采集到的彩虹环直径,即可求出被测位置玻璃微珠的折射率。
通过设置三个反射镜,可将激光器1放置在摄像头11的上方,从而能够使得整个测量装置结构更加紧凑,节省空间。
本装置依据的原理是:一束平行光照射到高折射率玻璃微珠上,光线在微珠内部经历一次、二次或多次反射后将折射出玻璃微珠,出射光线与入射光线方向之间会形成偏向角。当光线入射到玻璃微珠上的角度增大时,偏向角会逐渐减小,到达最小值后,又逐渐增大,其中具有最小偏向角的光线叫作笛卡尔光线。由于在最小偏向角附近光线最密集,密集的光线形成了虹。光线在微珠中经过一次、两次或多次内反射,形成一次、二次或高次彩虹。
本装置采用的光源为波长632.8nm的单模氦氖激光器,功率约为2mw。由该激光器1发出的光束通过透镜3聚焦后可以得到平行激光束,再经光阑5滤除其在传输过程中引入的杂散光。在接收屏10上设置有挡光装置以阻挡衍射光束的零级。理论上,本装置除了能形成一次和二次彩虹外,还有可能形成高次彩虹。但是,由于高折射率玻璃微珠的透过率极低(约为百分之几),测量时一般只能观察到一次和二次彩虹。而玻璃微珠的一次彩虹出现在入射光束的反方向,而二次彩虹出现在光束的入射方向。因此在接收屏10上可以接收到玻璃微珠的二次彩虹条纹图,如图2(a)、(b)所示。
入射角i、折射角z的光线在折射率为n的玻璃微珠内经过k次内反射后,偏向角θ可以表示为:
θ=kπ+2i-2z(k+1)    (1)
因为i与z之间满足Snell定理sini=nsinz,代入(1)式可得到最小偏向角θmin与玻璃微珠折射率n及内反射次数k的关系:
θ min = kπ + 2 arcsin ( k + 1 ) 2 - n 2 k ( k + 2 ) - 2 ( k + 1 ) arcsin ( 1 n ( k + 1 ) 2 - n 2 k ( k + 2 ) ) - - - ( 2 )
(2)式表明,最小偏向角θmin大小只与玻璃微珠折射率n和内反射次数k有关,当确定了内反射次数k,测出θmin后,就可通过(2)式确定玻璃微珠的折射率。
测出接收屏10上得到的二次彩虹条纹图的亮环半径r,和从读数器13读出玻璃微珠9到接收屏10的距离s,由(3)式可以计算出待测玻璃微珠二次彩虹的最小偏向角θmin
θ min = tg - 1 ( r s ) - - - ( 3 )
将此结果代入公式(2)中,并取k=2,就可以得到待测玻璃微珠的折射率n。其中,r的测量方法是先通过标定测量出一个像素的尺寸来计算的,具体如下:
先测量出标定长度为L的线段包含有多少个像素m,计算出一个像素的尺寸为L/m。
打开已拍下的二次彩虹图,可以测量出二次彩虹的直径所包含的像素个数M,结合标定计算出的每个像素的尺寸,从而计算出二次彩虹的半径r为:M×L/(2×m)。
对高折射率玻璃微珠实施超过200次的测量,并利用计算机进行统计分析,可以得到折射率的平均值和标准差。如型号1#-1的玻璃微珠的统计分析结果见表1和图3。
表1
  平均值   1.914118
  标准差   0.002546
从直方图3上可以看出,该测试结果接近正态分布,典型数据为:n=1.914±0.004。
其它型号材料的数据如表2:
表2  各型号微珠的测量结果
Figure BDA0000048865400000101
误差来源及测量精度方法步骤:
(1)玻璃微珠不圆度带来的误差
玻璃微珠的不圆会造成所成二次彩虹不圆,这样会给测量带来误差。所以要选择圆度好的样品微珠的同时,采取多次测量取平均值的方法来减小不圆度带来的影响。
(2)读数对准误差
a.半径测量时,由于二次彩虹外围有一定的噪声,所以读数时会有一定的误差。半径测量精度为±4个像素,产生的误差约-0.032mm;
b.距离测量时精度:±0.03mm。
(3)结果计算误差
由于最小偏向角、玻璃微珠折射率是按几何方法得到的,所以会有一定的误差,不过这个误差很小,故在本测量精度范围内的影响可忽略。
所以,最后的测量精度为N=n0±0.005(n0为平均值),因此,测试结果的小数点后第三位是可信的。
测试达到的指标:实用波长为633nm;测试范围1.68-2.4;折射率测量精度N=n0±0.005(n0为平均值)。
如上所述,对本发明的实施例进行了详细的说明,但是只要实质上没有脱离本发明的发明点及效果可以有很多的变形,这对本领域的技术人员来说是显而易见的。因此,这样的变形例也全部包含在本发明的保护范围之内。

Claims (10)

1.一种测量高折射率玻璃微珠折射率的装置,主要包括:激光器(1)、透镜(3)、光阑(5)、X、Y平移结构(7)、载玻片(8)、玻璃微珠(9)、接收屏(10)、摄像头(11)、升降装置、读数器(13)、采集卡(15),所述摄像头(11)安装在升降装置上;摄像头(11)的下方安装所述接收屏(10);读数器(13)安装在升降装置的移动台上,用于读取玻璃微珠(9)到接收屏(10)之间的距离;在接收屏(10)的下方有用于放置载玻片(8)的载物台;载物台安装在X、Y平移结构(7)的移动平台上;激光器(1)的出射光经透镜(3)、光阑(5)从载物台的下方向上穿过载物台上的光孔照射到玻璃微珠(9)上,在接收屏(10)上形成二次彩虹图像,测量该二次彩虹图像的半径,通过所述玻璃微珠(9)到接收屏(10)之间的距离和该半径计算所述高折射率玻璃微珠折射率。
2.根据权利要求1所述的装置,其特征在于:在载玻片(8)上一次放置有多个玻璃微珠(9),在测试完一个玻璃微珠(9)后,通过调节X、Y平移结构(7)和升降装置,继续下一个玻璃微珠(9)的测量,直到完成对多个玻璃微珠(9)的测量,然后统计分析所述多个玻璃微珠(9)的测量结果;优选地,所述多个玻璃微珠为200个以上。
3.根据上述任一权利要求所述的装置,其特征在于:还包括第一反射镜(2)、第二反射镜(4)、第三反射镜(6),激光器(1)的光路前方依次安装第一反射镜(2)、所述透镜(3)、第二反射镜(4)、所述光阑(5)和第三反射镜(6),激光器(1)发出的激光,被第一反射镜(2)反射经过透镜(3),透射光经第二反射镜(4)反射,通过光阑(5)的光束再经第三反射镜(6)反射,光束垂直向上后透过载物台上载玻片(8),使光束射到玻璃微珠(9)上。
4.根据上述任一权利要求所述的装置,其特征在于:所述升降装置包括三角架(14),升降台,所述三脚架(14)连接有所述升降台,在所述升降台上安装有所述摄像头(11);优选地,所述升降装置还包括升降旋钮(12),通过调节该升降旋钮(12)来调节升降台的高度;优选地,在所述升降台的下部安装所述接收屏(10);优选地,所述X、Y平移结构(7)包括螺旋机构或者齿轮齿条机构。
5.根据上述任一权利要求所述的装置,其特征在于:将测量到的玻璃微珠(9)到接收屏(10)之间的距离和摄像头(11)拍摄下来的二次彩虹图像传输到采集卡(15);优选地,所述采集卡(15)上的数据通过计算机进行分析。
6.一种利用权利要求1-5任一项所述的装置测量高折射率玻璃微珠折射率的方法,其特征在于:
激光器发出激光,经过透镜,透射光经过光阑的光束垂直向上后透过载物台上载玻片,利用X、Y平移结构调节载玻片上的玻璃微珠,使光束照射到玻璃微珠上,从而会在接收屏上得到二次彩虹图像;测量玻璃微珠到接收屏之间的距离(s),采集所述二次彩虹环半径(r),从而计算出待测玻璃微珠二次彩虹的最小偏向角,结合该最小偏向角和玻璃微珠的内反射次数来确定玻璃微珠的折射率。
7.根据权利要求6所述的方法,其特征在于:在测试完一个玻璃微珠后,通过调节X、Y平移结构和升降装置,继续下一个玻璃微珠的测量,直到完成对多个玻璃微珠的测量,然后统计分析所述多个玻璃微珠的测量结果。
8.根据权利要求6-7任一所述的方法,其特征在于:激光器发出的激光,被第一反射镜反射经过透镜,透射光经第二反射镜反射,通过光阑的光束再经第三反射镜反射,光束垂直向上后透过载物台上载玻片,利用X、Y平移结构调节载玻片上的玻璃微珠,使光束射到玻璃微珠上,从而在接收屏上得到二次彩虹图像;优选地,所述计算玻璃微珠二次彩虹的最小偏向角的方法如下:
玻璃微珠到接收屏之间的距离为s,彩虹环半径为r,用下面的算式(3)计算出待测玻璃微珠二次彩虹的最小偏向角θmin
θ min = tg - 1 ( r s ) - - - ( 3 )
9.根据权利要求8所述的方法,其特征在于:确定玻璃微珠的折射率的方法如下:
入射角i、折射角z的光线在折射率为n的玻璃微珠内经过k次内反射后,偏向角θ可以表示为:
θ=kπ+2i-2z(k+1)    (1)
i与z之间满足Snell定理sini=nsinz,代入(1)式可得到最小偏向角θmin与玻璃微珠折射率n及内反射次数k的关系:
θ min = kπ + 2 arcsin ( k + 1 ) 2 - n 2 k ( k + 2 ) - 2 ( k + 1 ) arcsin ( 1 n ( k + 1 ) 2 - n 2 k ( k + 2 ) ) - - - ( 2 )
(2)式表明,最小偏向角θmin大小只与玻璃微珠折射率n和内反射次数k有关,当确定了内反射次数k,将所述θmin代入(2)式即可确定玻璃微珠的折射率;优选地,取k=2。
10.根据权利要求6-9任一所述的方法,其特征在于:其中在接收屏上得到二次彩虹图像的步骤为:旋转固定在三脚架上的升降旋钮,使观察到的二次彩虹图像达到要求,从而摄像头拍摄到适当大小而又清晰的二次彩虹图像;优选地,其中测量玻璃微珠到接收屏之间的距离s的步骤为:使用读数器,读数器上显示玻璃微珠到接收屏之间的距离s。
CN 201110052161 2010-12-15 2011-03-04 一种测量高折射率玻璃微珠折射率的装置及方法 Expired - Fee Related CN102175646B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN 201110052161 CN102175646B (zh) 2010-12-15 2011-03-04 一种测量高折射率玻璃微珠折射率的装置及方法

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
CN201010591011 2010-12-15
CN201010591011.3 2010-12-15
CN 201110052161 CN102175646B (zh) 2010-12-15 2011-03-04 一种测量高折射率玻璃微珠折射率的装置及方法

Publications (2)

Publication Number Publication Date
CN102175646A true CN102175646A (zh) 2011-09-07
CN102175646B CN102175646B (zh) 2013-05-08

Family

ID=44518853

Family Applications (1)

Application Number Title Priority Date Filing Date
CN 201110052161 Expired - Fee Related CN102175646B (zh) 2010-12-15 2011-03-04 一种测量高折射率玻璃微珠折射率的装置及方法

Country Status (1)

Country Link
CN (1) CN102175646B (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103983608A (zh) * 2014-05-30 2014-08-13 四川大学 成像法测量玻璃微珠折射率
CN104819960A (zh) * 2015-02-12 2015-08-05 四川大学 一种测量玻璃微珠折射率的装置与方法

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN2581980Y (zh) * 2002-11-22 2003-10-22 四川大学 激光照明玻璃微珠折射率测量的装置

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN2581980Y (zh) * 2002-11-22 2003-10-22 四川大学 激光照明玻璃微珠折射率测量的装置

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
《中国优秀博硕士学位论文全文数据库(硕士)》 20070315 杨宏坤 高折射率玻璃微珠折射率的测量研究 1,47-48 1-10 , 第03期 *
《光子学报》 20010630 黄富泉等 高折射率玻璃微珠折射率的测量 753-756 1-10 第30卷, 第6期 *

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103983608A (zh) * 2014-05-30 2014-08-13 四川大学 成像法测量玻璃微珠折射率
CN104819960A (zh) * 2015-02-12 2015-08-05 四川大学 一种测量玻璃微珠折射率的装置与方法

Also Published As

Publication number Publication date
CN102175646B (zh) 2013-05-08

Similar Documents

Publication Publication Date Title
CN107121095B (zh) 一种精确测量超大曲率半径的方法及装置
CN103267743B (zh) 一种折射率测量装置及方法
US11060930B2 (en) Glass surface stress meter and multiple-tempered glass surface stress meter
CN205079744U (zh) 一种离轴抛物面镜面形精度的检测装置
CN106568382B (zh) 超长光纤光栅刻写在线监测系统及方法
CN202693473U (zh) 一种测量平板型透明介质折射率的装置
CN104713489B (zh) 一种三维云纹干涉仪及材料表面测量方法
CN101819017B (zh) 大口径非球面反射镜顶点曲率半径的检测装置和方法
CN102175646B (zh) 一种测量高折射率玻璃微珠折射率的装置及方法
CN203259473U (zh) 一种折射率测量装置
CN104819960A (zh) 一种测量玻璃微珠折射率的装置与方法
CN109959342A (zh) 物镜数值孔径的检测方法及装置
CN102156108B (zh) 一种标定二次彩虹的彩虹环半径的方法及装置
WO2023098349A1 (zh) 一种光学镜片参数测量装置及方法
CN212989163U (zh) 一种测量透明平板介质折射率的装置
CN213274790U (zh) 一种大口径平面反射镜多入射角度反射率测量装置
CN201909758U (zh) 一种高折射率玻璃微珠折射率的测量装置
CN207894588U (zh) 基于角锥棱镜的光学镜头多视场像质检测装置
CN109060720A (zh) 液态减水剂含固量快速智能测量装置及方法
CN207936924U (zh) 光学元件大曲率半径的比较法测量装置
CN112285059A (zh) 基于ccd方法测量液体折射率装置
CN104819959A (zh) 一种测量低折射率玻璃微珠折射率的装置与方法
CN114199521B (zh) 光学镜片参数测量装置及方法
CN2519264Y (zh) 超广角镜头畸变测试装置
CN105572072A (zh) 一种透明光学材料群折射率测量装置及测量方法

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C14 Grant of patent or utility model
GR01 Patent grant
CF01 Termination of patent right due to non-payment of annual fee
CF01 Termination of patent right due to non-payment of annual fee

Granted publication date: 20130508

Termination date: 20180304