CN102169106A - 一种基于玻璃微管的单纳米孔传感器及其制造方法 - Google Patents

一种基于玻璃微管的单纳米孔传感器及其制造方法 Download PDF

Info

Publication number
CN102169106A
CN102169106A CN2010106039242A CN201010603924A CN102169106A CN 102169106 A CN102169106 A CN 102169106A CN 2010106039242 A CN2010106039242 A CN 2010106039242A CN 201010603924 A CN201010603924 A CN 201010603924A CN 102169106 A CN102169106 A CN 102169106A
Authority
CN
China
Prior art keywords
single nano
pore
fluid chamber
girder
semi
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN2010106039242A
Other languages
English (en)
Inventor
沙菁
陈云飞
张磊
倪中华
易红
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Southeast University
Original Assignee
Southeast University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Southeast University filed Critical Southeast University
Priority to CN2010106039242A priority Critical patent/CN102169106A/zh
Publication of CN102169106A publication Critical patent/CN102169106A/zh
Pending legal-status Critical Current

Links

Landscapes

  • Investigating Or Analyzing Materials By The Use Of Electric Means (AREA)

Abstract

本发明公开了一种基于玻璃微管的单纳米孔传感器,其特征在于,包括玻璃微管,其两端是呈锥形的流体室,中部是单纳米孔;用于检测单纳米孔内离子电流的电流表,其两端分别与两流体室相连接;用于给两流体室施加电压的电压源;和用于检测单纳米孔内离子电流变化的感应装置,感应装置包括悬臂梁、设置在悬臂梁一端的连杆和安装在悬臂梁另一端的弹簧,连杆的另一端安装一磁化小球,磁化小球位于单纳米孔的上方,弹簧的另一端设置一压电陶瓷;单纳米孔和两流体室中均设有电解液。本发明具有较低的水平噪音影响和较高的分辨率,且本发明采用的方法制备的单纳米孔的直径为1~100nm,适合于检测不同的介质。

Description

一种基于玻璃微管的单纳米孔传感器及其制造方法
技术领域
本发明涉及的是一种用于检测分子的装置及其制造方法,具体涉及的是一种基于玻璃微管的纳米传感器及其制造方法。
背景技术
目前单通道检测技术常用的检测方法是根据通道中的离子电流作为探测机理,通道中的电流仅为nA级甚至pA级。检测用的纳米通道为天然生物纳米通道或者人工制备的固态纳米孔,但是由于这些纳米孔(通道)的形状以及性质不同,如表面电荷密度等,这些因素会严重影响测量的精度,产生比较大的噪声不能获得很好的信噪比。目前研究表明当KCl浓度较高时,λ-DNA的物理占位将会引起溶液电阻增大,从而引起离子电流减小;当溶液浓度偏低时,溶液本身电阻偏大,λ-DNA分子的物理占位作用不大,而λ-DNA分子表面双电层内携带的电荷起着主导作用,引起离子电流增大。因此,当几何尺度与纳米通道相当的DNA通过纳米通道时,不仅应考虑生物分子的物理占位引起溶液电阻的变化,也应考虑生物分子表面的双电层与纳通道表面双电层的相互作用。但是目前还不能精确测量通道内部的电荷密度分布以及双电层厚度,阻碍了纳米通道技术的深入发展。
运动的电流会产生磁场,而每种生物分子带的电荷数量及其电荷分布是不同的。所以当生物分子在纳通道中运动时,由于生物电流产生的磁场也是一一对应的。对纳米通道内的生物分子进行离子电流的物理占位的检测,同时结合对生物磁场的检测以实现高精度单分子辨识。
发明内容
针对现有技术上存在的不足,本发明目的是在于提供一种具有低水平噪音影响和较高分辨率的基于玻璃微管的纳米传感器及其制造方法。
为了实现上述目的,本发明是通过如下的技术方案来实现:
本发明的一种基于玻璃微管的单纳米孔传感器,包括玻璃微管,其两端是呈锥形的流体室,中部是单纳米孔;用于检测单纳米孔内离子电流的电流表,其两端分别与两流体室相连接;用于给两流体室施加电压的电压源;和用于检测单纳米孔内离子电流变化的感应装置,感应装置包括悬臂梁、设置在悬臂梁一端的连杆和安装在悬臂梁另一端的弹簧,连杆的另一端安装一磁化小球,磁化小球位于单纳米孔的上方,弹簧的另一端设置一压电陶瓷;单纳米孔和两流体室中均设有电解液。本发明通过对离子电流的变化和生物电磁场的变化综合分析来辨识单纳米孔内通过的生物单分子,提高了本发明单纳米孔传感器的灵敏度。
上述单纳米孔的直径为1~100nm,适合不同介质的尺寸范围。
本发明的一种基于玻璃微管的单纳米孔传感器的制造方法,包括以下几个步骤:
(a)在玻璃微管内密封固态石蜡,然后对玻璃微管进行局部加热,使玻璃微管熔封,熔封的玻璃微管内部形成一个沙漏形的纳米通道;
(b)用丙酮去除纳米通道中的石蜡,并用砂轮磨削位于中部的纳米通道,得到一个单纳米孔,将位于单纳米孔两端的纳米通道作为两流体室,在单纳米孔和两流体室中装电解液;去除石蜡,使得单纳米孔具有统一而明确的材料特性,所以该单纳米孔具有较高的结构稳定性;
(c)在两流体室之间加电压源,将一电流表的两端分别与两流体室相连接;
(d)在单纳米孔的外侧安装一悬臂梁,在悬臂梁的一端安装一连杆,在悬臂梁的另一端安装一弹簧,在连杆的另一端安装一位于单纳米孔上方的磁化小球,在弹簧的另一端连接一压电陶瓷。
本发明通过对离子电流的变化和生物电磁场的变化综合分析来辨识单纳米孔内通过的生物单分子,提高了本发明单纳米孔传感器的灵敏度;采用本发明的方法制备的单纳米孔的直径为1~100nm,适合于检测不同的介质,且制得的单纳米孔具有结构强度高、信噪比较低和灵敏度较高等优点;且本发明的方法简单,可以大大的降低传感器的制造成本。
附图说明
下面结合附图和具体实施方式来详细说明本发明;
图1为本发明的结构示意图。
具体实施方式
为使本发明实现的技术手段、创作特征、达成目的与功效易于明白了解,下面结合具体实施方式,进一步阐述本发明。
本发明的基于玻璃微管的单纳米孔传感器包括玻璃微管1、电流表10和用于检测单纳米孔3内离子电流变化的感应装置。
其中,玻璃微管1两端是呈锥形的流体室2,中部是单纳米孔3,两流体室2是通过单纳米孔3相连接;电流表10用于检测单纳米孔3内的离子电流,电流表10的两端分别与两流体室2相连接,两流体室2通过电压源施加电压;感应装置设置在单纳米孔3的上侧,感应装置包括悬臂梁5、设置在悬臂梁5左端的连杆7和安装在悬臂梁5右端的弹簧6,连杆7的底端安装一磁化小球8,磁化小球8位于单纳米孔3的上方,弹簧6的底端设置一压电陶瓷9;单纳米孔3和两流体室2中均设有电解液。
本发明通过被测生物单分子4通过单纳米孔3时,所产生的电磁效应来检测被测的生物单分子4。
本发明的基于玻璃微管的单纳米孔传感器的制造方法,包括以下几个步骤:
(a)在玻璃微管1内放入少量的固态石蜡,使固态石蜡均匀地分布在玻璃微管1的内壁上,然后在玻璃微管1的中间位置进行局部加热,使玻璃微管1熔封,此时,熔封的玻璃微管1内的压强大于标准压强,体积受限的气态石蜡具有抵抗压缩的趋势,石蜡形成物理占位,此时,熔融态的玻璃微管1包覆石蜡形成一个沙漏形(两头大中间小)的纳米通道;
(b)用化学溶解的方法,去除石蜡,实现纳米通道的洞通,再用金刚石砂轮磨削位于中部的纳米通道,此时,得到一个直径为1~100nm单纳米孔3,将位于单纳米孔3两端的纳米通道作为两流体室2,即两流体室2通过单纳米孔3相连接,在单纳米孔3和两流体室2中均装电解液,在左端的流体室2内添加需要检测的介质;去除石蜡,使得单纳米孔3具有统一而明确的材料特性,所以该单纳米孔3具有较高的结构稳定性;
(c)用一电流表10检测单纳米孔3内的离子电流,将电流表10的两端分别与两流体室2相连接,在两流体室2之间加电压源,由于生物单分子4在溶液中带净电荷,受电场驱动产生运动;如果待辨识的生物单分子4直径与单纳米孔3的直径接近时,生物单分子4通过单纳米孔3时,由于生物单分子4的物理占位将引起离子电流的微弱变化,同时离子电流的变化必将引起周围磁场的变化。
(d)参见图1,在单纳米孔3的上侧安装一用于检测单纳米孔3内离子电流变化所引起磁场变化的感应装置;感应装置包括一灵敏度极高的悬臂梁5、安装在悬臂梁5左端的连杆7和安装在悬臂梁5右端的弹簧6,一磁化小球8粘在连杆7的底端,且磁化小球8位于单纳米孔3的上方,在弹簧6的底端连接一压电陶瓷9;磁场的变化将会引起磁化小球8的微位移,使得悬臂梁5会发生形变,悬臂梁5的微变形则通过悬臂梁5右端的弹簧6变化来检测,而弹簧6变化则可利用压电陶瓷9来检测。
本发明通过对离子电流的变化和生物电磁场的变化综合分析来辨识单纳米孔3内通过的生物单分子4,提高了本发明单纳米孔传感器的灵敏度;采用本发明的方法制备的单纳米孔3的直径为1~100nm,适合于检测不同的介质,且制得的单纳米孔3具有结构强度高、信噪比较低和灵敏度较高等优点;且本发明的方法简单,可以大大的降低传感器的制造成本。
以上显示和描述了本发明的基本原理和主要特征和本发明的优点。本行业的技术人员应该了解,本发明不受上述实施例的限制,上述实施例和说明书中描述的只是说明本发明的原理,在不脱离本发明精神和范围的前提下,本发明还会有各种变化和改进,这些变化和改进都落入要求保护的本发明范围内。本发明要求保护范围由所附的权利要求书及其等效物界定。

Claims (3)

1.一种基于玻璃微管的单纳米孔传感器,其特征在于,包括
玻璃微管(1),其两端是呈锥形的流体室(2),中部是单纳米孔(3);
用于检测所述单纳米孔(3)内离子电流的电流表(10),其两端分别与两流体室(2)相连接;
用于给两流体室(2)施加电压的电压源;和
用于检测所述单纳米孔(3)内离子电流变化的感应装置,所述感应装置包括悬臂梁(5)、设置在悬臂梁(5)一端的连杆(7)和安装在悬臂梁(5)另一端的弹簧(6),所述连杆(7)的另一端安装一磁化小球(8),所述磁化小球(8)位于单纳米孔(3)的上方,所述弹簧(6)的另一端设置一压电陶瓷(9);
所述单纳米孔(3)和两流体室(2)中均设有电解液。
2.根据权利要求1所述的基于玻璃微管的单纳米孔传感器,其特征在于,所述单纳米孔(3)的直径为1~100nm。
3.权利要求1或2所述的基于玻璃微管的单纳米孔传感器的制造方法,包括以下几个步骤:
(a)在玻璃微管(1)内密封固态石蜡,然后对玻璃微管(1)进行局部加热,使玻璃微管(1)熔封,熔封的玻璃微管(1)内部形成一个沙漏形的纳米通道;
(b)用丙酮去除纳米通道中的石蜡,并用砂轮磨削位于中部的纳米通道,得到一个单纳米孔(3),将位于单纳米孔(3)两端的纳米通道作为两流体室(2),在单纳米孔(3)和两流体室(2)中装电解液;
(c)在两流体室(2)之间加电压源,将一电流表(10)的两端分别与两流体室(2)相连接;
(d)在单纳米孔(3)的外侧安装一悬臂梁(5),在悬臂梁(5)的一端安装一连杆(7),在悬臂梁(5)的另一端安装一弹簧(6),在连杆(7)的另一端安装一位于单纳米孔(3)上方的磁化小球(8),在弹簧(6)的另一端连接一压电陶瓷(9)。
CN2010106039242A 2010-12-22 2010-12-22 一种基于玻璃微管的单纳米孔传感器及其制造方法 Pending CN102169106A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN2010106039242A CN102169106A (zh) 2010-12-22 2010-12-22 一种基于玻璃微管的单纳米孔传感器及其制造方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN2010106039242A CN102169106A (zh) 2010-12-22 2010-12-22 一种基于玻璃微管的单纳米孔传感器及其制造方法

Publications (1)

Publication Number Publication Date
CN102169106A true CN102169106A (zh) 2011-08-31

Family

ID=44490344

Family Applications (1)

Application Number Title Priority Date Filing Date
CN2010106039242A Pending CN102169106A (zh) 2010-12-22 2010-12-22 一种基于玻璃微管的单纳米孔传感器及其制造方法

Country Status (1)

Country Link
CN (1) CN102169106A (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110346579A (zh) * 2019-07-24 2019-10-18 中国科学院重庆绿色智能技术研究院 基于纳米孔的体外hiv蛋白酶检测仪器及方法

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20080121534A1 (en) * 2006-05-05 2008-05-29 University Of Utah Research Foundation Nanopore electrode, nanopore membrane, methods of preparation and surface modification, and use thereof
CN101393090A (zh) * 2007-06-22 2009-03-25 索尼德国有限责任公司 用来处理分析物的设备及其使用方法
CN101516512A (zh) * 2006-07-19 2009-08-26 生物纳米芯股份有限公司 纳米口装置阵列:它们的制备以及在大分子分析中的应用
WO2009155423A1 (en) * 2008-06-18 2009-12-23 Electronic Bio Sciences, Llc System and method for increasing polymer/nanopore interactions
US20100038243A1 (en) * 2006-09-07 2010-02-18 White Henry S Nanopore based ion-selective electrodes
US20100072080A1 (en) * 2008-05-05 2010-03-25 The Regents Of The University Of California Functionalized Nanopipette Biosensor
CN201917552U (zh) * 2010-12-22 2011-08-03 东南大学 一种基于玻璃微管的单纳米孔传感器

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20080121534A1 (en) * 2006-05-05 2008-05-29 University Of Utah Research Foundation Nanopore electrode, nanopore membrane, methods of preparation and surface modification, and use thereof
CN101516512A (zh) * 2006-07-19 2009-08-26 生物纳米芯股份有限公司 纳米口装置阵列:它们的制备以及在大分子分析中的应用
US20100038243A1 (en) * 2006-09-07 2010-02-18 White Henry S Nanopore based ion-selective electrodes
CN101393090A (zh) * 2007-06-22 2009-03-25 索尼德国有限责任公司 用来处理分析物的设备及其使用方法
US20100072080A1 (en) * 2008-05-05 2010-03-25 The Regents Of The University Of California Functionalized Nanopipette Biosensor
WO2009155423A1 (en) * 2008-06-18 2009-12-23 Electronic Bio Sciences, Llc System and method for increasing polymer/nanopore interactions
CN201917552U (zh) * 2010-12-22 2011-08-03 东南大学 一种基于玻璃微管的单纳米孔传感器

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110346579A (zh) * 2019-07-24 2019-10-18 中国科学院重庆绿色智能技术研究院 基于纳米孔的体外hiv蛋白酶检测仪器及方法

Similar Documents

Publication Publication Date Title
Lai et al. Molecular imprinting polymers electrochemical sensor based on AuNPs/PTh modified GCE for highly sensitive detection of carcinomaembryonic antigen
Xu et al. Piezoresistive microcantilevers for humidity sensing
CN201917552U (zh) 一种基于玻璃微管的单纳米孔传感器
US7777476B2 (en) Dynamic modulation for multiplexation of microfluidic and nanofluidic based biosensors
Chen et al. Electrochemical methods for detection of biomarkers of Chronic Obstructive Pulmonary Disease in serum and saliva
Ma et al. Ion accumulation and migration effects on redox cycling in nanopore electrode arrays at low ionic strength
US20100025263A1 (en) Nanopore particle analyzer, method of preparation and use thereof
KR100958307B1 (ko) 나노채널이 집적된 3차원 금속 나노와이어 갭 전극을포함하는 바이오센서, 그 제작방법 및 상기 바이오센서를포함하는 바이오 디스크 시스템
Hyun et al. Probing access resistance of solid‐state nanopores with a scanning‐probe microscope tip
US9435798B2 (en) Heat-transfer resistance based analysis of bioparticles
WO2009138760A1 (en) Conductivity sensor device comprising diamond film with at least one nanopore or micropore
GB2473769A (en) Nanopore membrane
US9297776B2 (en) Probe
JP2013539862A (ja) 膜に結合した磁性ナノ粒子を検出する方法
JP2008546995A (ja) 統合到達時間測定を用いた迅速磁気バイオセンサ
KR20170118766A (ko) 단일-세포 세포내 나노-ph 프로브
Zhu et al. Cooperation mode of outer surface and inner space of nanochannel: separation-detection system based on integrated nanochannel electrode for rapid and facile detection of Salmonella
CN108872007B (zh) 一种用于检测密度的双块环形磁铁磁悬浮检测方法
JP2013518268A (ja) アパーチャにおける粒子流れの制御
Lim et al. A conceptual review of nanosensors
Lee et al. High-performance humidity sensors utilizing dopamine biomolecule-coated gold nanoparticles
Baghbaderani et al. A Review on Electrochemical Sensing of Cancer Biomarkers Based on Nanomaterial-Modified Systems
CN102169106A (zh) 一种基于玻璃微管的单纳米孔传感器及其制造方法
CN103293309A (zh) 用于肿瘤标志物检测的碳纳米管微悬臂梁生物传感器
Lin et al. Selective fabrication of nanowires with high aspect ratios using a diffusion mixing reaction system for applications in temperature sensing

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C02 Deemed withdrawal of patent application after publication (patent law 2001)
WD01 Invention patent application deemed withdrawn after publication

Application publication date: 20110831