CN102175266A - Fault diagnosis method for mobile gyroscope inertia subassembly - Google Patents

Fault diagnosis method for mobile gyroscope inertia subassembly Download PDF

Info

Publication number
CN102175266A
CN102175266A CN 201110040473 CN201110040473A CN102175266A CN 102175266 A CN102175266 A CN 102175266A CN 201110040473 CN201110040473 CN 201110040473 CN 201110040473 A CN201110040473 A CN 201110040473A CN 102175266 A CN102175266 A CN 102175266A
Authority
CN
China
Prior art keywords
gyro
fault
inertial
moving body
component
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN 201110040473
Other languages
Chinese (zh)
Other versions
CN102175266B (en
Inventor
沈毅
王振华
王强
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Harbin Institute of Technology Shenzhen
Original Assignee
Harbin Institute of Technology Shenzhen
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Harbin Institute of Technology Shenzhen filed Critical Harbin Institute of Technology Shenzhen
Priority to CN201110040473A priority Critical patent/CN102175266B/en
Publication of CN102175266A publication Critical patent/CN102175266A/en
Application granted granted Critical
Publication of CN102175266B publication Critical patent/CN102175266B/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Gyroscopes (AREA)

Abstract

一种运动体陀螺惯性组件的故障诊断方法,具体涉及一种基于等价关系和经验模态分解的运动体惯性陀螺组件的健康监测技术,本发明为了解决鉴于传统的等价关系方法通常只具有分离单个传感器故障的能力,而基于信号处理的健康监测方法的计算量相对较大的问题。本发明方法包括:步骤一、通过等价关系方法检测惯性陀螺组件是否发生故障;步骤二、当检测到故障时,采集惯性陀螺组件中的每个陀螺敏感器输出信号的N个数据点作为其故障数据输入信号,并进行经验模态分解,获取的一阶IM F分量作为其故障特征信号;步骤三、对一阶IM F分量进行统计检验的累加求和CUSUM处理,来判断该陀螺敏感器是否存在故障,完成惯性陀螺组件的健康监测。

Figure 201110040473

A fault diagnosis method for a moving body gyro inertial component, specifically related to a health monitoring technology for a moving body inertial gyro component based on equivalence relations and empirical mode decomposition. The ability to isolate individual sensor faults is a relatively computationally intensive problem for signal processing-based health monitoring methods. The method of the present invention comprises: step 1, detects whether the inertial gyro assembly breaks down by the equivalence relation method; Step 2, when detecting a fault, collects N data points of each gyro sensor output signal in the inertial gyroscope assembly as its The fault data input signal is subjected to empirical mode decomposition, and the obtained first-order IM F component is used as its fault characteristic signal; Step 3, the accumulation and summation CUSUM processing of the statistical test is performed on the first-order IM F component to judge the gyro sensor Whether there is a fault, complete the health monitoring of the inertial gyro components.

Figure 201110040473

Description

一种运动体陀螺惯性组件的故障诊断方法A Fault Diagnosis Method for Gyro Inertial Components of Moving Body

技术领域technical field

本发明涉及一种运动体陀螺惯性组件的故障诊断方法,具体涉及一种基于等价关系和经验模态分解的运动体惯性陀螺组件的健康监测技术。The invention relates to a fault diagnosis method for a moving body gyro inertial component, in particular to a health monitoring technology for a moving body inertial gyro component based on an equivalence relationship and empirical mode decomposition.

背景技术Background technique

惯性陀螺组件由若干陀螺敏感器构成,根据不同任务一般为2-4个,陀螺敏感器用于测量运动体特别是空间飞行器和海洋航行器相对于惯性参考系的角速度,是运动体姿态测量的重要部件,其工作性能、健康状态将直接影响整个运动体的姿态测量乃至姿态控制精度和运动体的可靠性。The inertial gyro component consists of a number of gyro sensors, generally 2-4 according to different tasks. The gyro sensor is used to measure the angular velocity of moving bodies, especially space vehicles and marine vehicles relative to the inertial reference system, and is an important part of the attitude measurement of moving bodies. Components, their working performance and health status will directly affect the attitude measurement of the entire moving body and even the attitude control accuracy and reliability of the moving body.

由于陀螺敏感器属于高精度、相对易损部件,在经受运动体复杂环境及剧烈运动后,容易出现故障、性能降低等健康问题。目前对于惯性陀螺组件的健康状况监测时,鉴于传统的等价关系方法通常只具有分离单个传感器故障的能力,通常采用两种途径:一是途径是利用机内测试设备实时监测陀螺内部的某些状态量,如温度、电流、电压等,根据这些参数来判断该陀螺是否存在故障,该方法没有利用陀螺敏感器的输出信息,只能检测幅度较大的故障。另一种途径是利用姿态敏感器的冗余关系判断陀螺是否存在故障,但该方法的应用也受到一定限制,一方面,该方法只在姿态传感器系统构成冗余关系的条件下有效;另一方面,还需要考虑冗余敏感器的工作状况。Since the gyro sensor is a high-precision, relatively vulnerable part, it is prone to health problems such as failure and performance degradation after undergoing complex environments and strenuous exercise. At present, when monitoring the health status of inertial gyroscope components, in view of the fact that the traditional equivalence relationship method usually only has the ability to separate the failure of a single sensor, two approaches are usually adopted: one is to use the built-in test equipment to monitor some internal components of the gyroscope in real time. State variables, such as temperature, current, voltage, etc., are used to judge whether the gyro is faulty or not. This method does not use the output information of the gyro sensor and can only detect faults with large magnitudes. Another way is to use the redundant relationship of the attitude sensor to judge whether the gyroscope is faulty, but the application of this method is also subject to certain restrictions. On the one hand, this method is only valid under the condition that the attitude sensor system constitutes a redundant relationship; On the other hand, it is also necessary to consider the working conditions of redundant sensors.

近年来,现代信号处理方法越来越多地被用于传感器健康状况特征信息的提取。例如有研究者将小波变换应用于陀螺敏感器的故障诊断与分类中,取得了良好的效果。基于信号处理方法的传感器健康监测的优势在于能够直接从传感器输出中提取健康特征信息,可以克服冗余关系的限制。并且,在多个传感器同时发生故障的情况下,仍然能够实现故障的检测和隔离。但另一方面,与基于硬件冗余或解析冗余的方法相比,基于信号处理的健康监测方法往往需要进行更多的运算和处理,计算量相对较大。In recent years, modern signal processing methods have been increasingly used for the extraction of sensor health feature information. For example, some researchers have applied wavelet transform to the fault diagnosis and classification of gyro sensors, and achieved good results. The advantage of sensor health monitoring based on signal processing methods is that it can directly extract health feature information from sensor output, which can overcome the limitation of redundant relationships. Moreover, in the case that multiple sensors fail at the same time, the detection and isolation of the failure can still be realized. But on the other hand, compared with methods based on hardware redundancy or analytical redundancy, health monitoring methods based on signal processing often require more calculations and processing, and the amount of calculation is relatively large.

发明内容Contents of the invention

本发明目的是为了解决鉴于传统的等价关系方法通常只具有分离单个传感器故障的能力,而基于信号处理的健康监测方法的计算量相对较大的问题,提供了一种运动体陀螺惯性组件的故障诊断方法。The purpose of the present invention is to solve the problem that the traditional equivalence relation method usually only has the ability to isolate a single sensor fault, and the health monitoring method based on signal processing has a relatively large amount of calculation. Fault diagnosis method.

本发明所述一种运动体陀螺惯性组件的故障诊断方法包括以下步骤:The fault diagnosis method of a kind of moving body gyro inertia assembly of the present invention comprises the following steps:

步骤一、利用运动体惯性陀螺组件的硬件冗余,并通过等价关系方法检测惯性陀螺组件是否发生故障;Step 1, utilizing the hardware redundancy of the inertial gyro assembly of the moving body, and detecting whether the inertial gyro assembly fails by an equivalence relation method;

检测惯性陀螺组件是否发生故障的过程为:The procedure for detecting failure of an inertial gyro component is:

步骤11、利用运动体惯性陀螺组件的硬件冗余配置构造等价关系,并计算其等价向量;Step 11, using the hardware redundancy configuration of the moving body inertial gyroscope component to construct an equivalence relationship, and calculate its equivalent vector;

步骤12、判断所述等价向量的范数是否小于故障检测阈值,Step 12, judging whether the norm of the equivalent vector is smaller than the fault detection threshold,

判断结果为是,则认为所述惯性陀螺组件未发生故障;判断结果为否,则认为所述惯性陀螺组件发生故障。If the judgment result is yes, it is considered that the inertial gyro component has not failed; if the judgment result is no, it is considered that the inertial gyro component has failed.

步骤二、当检测到惯性陀螺组件发生故障时,采集惯性陀螺组件中的每个陀螺敏感器输出信号的N个数据点作为该陀螺敏感器的故障数据输入信号,对所述故障数据输入信号进行经验模态分解,获取的一阶IM F分量作为该陀螺敏感器故障特征信号;Step 2, when detecting that the inertial gyro assembly breaks down, collect N data points of each gyro sensor output signal in the inertial gyro assembly as the fault data input signal of the gyro sensor, and perform the fault data input signal on the fault data input signal Empirical mode decomposition, the obtained first-order IMF component is used as the gyro sensor fault characteristic signal;

获取一阶IMF分量的过程为:The process of obtaining the first-order IMF component is:

设定故障数据输入信号为x(t),t=1,2,...,N,Set the fault data input signal as x(t), t=1, 2,..., N,

步骤21、IMF分解过程初始化:n=1,且满足关系式rn-1(t)=x(t)成立,其中rn-1(t)为第(n-1)次分解后趋势函数;Step 21, initialization of IMF decomposition process: n=1, and the relation r n-1 (t)=x(t) is satisfied, where r n-1 (t) is the trend function after the (n-1)th decomposition ;

步骤22、筛选过程初始化,k=1,且满足关系式hn(k-1)(t)=rn-1(t)成立,其中hn(k-1)(t)为第n次经验模态分解中经过第(k-1)次筛选后的剩余函数;Step 22: The screening process is initialized, k=1, and the relationship h n (k-1)(t)=rn -1 (t) is satisfied, where h n (k-1)(t) is the nth time The residual function after the (k-1)th screening in the empirical mode decomposition;

步骤23、根据筛选程序获取经过第k次筛选后的剩余函数hnk(t);Step 23, obtain the remaining function h nk (t) after the kth screening according to the screening program;

获取剩余函数hnk(t)的过程为:The process of obtaining the residual function h nk (t) is:

步骤231、利用三次样条函数获取故障数据输入信号x(t)经过第n次经验模态分解中经过第k-1次筛选后的剩余函数hn(k-1)(t)的上、下包络,Step 231, using the cubic spline function to obtain the upper and lower values of the remaining function h n (k-1)(t) of the residual function h n (k-1)(t) after the k-1th screening in the n-th empirical mode decomposition of the fault data input signal x(t). lower envelope,

步骤232、计算所述剩余函数hn(k-1)(t)上、下包络曲线在各个t的均值

Figure BDA0000047175070000021
Step 232, calculate the mean value of the upper and lower envelope curves of the residual function h n (k-1)(t) at each t
Figure BDA0000047175070000021

步骤233、获取故障数据输入信号x(t)经过第n次经验模态分解中经过第k次筛选后的剩余函数 h nk ( t ) = h n ( k - 1 ) ( t ) - m ‾ n ( k - 1 ) ( t ) . Step 233, obtain the residual function of the fault data input signal x(t) after the kth screening in the nth empirical mode decomposition h nk ( t ) = h no ( k - 1 ) ( t ) - m ‾ no ( k - 1 ) ( t ) .

步骤24、采用标准偏差准则判断步骤23获得的剩余函数hnk(t)是否满足本征模态函数IMF的条件,即是否小于阈值HSD,0.2≤HSD≤0.3;Step 24, using the standard deviation criterion to judge whether the residual function h nk (t) obtained in step 23 satisfies the condition of the intrinsic mode function IMF, namely Whether it is less than the threshold H SD , 0.2≤H SD ≤0.3;

判断结果为是,执行步骤25,判断结果为否,则k=k+1,然后执行步骤23,If the judgment result is yes, execute step 25, if the judgment result is no, then k=k+1, then execute step 23,

步骤25、提取一阶IMF分量:c1(t)=h1k(t)。Step 25, extracting the first-order IMF component: c 1 (t)=h 1k (t).

步骤三、对步骤二中每个陀螺敏感器获得的一阶IM F分量进行统计检验的累加求和CUSUM处理,来判断该陀螺敏感器是否存在故障,进而分离出惯性陀螺组件中具有故障的陀螺敏感器,完成惯性陀螺组件的健康监测。Step 3, the first-order IMF component that each gyro sensor obtains in step 2 is carried out the accumulative summation CUSUM processing of statistical test, judges whether this gyro sensor has fault, and then separates out the gyro that has fault in the inertial gyro assembly The sensor completes the health monitoring of the inertial gyro components.

步骤31、按如下公式获取一阶IMF分量中单个数据点的CUSUM计算结果WiStep 31. Obtain the CUSUM calculation result W i of a single data point in the first-order IMF component according to the following formula:

Wi=Wi-1+|Xi|,W i =W i-1 + |X i |,

其中,i=1,2,…N,Wi-1为第i-1个数据点的CUSUM计算结果,并令W0=0,Xi为第i个数据点处的一阶IMF值,Wherein, i=1, 2,...N, W i-1 is the CUSUM calculation result of the i-1th data point, and let W 0 =0, Xi is the first-order IMF value at the i-th data point,

步骤32、判断第N个数据点的CUSUM计算结果WN是否大于诊断阈值εIStep 32. Determine whether the CUSUM calculation result W N of the Nth data point is greater than the diagnostic threshold ε I ,

是,则该陀螺敏感器存在故障,否,则该陀螺敏感器不存在故障。If yes, there is a fault in the gyro sensor; otherwise, there is no fault in the gyro sensor.

本发明的优点:Advantages of the present invention:

1)本发明所提出的健康监测方法通过等价关系方法监测运动体惯性陀螺组件的故障,同时利用经验模态分解方法分离故障陀螺,与单纯采用信号处理的故障诊断方法相比,能够有效降低计算量。1) The health monitoring method proposed by the present invention monitors the fault of the inertial gyroscope assembly of the moving body through the equivalence relation method, and uses the empirical mode decomposition method to separate the faulty gyroscope at the same time. Compared with the fault diagnosis method that only uses signal processing, it can effectively reduce the Calculations.

2)本发明所提出的健康监测方法不仅利用了陀螺组件的硬件冗余,还有效利用了陀螺敏感器自身的输出信息,增强了算法的故障诊断能力。2) The health monitoring method proposed by the present invention not only utilizes the hardware redundancy of the gyro components, but also effectively utilizes the output information of the gyro sensor itself, which enhances the fault diagnosis capability of the algorithm.

3)本发明所提出的健康监测方法只是在陀螺组件输出信号的基础上进行故障诊断,无需利用其他传感器的信息,避免了引入其他潜在的故障源,有利于提高故障诊断方法的有效性。3) The health monitoring method proposed by the present invention only performs fault diagnosis on the basis of the output signal of the gyro component, without using information from other sensors, avoiding the introduction of other potential fault sources, and is conducive to improving the effectiveness of the fault diagnosis method.

4)本发明所提出的健康监测方法不限于单点故障假设,可以方便地实现多故障的诊断,突破了其他方法一般只能进行单点故障诊断的限制。4) The health monitoring method proposed by the present invention is not limited to the single-point fault assumption, and can conveniently realize the diagnosis of multiple faults, which breaks through the limitation that other methods can only diagnose single-point faults.

附图说明Description of drawings

图1为基于等价关系和经验模态分解的一种运动体陀螺惯性组件的故障诊断方法流程图;Fig. 1 is the fault diagnosis method flow chart of a kind of moving body gyro inertia component based on equivalence relation and empirical mode decomposition;

图2为经验模态分解流程图;Figure 2 is a flow chart of empirical mode decomposition;

图3为实验验证装置示意图;Figure 3 is a schematic diagram of the experimental verification device;

图4为发生常值漂移增大故障时的等价向量;Fig. 4 is the equivalent vector when the fault with constant value drift increases;

图5为发生常值漂移增大故障时的一阶IMF信号;Fig. 5 is the first-order IMF signal when the fault with increasing constant value drift occurs;

图6为发生噪声水平增加故障时的等价向量;Figure 6 is the equivalent vector when the noise level increases when the fault occurs;

图7为发生噪声水平增加故障时的一阶IMF信号;Fig. 7 is the first-order IMF signal when the fault with increased noise level occurs;

图8为X轴陀螺和S轴陀螺同时发生突变故障时的等价向量;Figure 8 is the equivalent vector when the X-axis gyro and the S-axis gyro have a sudden failure at the same time;

图9为X轴陀螺和S轴陀螺同时发生突变故障时的一阶IMF信号。Figure 9 shows the first-order IMF signal when the X-axis gyro and the S-axis gyro have a sudden fault at the same time.

具体实施方式Detailed ways

具体实施方式一:下面结合图1和图2说明本实施方式。Specific Embodiment 1: The present embodiment will be described below with reference to FIG. 1 and FIG. 2 .

为了有效地利用信号处理方法进行传感器健康监测,并在一定程度上减少算法的计算量,本专利提出了一种基于等价关系和经验模态分解(Empirical Mode Decomposition,EMD)的传感器健康监测方法,用于惯性陀螺组件的健康监测。In order to effectively use signal processing methods for sensor health monitoring, and to reduce the computational load of the algorithm to a certain extent, this patent proposes a sensor health monitoring method based on equivalence relations and Empirical Mode Decomposition (EMD) , for health monitoring of inertial gyro components.

经验模态分解方法是美国国家航空航天管理局(National Aeronautics and Space Administration,NASA)的黄锷博士于1998年提出的,它利用信号内部时间尺度的变化做能量与频率的解析,将信号展开成有限数目的内固模态函数(Intrinsic Mode Function,IMF)。不同于使用固定形态窗口为分界基底函数的传统方法,EMD的基底函数是从信号中提取得到的,即使用IMF作基底。而IMF必须满足下列条件:The Empirical Mode Decomposition method was proposed by Dr. Huang E of the National Aeronautics and Space Administration (NASA) in 1998. It uses the change of the internal time scale of the signal to analyze the energy and frequency, and expands the signal into A limited number of Intrinsic Mode Functions (IMFs). Different from the traditional method that uses a fixed shape window as the boundary basis function, the basis function of EMD is extracted from the signal, that is, the IMF is used as the basis. The IMF must meet the following conditions:

1)在整个函数中,极值点的数目与穿越零点的数目相等或者相差1;1) In the whole function, the number of extremum points is equal to or differs by 1 from the number of crossing zero points;

2)在任何时刻,由局部极值包络线所定义的包络线局部均值为零。其中,第一个条件与传统高斯平稳过程中的窄频宽要求类似。第二个条件是一个新的想法:将整体性要求改变为局部性要求,使得瞬时频率不会因为不对称波形的存在而导致不必要的晃动。依托这两个条件构建起来的EMD被认为是强有力地求解非线性、非平稳信号的自适应方法,是近年来对以傅立叶变换等传统信号分析方法的重大突破,并得到了广泛的应用。2) At any moment, the local mean of the envelope defined by the local extremum envelope is zero. Among them, the first condition is similar to the narrow bandwidth requirement in the traditional Gaussian stationary process. The second condition is a new idea: change the overall requirement into a local requirement, so that the instantaneous frequency will not cause unnecessary shaking due to the existence of asymmetric waveforms. EMD built on the basis of these two conditions is considered to be a powerful adaptive method for solving nonlinear and non-stationary signals. It is a major breakthrough in traditional signal analysis methods such as Fourier transform in recent years, and has been widely used.

考虑到陀螺敏感器的故障会引起陀螺输出信号特征的变化,本专利通过EMD方法将陀螺输出信号分解为从高频到低频的IMF分量的信号叠加,为健康监测过程中的特征量选取提供了合理的途径。Considering that the failure of the gyro sensor will cause the change of the characteristics of the gyro output signal, this patent decomposes the gyro output signal into the signal superposition of IMF components from high frequency to low frequency through the EMD method, which provides a basis for feature selection in the health monitoring process. Reasonable way.

本实施方式所述一种运动体陀螺惯性组件的故障诊断方法包括以下步骤:A fault diagnosis method for a moving body gyro inertial component described in this embodiment includes the following steps:

步骤一、利用运动体惯性陀螺组件的硬件冗余,并通过等价关系方法检测惯性陀螺组件是否发生故障;Step 1, utilizing the hardware redundancy of the inertial gyro assembly of the moving body, and detecting whether the inertial gyro assembly fails by an equivalence relation method;

步骤二、当检测到惯性陀螺组件发生故障时,采集惯性陀螺组件中的每个陀螺敏感器输出信号的N个数据点作为该陀螺敏感器的故障数据输入信号,对所述故障数据输入信号进行经验模态分解,获取的一阶IM F分量作为该陀螺敏感器故障特征信号;Step 2, when detecting that the inertial gyro assembly breaks down, collect N data points of each gyro sensor output signal in the inertial gyro assembly as the fault data input signal of the gyro sensor, and perform the fault data input signal on the fault data input signal Empirical mode decomposition, the obtained first-order IMF component is used as the gyro sensor fault characteristic signal;

步骤三、对步骤二中每个陀螺敏感器获得的一阶IM F分量进行统计检验的累加求和CUSUM处理,来判断该陀螺敏感器是否存在故障,进而分离出惯性陀螺组件中具有故障的陀螺敏感器,完成惯性陀螺组件的健康监测。Step 3, the first-order IMF component that each gyro sensor obtains in step 2 is carried out the accumulative summation CUSUM processing of statistical test, judges whether this gyro sensor has fault, and then separates out the gyro that has fault in the inertial gyro assembly The sensor completes the health monitoring of the inertial gyro components.

步骤一中通过等价关系方法检测惯性陀螺组件是否发生故障的过程为:In step 1, the process of detecting whether the inertial gyro component fails by the equivalence relation method is as follows:

步骤11、利用运动体惯性陀螺组件的硬件冗余配置构造等价关系,并计算其等价向量;Step 11, using the hardware redundancy configuration of the moving body inertial gyroscope component to construct an equivalence relationship, and calculate its equivalent vector;

步骤12、判断所述等价向量的范数是否小于故障检测阈值,Step 12, judging whether the norm of the equivalent vector is smaller than the fault detection threshold,

判断结果为是,则认为所述惯性陀螺组件未发生故障;判断结果为否,则认为所述惯性陀螺组件发生故障。If the judgment result is yes, it is considered that the inertial gyro component has not failed; if the judgment result is no, it is considered that the inertial gyro component has failed.

故障检测阈值εD为8σ~12σ,其中σ为陀螺噪声的标准差。理论上,εD取4σ时的检测正确概率已经非常接近1,但为了降低虚警率,将故障检测阈值增加至8σ~12σ。The fault detection threshold ε D is 8σ ~ 12σ, where σ is the standard deviation of the gyro noise. Theoretically, when ε D is 4σ, the correct detection probability is very close to 1, but in order to reduce the false alarm rate, the fault detection threshold is increased to 8σ ~ 12σ.

步骤二中获取一阶IM F分量的过程为:The process of obtaining the first-order IMF component in step 2 is:

设定故障数据输入信号为x(t),t=1,2,...,N,Set the fault data input signal as x(t), t=1, 2,..., N,

步骤21、IMF分解过程初始化:n=1,且满足关系式rn-1(t)=x(t)成立,其中rn-1(t)为第(n-1)次分解后趋势函数;Step 21, initialization of IMF decomposition process: n=1, and the relation r n-1 (t)=x(t) is satisfied, where r n-1 (t) is the trend function after the (n-1)th decomposition ;

步骤22、筛选过程初始化,k=1,且满足关系式hn(k-1)(t)=rn-1(t)成立,其中hn(k-1)(t)为第n次经验模态分解中经过第(k-1)次筛选后的剩余函数;Step 22: The screening process is initialized, k=1, and the relation h n(k-1) (t)=r n-1 (t) is satisfied, where h n(k-1) (t) is the nth time The residual function after the (k-1)th screening in the empirical mode decomposition;

步骤23、根据筛选程序获取经过第k次筛选后的剩余函数hnk(t);Step 23, obtain the remaining function h nk (t) after the kth screening according to the screening program;

步骤24、采用标准偏差准则判断步骤23获得的剩余函数hnk(t)是否满足本征模态函数IMF的条件,即

Figure BDA0000047175070000051
是否小于阈值HSD,0.2≤HSD≤0.3;Step 24, using the standard deviation criterion to judge whether the residual function h nk (t) obtained in step 23 satisfies the condition of the intrinsic mode function IMF, namely
Figure BDA0000047175070000051
Whether it is less than the threshold H SD , 0.2≤H SD ≤0.3;

判断结果为是,执行步骤25,判断结果为否,则k=k+1,然后执行步骤23,If the judgment result is yes, execute step 25, if the judgment result is no, then k=k+1, then execute step 23,

步骤25、提取一阶IMF分量:c1(t)=h1k(t)。Step 25, extracting the first-order IMF component: c 1 (t)=h 1k (t).

步骤23中获取剩余函数hnk(t)的过程为:The process of obtaining the remaining function h nk (t) in step 23 is:

步骤231、利用三次样条函数获取故障数据输入信号x(t)经过第n次经验模态分解中经过第k-1次筛选后的剩余函数hn(k-1)(t)的上、下包络,Step 231, using the cubic spline function to obtain the upper and lower values of the residual function h n(k-1) (t) of the residual function h n(k-1) (t) after the k-1th screening in the n-th empirical mode decomposition of the fault data input signal x(t) lower envelope,

步骤232、计算所述剩余函数hn(k-1)(t)上、下包络曲线在各个t的均值

Figure BDA0000047175070000061
Step 232, calculate the mean value of the upper and lower envelope curves of the residual function h n(k-1) (t) at each t
Figure BDA0000047175070000061

步骤233、获取故障数据输入信号x(t)经过第n次经验模态分解中经过第k次筛选后的剩余函数 h nk ( t ) = h n ( k - 1 ) ( t ) - m ‾ n ( k - 1 ) ( t ) . Step 233, obtain the residual function of the fault data input signal x(t) after the kth screening in the nth empirical mode decomposition h nk ( t ) = h no ( k - 1 ) ( t ) - m ‾ no ( k - 1 ) ( t ) .

步骤三中对一阶IM F分量进行统计检验的累加求和CUSUM处理,来判断该陀螺敏感器是否存在故障的过程为:In the step 3, the accumulation and summation CUSUM processing of statistical inspection is carried out to the first-order IMF component, and the process of judging whether this gyro sensor has a fault is:

步骤31、按如下公式获取一阶IMF分量中单个数据点的CUSUM计算结果WiStep 31. Obtain the CUSUM calculation result W i of a single data point in the first-order IMF component according to the following formula:

Wi=Wi-1+|Xi|,W i =W i-1 + |X i |,

其中,i=1,2,…N,Wi-1为第i-1个数据点的CUSUM计算结果,并令W0=0,Xi为第i个数据点处的一阶IMF值,Wherein, i=1, 2,...N, W i-1 is the CUSUM calculation result of the i-1th data point, and let W 0 =0, Xi is the first-order IMF value at the i-th data point,

步骤32、判断第N个数据点的CUSUM计算结果WN是否大于诊断阈值εIStep 32. Determine whether the CUSUM calculation result W N of the Nth data point is greater than the diagnostic threshold ε I ,

是,则该陀螺敏感器存在故障,否,则该陀螺敏感器不存在故障。If yes, there is a fault in the gyro sensor; otherwise, there is no fault in the gyro sensor.

是,则该陀螺敏感器存在故障,否,则该陀螺敏感器不存在故障。If yes, there is a fault in the gyro sensor; otherwise, there is no fault in the gyro sensor.

诊断阈值εI按如下公式获取:The diagnostic threshold εI is obtained according to the following formula:

εI=Nσ,其中σ为陀螺噪声的标准差。ε I =Nσ, where σ is the standard deviation of the gyro noise.

具体实施方式二:本实施方式与实施方式一的不同之处在于,故障检测阈值εD为10σ,其它与实施方式一相同。Embodiment 2: The difference between this embodiment and Embodiment 1 is that the fault detection threshold ε D is 10σ, and other aspects are the same as Embodiment 1.

具体实施方式三:本实施方式与实施方式一的不同之处在于,步骤24的中HSD=0.25,其它与实施方式一相同。Embodiment 3: The difference between this embodiment and Embodiment 1 is that in step 24 H SD =0.25, and the others are the same as Embodiment 1.

具体实施方式四:下面结合图3至图9说明本实施方式,本实施方式给出一个具体实施例:试验验证装置示意图如图3所示。监测对象为由四个单轴光纤陀螺VG951D构成的三正装一斜装陀螺惯性组件,运动体的运动可以由三轴转台模拟,惯性陀螺组件装载于三轴转台上,惯性陀螺组件的测量输出为转动角速度。健康监测处理器采用LPC2478作为主控制器,LPC2478是NXP半导体公司设计的一款具有极高集成度并且以ARM7TDMI-S为内核的微控制器。Specific Embodiment 4: The present embodiment will be described below with reference to FIG. 3 to FIG. 9 . This embodiment provides a specific example: the schematic diagram of the test verification device is shown in FIG. 3 . The monitoring object is a gyro inertial assembly composed of four single-axis fiber optic gyroscopes VG951D. The motion of the moving body can be simulated by a three-axis turntable. The inertial gyro assembly is loaded on the three-axis turntable. The measurement output of the inertial gyro assembly is Rotational angular velocity. The health monitoring processor uses LPC2478 as the main controller. LPC2478 is a microcontroller designed by NXP Semiconductors with extremely high integration and ARM7TDMI-S as the core.

执行步骤一:利用运动体惯性陀螺组件的硬件冗余,并通过等价关系方法检测惯性陀螺组件是否发生故障。Execution step 1: Utilize the hardware redundancy of the inertial gyroscope component of the moving body, and detect whether the inertial gyroscope component fails by using an equivalence relation method.

本步骤采用等价关系方法检测陀螺组件的故障。为了确保系统的安全性和可靠性,运动体惯性陀螺组件的陀螺敏感器系统大都采用冗余配置,因此可以构造等价关系,计算等价向量,用于传感器故障检测与分离。假设系统的测量方程为:In this step, the equivalence relation method is used to detect the fault of the gyro component. In order to ensure the safety and reliability of the system, most of the gyro sensor systems of the moving body inertial gyro components adopt redundant configuration, so the equivalence relationship can be constructed and the equivalent vector can be calculated for sensor fault detection and separation. Suppose the measurement equation of the system is:

m=Hx+w+f         (1)m=Hx+w+f (1)

其中,

Figure BDA0000047175070000071
为l个传感器的输出信号;
Figure BDA0000047175070000072
为传感器安装矩阵;为n维被测量信号;
Figure BDA0000047175070000074
Figure BDA0000047175070000075
分别为测量噪声和附加故障信号。in,
Figure BDA0000047175070000071
is the output signal of l sensors;
Figure BDA0000047175070000072
Install the matrix for the sensor; is the n-dimensional measured signal;
Figure BDA0000047175070000074
Figure BDA0000047175070000075
are the measurement noise and the additional fault signal, respectively.

若选取矩阵满足:If choose matrix satisfy:

VH=0(l-n)×n    (2)VH=0 (ln)×n (2)

VVT=Il-n        (3)VV T = I ln (3)

即H的列向量构成一个n维空间,V的行向量构成了该空间的(l-n)维正交空间。That is, the column vectors of H form an n-dimensional space, and the row vectors of V form the (l-n)-dimensional orthogonal space of this space.

等价向量定义为:Equivalent vectors are defined as:

p=Vm=V(w+f)    (4)p=Vm=V(w+f) (4)

则等价向量p与被测信号无关,仅仅是噪声w和故障f的函数。若不考虑噪声的影响,等价向量p是故障向量f在V张成的(l-n)维子空间中的分量。因此,可以设置一定的阈值,根据等价向量p的范数检测传感器系统的故障。Then the equivalent vector p has nothing to do with the measured signal, it is only a function of noise w and fault f. If the influence of noise is not considered, the equivalent vector p is the component of the fault vector f in the (l-n) dimensional subspace spanned by V. Therefore, a certain threshold can be set to detect the fault of the sensor system according to the norm of the equivalent vector p.

运动体中的惯性陀螺组件通常采用三正交一斜装的配置方式,本专利针对这种陀螺构型,说明所提出的故障诊断方法的有效性。The inertial gyroscope assembly in the moving body usually adopts a three-orthogonal-inclined configuration. This patent illustrates the effectiveness of the proposed fault diagnosis method for this gyroscope configuration.

三正交一斜装配置方式的陀螺组件测量矩阵为:The measurement matrix of the gyroscope component in the three-orthogonal-inclined configuration is:

Hh == 11 00 00 00 11 00 00 00 11 0.57740.5774 0.57740.5774 0.57740.5774 -- -- -- (( 55 ))

求得满足式(2)和(3)的投影矩阵为The projection matrix that satisfies formulas (2) and (3) is obtained as

V=[0.4082 0.4082 0.4082 -0.707]    (6)V=[0.4082 0.4082 0.4082 -0.707] (6)

等价向量为:The equivalent vector is:

p=Vm                               (7)p=Vm (7)

故障检测律为:The fault detection law is:

Figure BDA0000047175070000081
Figure BDA0000047175070000081

其中,εD为故障检测阈值,可选为10σ,σ为陀螺噪声的标准差。通过等价关系方法检测到陀螺敏感器组是否发生故障。Among them, ε D is the fault detection threshold, which can be selected as 10σ, and σ is the standard deviation of the gyro noise. Whether the gyro sensor group fails is detected by the equivalence relation method.

执行步骤二:当检测到惯性陀螺组件发生故障时,采集惯性陀螺组件中的每个陀螺敏感器输出信号的N个数据点作为该陀螺敏感器的故障数据输入信号,对所述故障数据输入信号进行经验模态分解,获取的一阶IM F分量作为该陀螺敏感器故障特征信号。Execute step 2: when detecting that the inertial gyro assembly breaks down, collect N data points of each gyro sensor output signal in the inertial gyro assembly as the fault data input signal of the gyro sensor, and input the fault data to the input signal The empirical mode decomposition is carried out, and the obtained first-order IMF component is used as the fault characteristic signal of the gyro sensor.

在检测到陀螺组件出现故障之后,在故障检测时刻附近收集N=128个数据点,进行一次经验模态分解。由于一阶IMF包含充分的特征信息,所以EMD只需分解出第1个IMF分量c1(t)后即可停止,能有效提高处理速度,降低计算量。After the fault of the gyroscope component is detected, N=128 data points are collected around the time of fault detection, and an empirical mode decomposition is performed. Since the first-order IMF contains sufficient feature information, EMD can stop after decomposing the first IMF component c 1 (t), which can effectively improve the processing speed and reduce the amount of calculation.

执行步骤三:对获得的一阶IMF进行CUSUM运算,并与通过阈值εI=Nσ诊断各轴陀螺是否发生故障。Step 3: Carry out a CUSUM operation on the obtained first-order IMF, and diagnose whether the gyro of each axis is faulty or not by passing the threshold value ε I =Nσ.

下面采用集中典型的惯性陀螺组件故障验证本发明所提出的故障诊断方法的有效性,仿真中采用的时间间隔为0.025s,陀螺噪声的标准差为1×10-6rad/s(即εD=10σ=1×10-5rad/s,εI=Nσ=1.28×10-4rad/s)。三种故障分别为:The validity of the fault diagnosis method proposed by the present invention will be verified by adopting a typical inertial gyro assembly failure below. The time interval adopted in the simulation is 0.025s, and the standard deviation of the gyro noise is 1×10 -6 rad/s (ie ε D =10σ=1×10 -5 rad/s, ε I =Nσ=1.28×10 -4 rad/s). The three faults are:

1)t=6s时,X轴陀螺敏感器发生常值漂移增大故障,突变幅值为-1×10-4rad/s,等价向量如图4所示,一阶IMF信号如图5所示。计算出的各轴陀螺一阶IMF分量中第N个数据点的CUSUM计算结果WN分别为:X轴:3.354×10-4rad/s,Y轴:9.5566×10-5rad/s,Z轴:9.5738×10-5rad/s,S轴:8.7282×10-5rad/s。其中,X轴的WN大于诊断阈值εI(1.28×10-4rad/s),因此,可以确定X轴陀螺发生故障。1) At t=6s, the X-axis gyro sensor has a constant value drift increase fault, and the mutation amplitude is -1×10 -4 rad/s, the equivalent vector is shown in Figure 4, and the first-order IMF signal is shown in Figure 5 shown. The calculated CUSUM calculation results W N of the Nth data point in the first-order IMF component of each axis gyroscope are: X axis: 3.354×10 -4 rad/s, Y axis: 9.5566×10 -5 rad/s, Z Axis: 9.5738×10 -5 rad/s, S axis: 8.7282×10 -5 rad/s. Wherein, the W N of the X-axis is greater than the diagnostic threshold ε I (1.28×10 -4 rad/s), therefore, it can be determined that the X-axis gyro is faulty.

2)t=11s时,Z轴陀螺发生故障,导致噪声方差增大为1×10-9rad/s,等价向量如图6所示,一阶IMF信号如图7所示。计算出的各轴陀螺一阶IMF分量中第N个数据点的CUSUM计算结果WN分别为:X轴:8.8193×10-5rad/s,Y轴:9.8038×10-5rad/s,Z轴:1.7×10-3rad/s,S轴:9.2548×10-5rad/s。其中,Z轴的WN大于诊断阈值εI(1.28×10-4rad/s),因此,可以确定Z轴陀螺发生故障。2) At t=11s, the Z-axis gyro fails, causing the noise variance to increase to 1×10 -9 rad/s. The equivalent vector is shown in Figure 6, and the first-order IMF signal is shown in Figure 7. The calculated CUSUM calculation results W N of the Nth data point in the first-order IMF component of each axis gyroscope are: X axis: 8.8193×10 -5 rad/s, Y axis: 9.8038×10 -5 rad/s, Z Axis: 1.7×10 -3 rad/s, S axis: 9.2548×10 -5 rad/s. Wherein, the W N of the Z-axis is greater than the diagnostic threshold ε I (1.28×10 -4 rad/s), therefore, it can be determined that the Z-axis gyro is faulty.

3)t=15s时,X轴陀螺和S轴陀螺同时发生突变故障,故障大小均为6×10-5rad/s,等价向量如图8所示,一阶IMF信号分别如图9所示。计算出的各轴陀螺一阶IMF分量中第N个数据点的CUSUM计算结果WN分别为:X轴:2.1543×10-4rad/s,Y轴:9.1255×10-5rad/s,Z轴:8.149×10-5rad/s,S轴:1.7414×10-4rad/s,其中,X轴和S轴的WN都大于诊断阈值εI(1.28×10-4rad/s),由此可以确定X轴陀螺和S轴陀螺发生故障。3) At t=15s, the X-axis gyro and the S-axis gyro have a sudden fault at the same time, and the fault size is 6×10 -5 rad/s. The equivalent vector is shown in Figure 8, and the first-order IMF signals are shown in Figure 9 Show. The calculated CUSUM calculation results W N of the Nth data point in the first-order IMF component of each axis gyroscope are: X axis: 2.1543×10 -4 rad/s, Y axis: 9.1255×10 -5 rad/s, Z Axis: 8.149×10 -5 rad/s, S axis: 1.7414×10 -4 rad/s, where W N of both X and S axes is greater than the diagnostic threshold ε I (1.28×10 -4 rad/s), From this, it can be determined that the X-axis gyro and the S-axis gyro are faulty.

上述说明本方法无需其他传感器提供信息,能够有效地对同时发生多个故障的情况进行故障诊断。The above shows that this method does not need other sensors to provide information, and can effectively diagnose the fault when multiple faults occur at the same time.

Claims (9)

1.一种运动体陀螺惯性组件的故障诊断方法,其特征在于,该方法包括以下步骤:1. a method for fault diagnosis of a moving body gyro inertial assembly, characterized in that the method may further comprise the steps: 步骤一、利用运动体惯性陀螺组件的硬件冗余,并通过等价关系方法检测惯性陀螺组件是否发生故障;Step 1, utilizing the hardware redundancy of the inertial gyro assembly of the moving body, and detecting whether the inertial gyro assembly fails by an equivalence relation method; 步骤二、当检测到惯性陀螺组件发生故障时,采集惯性陀螺组件中的每个陀螺敏感器输出信号的N个数据点作为该陀螺敏感器的故障数据输入信号,对所述故障数据输入信号进行经验模态分解,获取的一阶IM F分量作为该陀螺敏感器故障特征信号;Step 2, when detecting that the inertial gyro assembly breaks down, collect N data points of each gyro sensor output signal in the inertial gyro assembly as the fault data input signal of the gyro sensor, and perform the fault data input signal on the fault data input signal Empirical mode decomposition, the obtained first-order IMF component is used as the gyro sensor fault characteristic signal; 步骤三、对步骤二中每个陀螺敏感器获得的一阶IM F分量进行统计检验的累加求和CUSUM处理,来判断该陀螺敏感器是否存在故障,进而分离出惯性陀螺组件中具有故障的陀螺敏感器,完成惯性陀螺组件的健康监测。Step 3, the first-order IMF component that each gyro sensor obtains in step 2 is carried out the accumulative summation CUSUM processing of statistical test, judges whether this gyro sensor has fault, and then separates out the gyro that has fault in the inertial gyro assembly The sensor completes the health monitoring of the inertial gyro components. 2.根据权利要求1所述的一种运动体陀螺惯性组件的故障诊断方法,其特征在于,步骤一中通过等价关系方法检测惯性陀螺组件是否发生故障的过程为:2. the fault diagnosis method of a kind of moving body gyroscope inertial assembly according to claim 1, is characterized in that, in the step 1, the process of detecting whether the inertial gyroscope assembly breaks down by the equivalence relation method is: 步骤11、利用运动体惯性陀螺组件的硬件冗余配置构造等价关系,并计算其等价向量;Step 11, using the hardware redundancy configuration of the moving body inertial gyroscope component to construct an equivalence relationship, and calculate its equivalent vector; 步骤12、判断所述等价向量的范数是否小于故障检测阈值,Step 12, judging whether the norm of the equivalent vector is smaller than the fault detection threshold, 判断结果为是,则认为所述惯性陀螺组件未发生故障;判断结果为否,则认为所述惯性陀螺组件发生故障。If the judgment result is yes, it is considered that the inertial gyro component has not failed; if the judgment result is no, it is considered that the inertial gyro component has failed. 3.根据权利要求2所述的一种运动体陀螺惯性组件的故障诊断方法,其特征在于,故障检测阈值εD为8σ~12σ,其中σ为陀螺噪声的标准差。3. A method for fault diagnosis of a moving body gyro-inertial component according to claim 2, wherein the fault detection threshold ε D is 8σ˜12σ, where σ is the standard deviation of gyro noise. 4.根据权利要求2所述的一种运动体陀螺惯性组件的故障诊断方法,其特征在于,故障检测阈值εD为10σ,其中σ为陀螺噪声的标准差。4. A fault diagnosis method for a moving body gyro-inertial component according to claim 2, wherein the fault detection threshold ε D is 10σ, where σ is the standard deviation of the gyro noise. 5.根据权利要求1所述的一种运动体陀螺惯性组件的故障诊断方法,其特征在于,步骤二中获取一阶IM F分量的过程为:5. the fault diagnosis method of a kind of moving body gyro inertia assembly according to claim 1, is characterized in that, the process of obtaining first-order IMF component in step 2 is: 设定故障数据输入信号为x(t),t=1,2,...,N,Set the fault data input signal as x(t), t=1, 2,..., N, 步骤21、IMF分解过程初始化:n=1,且满足关系式rn-1(t)=x(t)成立,其中rn-1(t)为第(n-1)次分解后趋势函数;Step 21, initialization of IMF decomposition process: n=1, and the relation r n-1 (t)=x(t) is satisfied, where r n-1 (t) is the trend function after the (n-1)th decomposition ; 步骤22、筛选过程初始化,k=1,且满足关系式hn(k-1)(t)=rn-1(t)成立,其中hn(k-1)(t)为第n次经验模态分解中经过第(k-1)次筛选后的剩余函数;Step 22: The screening process is initialized, k=1, and the relation h n(k-1) (t)=r n-1 (t) is satisfied, where h n(k-1) (t) is the nth time The residual function after the (k-1)th screening in the empirical mode decomposition; 步骤23、根据筛选程序获取经过第k次筛选后的剩余函数hnk(t);Step 23, obtain the remaining function h nk (t) after the kth screening according to the screening program; 步骤24、采用标准偏差准则判断步骤23获得的剩余函数hnk(t)是否满足本征模态函数IMF的条件,即
Figure FDA0000047175060000021
是否小于阈值HSD,0.2≤HSD≤0.3;
Step 24, using the standard deviation criterion to judge whether the residual function h nk (t) obtained in step 23 satisfies the condition of the intrinsic mode function IMF, namely
Figure FDA0000047175060000021
Whether it is less than the threshold H SD , 0.2≤H SD ≤0.3;
判断结果为是,执行步骤25,判断结果为否,则k=k+1,然后执行步骤23,If the judgment result is yes, execute step 25, if the judgment result is no, then k=k+1, then execute step 23, 步骤25、提取一阶IMF分量:c1(t)=h1k(t)。Step 25, extracting the first-order IMF component: c 1 (t)=h 1k (t).
6.根据权利要求5所述的一种运动体陀螺惯性组件的故障诊断方法,其特征在于,步骤23中获取剩余函数hnk(t)的过程为:6. the fault diagnosis method of a kind of moving body gyro inertia assembly according to claim 5, is characterized in that, the process of obtaining remaining function h nk (t) in step 23 is: 步骤231、利用三次样条函数获取故障数据输入信号x(t)经过第n次经验模态分解中经过第k-1次筛选后的剩余函数hn(k-1)(t)的上、下包络,Step 231, using the cubic spline function to obtain the upper and lower values of the residual function h n(k-1) (t) of the residual function h n(k-1) (t) after the k-1th screening in the n-th empirical mode decomposition of the fault data input signal x(t) lower envelope, 步骤232、计算所述剩余函数hn(k-1)(t)上、下包络曲线在各个t的均值
Figure FDA0000047175060000022
Step 232, calculate the mean value of the upper and lower envelope curves of the residual function h n(k-1) (t) at each t
Figure FDA0000047175060000022
步骤233、获取故障数据输入信号x(t)经过第n次经验模态分解中经过第k次筛选后的剩余函数
Figure FDA0000047175060000023
Step 233, obtain the residual function of the fault data input signal x(t) after the kth screening in the nth empirical mode decomposition
Figure FDA0000047175060000023
7.根据权利要求5所述的一种运动体陀螺惯性组件的故障诊断方法,其特征在于,步骤24的中HSD=0.25。7 . The fault diagnosis method for the gyro-inertial assembly of the moving body according to claim 5 , wherein H SD =0.25 in step 24 . 8.根据权利要求1所述的一种运动体陀螺惯性组件的故障诊断方法,其特征在于,步骤三中对一阶IM F分量进行统计检验的累加求和CUSUM处理,来判断该陀螺敏感器是否存在故障的过程为:8. the fault diagnosis method of a kind of moving body gyro inertial assembly according to claim 1, is characterized in that, in step 3, the accumulative summation CUSUM processing that statistical inspection is carried out to first-order IMF component, judges this gyro sensor The process of whether there is a fault is: 步骤31、按如下公式获取一阶IMF分量中单个数据点的CUSUM计算结果Wi:Step 31, obtain the CUSUM calculation result Wi of a single data point in the first-order IMF component according to the following formula: Wi=Wi-1+|Xi|,W i =W i-1 + |X i |, 其中,i=1,2,…N,Wi-1为第i-1个数据点的CUSUM计算结果,并令W0=0,Xi为第i个数据点处的一阶IMF值,Wherein, i=1, 2,...N, W i-1 is the CUSUM calculation result of the i-1th data point, and let W 0 =0, Xi is the first-order IMF value at the i-th data point, 步骤32、判断第N个数据点的CUSUM计算结果WN是否大于诊断阈值εIStep 32. Determine whether the CUSUM calculation result W N of the Nth data point is greater than the diagnostic threshold ε I , 是,则该陀螺敏感器存在故障;否,则该陀螺敏感器不存在故障。If yes, the gyro sensor is faulty; if not, the gyro sensor is not faulty. 9.根据权利要求8所述的一种运动体陀螺惯性组件的故障诊断方法,其特征在于,诊断阈值εI按如下公式获取:9. the fault diagnosis method of a kind of moving body gyro inertia assembly according to claim 8, is characterized in that, diagnosis threshold ε 1 obtains by following formula: εI=Nσ,其中σ为陀螺噪声的标准差。ε I =Nσ, where σ is the standard deviation of the gyro noise.
CN201110040473A 2011-02-18 2011-02-18 A Fault Diagnosis Method for Gyro Inertial Components of Moving Body Expired - Fee Related CN102175266B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201110040473A CN102175266B (en) 2011-02-18 2011-02-18 A Fault Diagnosis Method for Gyro Inertial Components of Moving Body

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201110040473A CN102175266B (en) 2011-02-18 2011-02-18 A Fault Diagnosis Method for Gyro Inertial Components of Moving Body

Publications (2)

Publication Number Publication Date
CN102175266A true CN102175266A (en) 2011-09-07
CN102175266B CN102175266B (en) 2012-09-19

Family

ID=44518476

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201110040473A Expired - Fee Related CN102175266B (en) 2011-02-18 2011-02-18 A Fault Diagnosis Method for Gyro Inertial Components of Moving Body

Country Status (1)

Country Link
CN (1) CN102175266B (en)

Cited By (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102645230A (en) * 2012-04-11 2012-08-22 中航捷锐(北京)光电技术有限公司 Fault detection method and device of optical fiber gyroscope
CN102735265A (en) * 2012-06-18 2012-10-17 北京控制工程研究所 Method for star sensor periodic fault detection based on gyro drift estimate value
CN103034232A (en) * 2012-11-30 2013-04-10 北京控制工程研究所 Automatic failure handling and protection method of deep space probe global navigation chart (GNC) system base on layered structure
CN103234553A (en) * 2013-03-29 2013-08-07 北京控制工程研究所 Fault diagnosis method for gyro measurement system
CN103697881A (en) * 2013-12-27 2014-04-02 北京航天时代光电科技有限公司 High-reliability redundant four-shaft optical fiber gyroscope inertia measurement device
CN104019831A (en) * 2014-06-20 2014-09-03 哈尔滨工业大学 Gyroscope fault diagnosis method based on EMD (Empirical Mode Decomposition) and entropy weight
CN104573248A (en) * 2015-01-16 2015-04-29 东南大学 EMD based fiber-optic gyroscope temperature drift multi-scale extreme learning machine training method
CN105043416A (en) * 2015-07-14 2015-11-11 哈尔滨工业大学 On-track fault diagnosis method of hemispherical resonance gyroscope combination
CN106643810A (en) * 2017-02-15 2017-05-10 上海航天控制技术研究所 Diagnosis method of measured data of gyroscope combination
CN106767898A (en) * 2016-11-17 2017-05-31 中国人民解放军国防科学技术大学 A kind of method for detecting measuring system of satellite attitude small fault
CN106840202A (en) * 2017-01-11 2017-06-13 东南大学 A kind of gyroscopic vibration signal extraction and compensation method
CN107356264A (en) * 2017-07-07 2017-11-17 上海航天控制技术研究所 A kind of isomery Gyro mutually examines method
CN111509443A (en) * 2020-04-30 2020-08-07 南京盟瑞自动化有限公司 Canned type high pressure connector convenient to quick installation
CN114690066A (en) * 2022-06-01 2022-07-01 深圳市明珞锋科技有限责任公司 Power supply abnormal output alarm calculation module
CN115059690A (en) * 2022-07-15 2022-09-16 中国人民解放军战略支援部队航天工程大学 An inclined three-orthogonal three-degree-of-freedom translation magnetic bearing

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6760664B1 (en) * 2001-06-25 2004-07-06 The United States Of America As Represented By The Administrator Of The National Aeronautics And Space Administration Autonomous navigation system based on GPS and magnetometer data
WO2007031409A1 (en) * 2005-09-12 2007-03-22 Siemens Vdo Automotive Ag Method and system for monitoring a sensor arrangement
CN101369897A (en) * 2008-07-31 2009-02-18 成都市华为赛门铁克科技有限公司 Method and equipment for detecting network attack
CN100491916C (en) * 2007-12-26 2009-05-27 北京控制工程研究所 A method for autonomous fault detection and recovery control during track change
CN101459561A (en) * 2009-01-09 2009-06-17 北京邮电大学 Apparatus and method for detecting SIP message flooding attack based on CUSUM algorithm

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6760664B1 (en) * 2001-06-25 2004-07-06 The United States Of America As Represented By The Administrator Of The National Aeronautics And Space Administration Autonomous navigation system based on GPS and magnetometer data
WO2007031409A1 (en) * 2005-09-12 2007-03-22 Siemens Vdo Automotive Ag Method and system for monitoring a sensor arrangement
CN100491916C (en) * 2007-12-26 2009-05-27 北京控制工程研究所 A method for autonomous fault detection and recovery control during track change
CN101369897A (en) * 2008-07-31 2009-02-18 成都市华为赛门铁克科技有限公司 Method and equipment for detecting network attack
CN101459561A (en) * 2009-01-09 2009-06-17 北京邮电大学 Apparatus and method for detecting SIP message flooding attack based on CUSUM algorithm

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
《中国惯性技术学报》 20080831 马静等 基于故障树分析的光纤陀螺用探测器组件可靠性分析 全文 1-5 第16卷, 第4期 *
《宇航学报》 20060930 贾鹏等 基于奇异值分解的冗余惯导系统故障诊断 全文 1-5 第27卷, 第5期 *
《系统仿真学报》 20060831 贾鹏等 基于冗余惯性组件故障诊断方法的比较研究 全文 1-5 第18卷, *

Cited By (27)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102645230B (en) * 2012-04-11 2015-06-24 中航捷锐(北京)光电技术有限公司 Fault detection method and device of optical fiber gyroscope
CN102645230A (en) * 2012-04-11 2012-08-22 中航捷锐(北京)光电技术有限公司 Fault detection method and device of optical fiber gyroscope
CN102735265A (en) * 2012-06-18 2012-10-17 北京控制工程研究所 Method for star sensor periodic fault detection based on gyro drift estimate value
CN102735265B (en) * 2012-06-18 2014-12-17 北京控制工程研究所 Method for star sensor periodic fault detection based on gyro drift estimate value
CN103034232A (en) * 2012-11-30 2013-04-10 北京控制工程研究所 Automatic failure handling and protection method of deep space probe global navigation chart (GNC) system base on layered structure
CN103034232B (en) * 2012-11-30 2015-04-22 北京控制工程研究所 Automatic failure handling and protection method of deep space probe global navigation chart (GNC) system base on layered structure
CN103234553A (en) * 2013-03-29 2013-08-07 北京控制工程研究所 Fault diagnosis method for gyro measurement system
CN103234553B (en) * 2013-03-29 2015-08-19 北京控制工程研究所 A kind of method for diagnosing faults of gyro measurement system
CN103697881B (en) * 2013-12-27 2016-09-21 北京航天时代光电科技有限公司 A kind of highly reliable redundancy-type four axle inertial measurement unit of optical fiber gyroscope
CN103697881A (en) * 2013-12-27 2014-04-02 北京航天时代光电科技有限公司 High-reliability redundant four-shaft optical fiber gyroscope inertia measurement device
CN104019831A (en) * 2014-06-20 2014-09-03 哈尔滨工业大学 Gyroscope fault diagnosis method based on EMD (Empirical Mode Decomposition) and entropy weight
CN104019831B (en) * 2014-06-20 2017-01-04 哈尔滨工业大学 Gyroscope method for diagnosing faults based on EMD and entropy weight
CN104573248A (en) * 2015-01-16 2015-04-29 东南大学 EMD based fiber-optic gyroscope temperature drift multi-scale extreme learning machine training method
CN105043416B (en) * 2015-07-14 2017-12-22 哈尔滨工业大学 A kind of hemispherical reso nance gyroscope combines on-orbit fault diagnostic method
CN105043416A (en) * 2015-07-14 2015-11-11 哈尔滨工业大学 On-track fault diagnosis method of hemispherical resonance gyroscope combination
CN106767898A (en) * 2016-11-17 2017-05-31 中国人民解放军国防科学技术大学 A kind of method for detecting measuring system of satellite attitude small fault
CN106767898B (en) * 2016-11-17 2019-04-09 中国人民解放军国防科学技术大学 A Method for Detecting Minor Faults in Satellite Attitude Measurement System
CN106840202B (en) * 2017-01-11 2020-02-18 东南大学 A kind of gyro vibration signal extraction and compensation method
CN106840202A (en) * 2017-01-11 2017-06-13 东南大学 A kind of gyroscopic vibration signal extraction and compensation method
CN106643810B (en) * 2017-02-15 2019-03-26 上海航天控制技术研究所 A kind of diagnostic method of pair of Gyro measurement data
CN106643810A (en) * 2017-02-15 2017-05-10 上海航天控制技术研究所 Diagnosis method of measured data of gyroscope combination
CN107356264A (en) * 2017-07-07 2017-11-17 上海航天控制技术研究所 A kind of isomery Gyro mutually examines method
CN107356264B (en) * 2017-07-07 2020-05-26 上海航天控制技术研究所 Combined diagnosis method for heterogeneous gyros
CN111509443A (en) * 2020-04-30 2020-08-07 南京盟瑞自动化有限公司 Canned type high pressure connector convenient to quick installation
CN114690066A (en) * 2022-06-01 2022-07-01 深圳市明珞锋科技有限责任公司 Power supply abnormal output alarm calculation module
CN115059690A (en) * 2022-07-15 2022-09-16 中国人民解放军战略支援部队航天工程大学 An inclined three-orthogonal three-degree-of-freedom translation magnetic bearing
CN115059690B (en) * 2022-07-15 2023-12-22 中国人民解放军战略支援部队航天工程大学 Oblique three-orthogonal three-degree-of-freedom translational magnetic bearing

Also Published As

Publication number Publication date
CN102175266B (en) 2012-09-19

Similar Documents

Publication Publication Date Title
CN102175266B (en) A Fault Diagnosis Method for Gyro Inertial Components of Moving Body
Wang et al. Real-time fault detection for UAV based on model acceleration engine
CN102176159A (en) Satellite attitude control system failure diagnosis device and method based on state observer and equivalent space
Wu et al. Fast linear quaternion attitude estimator using vector observations
CN107421534B (en) Redundant strapdown inertial navigation system multi-fault isolation method
CN103884359B (en) A kind of satellite gyroscope component fault diagnosis method based on pivot analysis algorithm
CN113311803B (en) On-orbit spacecraft flywheel fault detection method based on kernel principal component analysis
CN110196049A (en) The detection of four gyro redundance type Strapdown Inertial Navigation System hard faults and partition method under a kind of dynamic environment
D'Amato et al. Fault tolerant low cost imus for uavs
CN102819030B (en) Method for monitoring integrity of navigation system based on distributed sensor network
CN101697079A (en) Blind system fault detection and isolation method for real-time signal processing of spacecraft
Wan et al. Real-time fault-tolerant moving horizon air data estimation for the reconfigure benchmark
Törnqvist Statistical fault detection with applications to IMU disturbances
CN102661751A (en) Satellite gyroscope group fault detection, separation and estimation method based on equivalence relation and wavelet transform numerical differentiation
Khokhlov et al. Design of activity recognition systems with wearable sensors
Chen et al. On-line and non-invasive anomaly detection system for unmanned aerial vehicle
CN106742068B (en) A method of diagnosis satellite attitude control system unknown failure
Li et al. A data driven fault detection and isolation scheme for UAV flight control system
D’Amato et al. UKF-based fault detection and isolation algorithm for IMU sensors of Unmanned Underwater Vehicles
Gao et al. MEMS inertial sensor fault diagnosis using a cnn-based data-driven method
Zhao et al. Fault diagnosis of control moment gyroscope based on a new CNN scheme using attention-enhanced convolutional block
CN105203130B (en) A kind of Integrated Navigation Systems method for diagnosing faults based on information fusion
CN104571087A (en) Diagnostic determination method for spacecraft control system under influence of noise
CN115630273A (en) Method and system for real-time identification of working modal parameters of incremental time-varying structures
CN111076744B (en) A satellite sensor fault detection and positioning method based on self-encoding observer

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C14 Grant of patent or utility model
GR01 Patent grant
CF01 Termination of patent right due to non-payment of annual fee
CF01 Termination of patent right due to non-payment of annual fee

Granted publication date: 20120919