CN102167336B - Preparation method of mesoporous silicon dioxide hollow sphere - Google Patents

Preparation method of mesoporous silicon dioxide hollow sphere Download PDF

Info

Publication number
CN102167336B
CN102167336B CN2011100692047A CN201110069204A CN102167336B CN 102167336 B CN102167336 B CN 102167336B CN 2011100692047 A CN2011100692047 A CN 2011100692047A CN 201110069204 A CN201110069204 A CN 201110069204A CN 102167336 B CN102167336 B CN 102167336B
Authority
CN
China
Prior art keywords
preparation
mesoporous silicon
silicon oxide
hollow ball
oxide hollow
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
CN2011100692047A
Other languages
Chinese (zh)
Other versions
CN102167336A (en
Inventor
郑南峰
方晓亮
陈诚
李悦
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Xiamen University
Original Assignee
Xiamen University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Xiamen University filed Critical Xiamen University
Priority to CN2011100692047A priority Critical patent/CN102167336B/en
Publication of CN102167336A publication Critical patent/CN102167336A/en
Application granted granted Critical
Publication of CN102167336B publication Critical patent/CN102167336B/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Silicon Compounds (AREA)
  • Solid-Sorbent Or Filter-Aiding Compositions (AREA)
  • Silicates, Zeolites, And Molecular Sieves (AREA)

Abstract

The invention provides a preparation method of a mesoporous silicon dioxide hollow sphere, relates to a silicon dioxide hollow sphere, and provides a preparation method of a mesoporous silicon dioxide hollow sphere. The method comprises the steps of: adding a silicon dioxide sphere into water, and ultrasonically processing to obtain silicon dioxide sphere dispersion solution; adding a cationic surface active agent into the obtained silicon dioxide sphere dispersion solution, adding an alkali source, and etching in a stirring way; and collecting, cleaning and drying a precipitate after etching to obtain white powder, and removing the cationic surface active agent out of the white powder to obtain the mesoporous silicon dioxide hollow sphere. The silicon dioxide sphere is taken as a template, and the mesoporous silicon dioxide hollow sphere is prepared by means of carrying out alkali etching under the effect of the cationic surface active agent. The preparation method has the advantages of being strong in operability, low in cost, simple in reaction device, mild in preparation processing condition, cleaning and pollution-free in reaction processe, and high in reaction efficiency and the like. Compared with other synthesis method, the preparation method is good in industrial application prospect.

Description

A kind of preparation method of mesoporous silicon oxide hollow ball
Technical field
The present invention relates to hollow silica ball, particularly a kind of preparation method of mesoporous silicon oxide hollow ball.
Background technology
Material with hollow structure all has the potential using value because of unique character such as its lower density and higher surface area in many fields such as catalysis, low density structures material, pharmaceutical carrier, chemical sensor and electrode materialss.In numerous hollow materials; The mesoporous silicon oxide hollow ball is because the character such as mesopore orbit that have high-specific surface area, favorable mechanical and thermostability, hypotoxicity, high-biocompatibility, high medicine stowage capacity and can be used as the transmission species; It has important researching value and application prospect in confinement catalysis and drug delivery field, receives investigator's extensive concern.
The preparation method of existing mesoporous silicon oxide hollow ball mainly contains:
(1) die version method (1, W.R.Zhao, M.D.Lang, Y.S.Li; L.Lia, J.L.Shi, J.Mater.Chem.; 2009,19,2778-2783); Utilize organic micro-/ nano ball (like the PS ball) or oxide compound micro-/ nano particle as template, form the layer of silicon dioxide shell in the common hydrolysis of template surface, organic constituent in the shell is removed the shell that just can obtain containing mesopore orbit through high-temperature heat treatment again through tetraethoxysilance and octadecyl Trimethoxy silane; Carry out the removing template operation then, just can obtain the mesoporous silicon oxide hollow ball.Wherein, if template adopts organic micro-/ nano ball, heat treated process can be removed template in the lump; But, then need carry out s.t. template is removed if use oxide compound micro-/ nano particle as template.
(2) soft mode version method (2, Z.G.Feng, Y.S.Li, D.C.Niu, L.Li; W.R.Zhao, H.R.Chen, L.Li, J.H.Gao; M.L.Ruan, J.L.Shi, Chem.Commun., 2008; 2629-2631), utilize micella that tensio-active agent forms to carry out the silica spheres of the hybrid that the hydrolysis of organosilane forms as template, wherein organic constituent is removed again, just can obtain the mesoporous silicon oxide hollow ball.
All there is inevitable defective in above compound method; For example: though use hard template method can access size homogeneous and adjustable mesoporous silicon oxide hollow ball through the synthetic of control template, the postprocessing working procedures of this method is often too loaded down with trivial details and energy consumption is big; In addition, employed octadecyl Trimethoxy silane costs an arm and a leg.On the other hand; Though use soft template method can reduce the energy consumption (as utilizing abstraction technique) of aftertreatment; But because the micella that soft template method uses lacks effective control device usually, the often not enough homogeneous of the mesoporous silicon oxide hollow ball size that therefore obtains by this method; In addition, soft template method can need some expensive tensio-active agents usually.Therefore in the application of reality, existing hard template method and soft template method are unfavorable for industrialized a large amount of synthesizing because operating process is loaded down with trivial details relatively higher with cost, have therefore limited their application.
Summary of the invention
The objective of the invention is to problem, a kind of preparation method of mesoporous silicon oxide hollow ball is provided to the compound method existence of existing mesoporous silicon oxide hollow ball.
The present invention includes following steps:
1) silica spheres is added in the entry, ultrasonic back obtains the silica spheres dispersion liquid;
2) cats product is added the silica spheres dispersion liquid of step 1) gained, add alkali source again, carry out etching;
3) etching intact back collecting precipitation and clean drying obtain white powder, and decationize tensio-active agent from white powder promptly gets the mesoporous silicon oxide hollow ball.
In step 1), the mass ratio of said silica spheres and water can be 1: (100~200); Said silica spheres can adopt classical
Figure BDA0000051229180000021
method synthetic; The said ultransonic time can be 10~30min, is preferably 30min.
In step 2) in; The mass ratio of said cats product and silica spheres can be 1: (20~25); Said cats product tensio-active agent can be the quaternary ammonium salt of chain alkyl etc., is preferably cetyl trimethylammonium bromide or palmityl trimethyl ammonium chloride etc.; The mass ratio of said alkali source and said silica spheres can be 2: (0.83~1.66); Said alkali source can be yellow soda ash or sodium hydroxide etc.; The condition of said etching can be: 30~90 ℃ of etching temperatures, and etching time 1~48h, preferred etching temperature is 35 ℃, etching time is 24h.
In step 3), said cleaning can adopt water and ethanol to clean successively 1~3 time; Said decationize tensio-active agent can adopt extractions such as acetone or ethanol solution hydrochloride.
The mesoporous silica spheres of the present invention's preparation has hollow structure, and its shell has pore space structure simultaneously, and compare its size slightly increases with silica spheres.The mesoporous silicon oxide hollow ball has the absorption behavior of typical mesoporous material, and the specific surface of the mesoporous silicon oxide hollow ball through gained after the etching can reach 400~552m 2/ g; The mesoporous silicon oxide hollow ball of gained has the homogeneous mesopore orbit, and (its aperture can be 2.1~2.5nm), and its pore volume can reach 0.39~0.6cm 3/ g.
The present invention as template, prepares mesoporous silicon oxide hollow ball through its alkaline etching under the effect of cats product with silica spheres.Method with other mesoporous silicon oxide hollow balls the invention has the advantages that: (1) the present invention uses cheap silica spheres as template, and does not need the mesoporous silicon layer of deposition on template in advance.(2) compare with traditional template, the core/shell type silica spheres that is surrounded by metal or metal oxide particle in the present invention can select for use can be easy to obtain the nuclear/hollow shell stratotype dioxide pellet of interior genus covered with gold leaf or metal oxide particle as template.(3) the present invention can select gentle solvent extration to remove tensio-active agent; The hydroxy functional group that can keep mesoporous silicon oxide hollow ball surface effectively; This just makes it possible to that it is further carried out surface or duct and modifies, and progressive one obtains the silica spheres of functionalization.(4) through the mesoporous silicon oxide hollow ball of the present invention's preparation, its pore passage structure is comparatively orderly, and good using value is arranged.(5) the present invention have that workable, with low cost, reaction unit is simple, preparation process condition gentleness, reaction process cleanliness without any pollution, reaction efficiency advantages of higher, comparing other compound methods has favorable industrial application prospect.
Description of drawings
Fig. 1 is the SEM figure of the mesoporous silicon oxide hollow ball of the embodiment of the invention 1 preparation.In Fig. 1, scale is 500nm.
Fig. 2 is the EDX figure of the mesoporous silicon oxide hollow ball of the embodiment of the invention 1 preparation.In Fig. 2, X-coordinate is energy (kV), and ordinate zou is intensity (a.u.).
Fig. 3 is the TEM figure of the mesoporous silicon oxide hollow ball of the embodiment of the invention 1 preparation.In Fig. 3, a is the TEM figure of used silica spheres masterplate, and scale is 200nm; B is the low power TEM figure of mesoporous silicon oxide hollow ball, and scale is 200nm; C is the high power TEM figure of single mesoporous silicon oxide hollow ball, and scale is 50nm.
Fig. 4 is the nitrogen adsorption graphic representation of the embodiment of the invention 1.In Fig. 4, X-coordinate is relative pressure (P/Po), and ordinate zou is adsorptive capacity (cm 3g -1STP); Curve I is a silica spheres, and curve II is the mesoporous silicon oxide hollow ball.
Fig. 5 is the pore size distribution curve figure of the embodiment of the invention 1.In Fig. 5, X-coordinate is aperture (nm), and ordinate zou is loading capacity (cm 3g -1Nm -1); Curve I is a silica spheres, and curve II is the mesoporous silicon oxide hollow ball.
Fig. 6 is the SEM figure of the mesoporous silicon oxide hollow ball of the embodiment of the invention 2 preparations.In Fig. 6, a is low power SEM figure, and scale is 2 μ m; B is high power SEM figure, and scale is 500nm.
Embodiment
Combine accompanying drawing that the present invention is described further through embodiment below.
Embodiment 1
1) in vial, the 50mg silica spheres is added in the 10mL water, and ultrasonic 30min.
2) the 12.5mg CTAB is added in the vial in the step 1), adds the 212mg soda ash light behind the stirring 30min, continue to stir 1min again, stirring etching 24h under 35 ℃ at room temperature leaves standstill cooling at last then.
3) extracting waste deposition water and ethanol clean 2 times repeatedly, dry naturally then, obtain white powder.
4) after being removed, the cats product that uses promptly gets title product from white powder.
Has hollow structure (referring to Fig. 1) through resulting product after the silica spheres etching under the cats product participation; Resulting product consists of Si and two kinds of elements of O (referring to Fig. 2), and the composition of this explanation product is compared with employed silica spheres, does not change; Behind over etching, obtain product and hollow structure occurred, its shell has pore space structure (referring to Fig. 3) simultaneously, and compare its size slightly increases with silica spheres.This is because add the effect of cats product and the component of dissolved silica spheres, on template surface, deposits the meso-porous titanium dioxide silicon layer.Its shell of resulting product has typically " worm hole " type duct; Nitrogen adsorption curve (referring to Fig. 4,5) based on silicon-dioxide ball template and mesoporous silicon oxide hollow ball; Can find out that the mesoporous silicon oxide hollow ball has the absorption behavior of typical mesoporous material, can get its specific surface of silicon-dioxide ball template through the calculating of BET method and be merely 22m 2/ g, and the specific surface of the mesoporous silicon oxide hollow ball through gained after the etching can reach 552m 2/ g; Can see that through the calculating of BJH method the silicon-dioxide ball template is not having mesopore orbit, and the mesoporous silicon oxide hollow ball of gained has homogeneous mesopore orbit (its aperture is 2.5nm), its pore volume has reached 0.39cm 3/ g.
Embodiment 2
1) in vial, the 50mg silica spheres is added in the 10mL water, and ultrasonic 30min.
2) 10mg cetyl trimethyl ammonia chloride is added in the vial in the step 1), adds the 212mg soda ash light behind the stirring 30min, continue to stir 1min again, stirring etching 24h under 35 ℃ at room temperature leaves standstill cooling at last then.
3) extracting waste deposition water and ethanol clean 2 times repeatedly, dry naturally then, obtain white powder.
4) after being removed, the cats product that uses promptly gets title product from white powder.
Select for use the cetyl trimethyl ammonia chloride can obtain high-quality mesoporous silicon oxide hollow ball (referring to Fig. 6) too.
Embodiment 3
1) in vial, the 50mg silica spheres is added in the 10mL water, and ultrasonic 30min.
2) 10mg dodecyl trimethylammonium amine bromide is added in the vial in the step 1), adds the 212mg soda ash light behind the stirring 30min, continue to stir 1min again, stirring etching 24h under 35 ℃ at room temperature leaves standstill cooling at last then.
3) extracting waste deposition water and ethanol clean 2 times repeatedly, dry naturally then, obtain white powder.
4) after being removed, the cats product that uses promptly gets title product from white powder.
Embodiment 4
1) in vial, the 50mg silica spheres is added in the 10mL water, and ultrasonic 30min.
2) 10mg cetyl trimethyl ammonia chloride is added in the vial in the step 1), adds the 212mg soda ash light behind the stirring 30min, continue to stir 1min again, stirring etching 1h under 90 ℃ at room temperature leaves standstill cooling at last then.
3) extracting waste deposition water and ethanol clean 1 time repeatedly, dry naturally then, obtain white powder.
4) after being removed, the cats product that uses promptly gets title product from white powder.
Embodiment 5
1) in vial, the 50mg silica spheres is added in the 10mL water, and ultrasonic 30min.
2) 6mg cetyl trimethyl ammonia chloride is added in the vial in the step 1), adds the 156mg soda ash light behind the stirring 30min, continue to stir 1min again, stirring etching 2h under 70 ℃ at room temperature leaves standstill cooling at last then.
3) extracting waste deposition water and ethanol clean 2 times repeatedly, dry naturally then, obtain white powder.
4) after being removed, the cats product that uses promptly gets title product from white powder.
Embodiment 6
1) in vial, the 50mg silica spheres is added in the 10mL water, and ultrasonic 30min.
2) 12.5mg cetyl trimethyl ammonia chloride is added in the vial in the step 1), adds the 106mg soda ash light behind the stirring 30min, continue to stir 1min again, stirring etching 48h under 35 ℃ at room temperature leaves standstill cooling at last then.
3) extracting waste deposition water and ethanol clean 2 times repeatedly, dry naturally then, obtain white powder.
4) after being removed, the cats product that uses promptly gets title product from white powder.
Embodiment 7
1) in vial, the 50mg silica spheres is added in the 10mL water, and ultrasonic 10min.
2) 10mg cetyl trimethyl ammonia chloride is added in the vial in the step 1), adds the 212mg soda ash light behind the stirring 30min, continue to stir 1min again, stirring etching 24h under 35 ℃ at room temperature leaves standstill cooling at last then.
3) extracting waste deposition water and ethanol clean 2 times repeatedly, dry naturally then, obtain white powder.
4) after being removed, the cats product that uses promptly gets title product from white powder.
Embodiment 8
1) in vial, the 50mg silica spheres is added in the 10mL water, and ultrasonic 20min.
2) 6mg cetyl trimethyl ammonia chloride is added in the vial in the step 1), adds the 156mg soda ash light behind the stirring 20min, continue to stir 1min again, stirring etching 48h under 35 ℃ at room temperature leaves standstill cooling at last then.
3) extracting waste deposition water and ethanol clean 2 times repeatedly, dry naturally then, obtain white powder.
4) after being removed, the cats product that uses promptly gets title product from white powder.

Claims (11)

1. the preparation method of a mesoporous silicon oxide hollow ball is characterized in that may further comprise the steps:
1) silica spheres is added in the entry, ultrasonic back obtains the silica spheres dispersion liquid;
2) cats product is added the silica spheres dispersion liquid of step 1) gained, add alkali source again, carry out etching;
3) etching intact back collecting precipitation and clean drying obtain white powder, and decationize tensio-active agent from white powder promptly gets the mesoporous silicon oxide hollow ball.
2. the preparation method of a kind of mesoporous silicon oxide hollow ball as claimed in claim 1 is characterized in that in step 1), and the mass ratio of said silica spheres and water is 1: 100~200.
3. the preparation method of a kind of mesoporous silicon oxide hollow ball as claimed in claim 1 is characterized in that in step 1), and the said ultransonic time is 10~30min.
4. the preparation method of a kind of mesoporous silicon oxide hollow ball as claimed in claim 1 is characterized in that in step 2) in, the mass ratio of said cats product and silica spheres is 1: (20~25).
5. the preparation method of a kind of mesoporous silicon oxide hollow ball as claimed in claim 1 is characterized in that in step 2) in, said cats product tensio-active agent is the quaternary ammonium salt of chain alkyl.
6. the preparation method of a kind of mesoporous silicon oxide hollow ball as claimed in claim 5 is characterized in that said cats product tensio-active agent is cetyl trimethylammonium bromide or palmityl trimethyl ammonium chloride.
7. the preparation method of a kind of mesoporous silicon oxide hollow ball as claimed in claim 1 is characterized in that in step 2) in, the mass ratio of said alkali source and said silica spheres is 2: (0.83~1.66).
8. the preparation method of a kind of mesoporous silicon oxide hollow ball as claimed in claim 7 is characterized in that said alkali source is yellow soda ash or sodium hydroxide.
9. the preparation method of a kind of mesoporous silicon oxide hollow ball as claimed in claim 1 is characterized in that in step 2) in, the condition of said stirring etching is: 30~90 ℃ of temperature, time 1~48h.
10. the preparation method of a kind of mesoporous silicon oxide hollow ball as claimed in claim 9 is characterized in that the condition of said stirring etching is: 35 ℃ of temperature; Time 24h.
11. the preparation method of a kind of mesoporous silicon oxide hollow ball as claimed in claim 1 is characterized in that in step 3), said decationize tensio-active agent is to adopt acetone or ethanol solution hydrochloride extraction.
CN2011100692047A 2011-03-21 2011-03-21 Preparation method of mesoporous silicon dioxide hollow sphere Expired - Fee Related CN102167336B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN2011100692047A CN102167336B (en) 2011-03-21 2011-03-21 Preparation method of mesoporous silicon dioxide hollow sphere

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN2011100692047A CN102167336B (en) 2011-03-21 2011-03-21 Preparation method of mesoporous silicon dioxide hollow sphere

Publications (2)

Publication Number Publication Date
CN102167336A CN102167336A (en) 2011-08-31
CN102167336B true CN102167336B (en) 2012-08-15

Family

ID=44488691

Family Applications (1)

Application Number Title Priority Date Filing Date
CN2011100692047A Expired - Fee Related CN102167336B (en) 2011-03-21 2011-03-21 Preparation method of mesoporous silicon dioxide hollow sphere

Country Status (1)

Country Link
CN (1) CN102167336B (en)

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102491349B (en) * 2011-12-08 2013-08-21 厦门大学 Preparation method of hollow mesoporous silica nanospheres
CN102616792A (en) * 2012-03-26 2012-08-01 辽宁工业大学 Method for preparing hollow spherical silicon dioxide with mesoporous shell
CN103342368B (en) * 2013-06-20 2014-12-17 广州鹏辉能源科技股份有限公司 Preparation method for hollow silica microspheres
CN106044790B (en) * 2016-05-31 2018-01-09 安徽省含山县锦华氧化锌厂 A kind of method of preparing white carbon black by precipitation method
CN107275101B (en) * 2017-08-15 2018-08-31 中国工程物理研究院激光聚变研究中心 The method that joint activation prepares bamboo charcoal based super capacitor electrode material
US11130679B2 (en) 2018-03-06 2021-09-28 University Of Utah Research Foundation Biodegradable hollow nanoparticles and methods and apparatus for manufacturing the same
CN109581579B (en) * 2019-01-31 2021-03-05 京东方科技集团股份有限公司 Light guide plate and manufacturing method thereof, backlight module and display panel
CN110771623B (en) * 2019-10-14 2021-10-26 东华大学 Preparation method of mesoporous silica long-acting antibacterial nanomaterial with high selenium loading
CN113200550B (en) * 2021-06-02 2021-11-19 宁波卿甬新材料科技有限公司 Preparation method of monodisperse mesoporous silica hollow sphere material

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2007122930A1 (en) * 2006-04-20 2007-11-01 Asahi Glass Company, Limited Core-shell silica and method for producing same
CN101121112A (en) * 2007-05-17 2008-02-13 浙江大学 Method for preparing hollow microsphere with hydrogel microsphere as stencil
US7332264B2 (en) * 1999-04-05 2008-02-19 Stc.Unm Photo-definable self-assembled materials

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7332264B2 (en) * 1999-04-05 2008-02-19 Stc.Unm Photo-definable self-assembled materials
WO2007122930A1 (en) * 2006-04-20 2007-11-01 Asahi Glass Company, Limited Core-shell silica and method for producing same
CN101121112A (en) * 2007-05-17 2008-02-13 浙江大学 Method for preparing hollow microsphere with hydrogel microsphere as stencil

Also Published As

Publication number Publication date
CN102167336A (en) 2011-08-31

Similar Documents

Publication Publication Date Title
CN102167336B (en) Preparation method of mesoporous silicon dioxide hollow sphere
Liu et al. Novel CoS2/MoS2@ Zeolite with excellent adsorption and photocatalytic performance for tetracycline removal in simulated wastewater
CN102153094B (en) Method for preparing ordered mesoporous hollow silica spheres
Liu et al. The effective adsorption of tetracycline onto MoS2@ Zeolite-5: adsorption behavior and interfacial mechanism
Wang et al. Chemical‐template synthesis of micro/nanoscale magnesium silicate hollow spheres for waste‐water treatment
CN101205420B (en) Magnetic inorganic nano-particle/ordered meso-porous silica core-shell microspheres and preparation thereof
CN102019431B (en) Metallic nano cluster/silicon dioxide hollow nuclear shell structured nanoparticles and preparation method thereof
CN104724734B (en) A kind of manufacture lightweight, high-specific surface area, the method for bouquet type nano-sized magnesium hydroxide
Hasan et al. Effective removal of Pb (II) by low-cost fibrous silica KCC-1 synthesized from silica-rich rice husk ash
CN103039521B (en) Method for preparing antibacterial powder loaded with monodisperse silver nanometer mesoporous silica
CN104707542B (en) A kind of photochemical catalyst/SiO2aerogel composite and preparation method thereof
CN103466702B (en) Method for preparing porous bismuth oxide nano-material without template
CN102180515B (en) Preparation method for nano titanium dioxide with high visible light catalytic activity and water dispersion thereof
CN103500622A (en) Magnetism inorganic nanoparticle/ordered mesopore silica nuclear shell composite microsphere and preparing method thereof
CN101559952A (en) Preparation method of nano-scale mesoporous silica spheres
CN105797680B (en) A kind of preparation method of the attapulgite clay compounded aeroge of reduction-oxidation graphite
CN107970878A (en) A kind of preparation method of phosphate group functionalization hollow mesoporous silica microsphere
CN105800684A (en) Monodispersive porous crystal titanium oxide nanosphere with size smaller than 100 nm and preparation method thereof
CN105329905A (en) Preparation method of hollow mesoporous silica nano-particles
Teow et al. Synthesis and characterization of graphene shell composite from oil palm frond juice for the treatment of dye-containing wastewater
CN102874823A (en) Method for preparing silicon dioxide hollow microspheres with uniform shape by taking pollen grains as biological template
CN109574507A (en) A kind of nano-level sphere bioactivity glass and preparation method thereof
Yang et al. Hydrothermal synthesis of MoS2 nanoflowers and its rapid adsorption of tetracycline
Akhayere et al. Nano-silica and nano-zeolite synthesized from barley grass straw for effective removal of gasoline from aqueous solution: a comparative study
CN102491349B (en) Preparation method of hollow mesoporous silica nanospheres

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C14 Grant of patent or utility model
GR01 Patent grant
CF01 Termination of patent right due to non-payment of annual fee
CF01 Termination of patent right due to non-payment of annual fee

Granted publication date: 20120815

Termination date: 20190321