CN102163263B - 风机叶片振动位移及其威布尔分布拟合方法 - Google Patents

风机叶片振动位移及其威布尔分布拟合方法 Download PDF

Info

Publication number
CN102163263B
CN102163263B CN201110101441.7A CN201110101441A CN102163263B CN 102163263 B CN102163263 B CN 102163263B CN 201110101441 A CN201110101441 A CN 201110101441A CN 102163263 B CN102163263 B CN 102163263B
Authority
CN
China
Prior art keywords
blade
wind speed
displacement
weibull distribution
vibration displacement
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
CN201110101441.7A
Other languages
English (en)
Other versions
CN102163263A (zh
Inventor
张建平
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shanghai University of Electric Power
University of Shanghai for Science and Technology
Original Assignee
Shanghai University of Electric Power
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shanghai University of Electric Power filed Critical Shanghai University of Electric Power
Priority to CN201110101441.7A priority Critical patent/CN102163263B/zh
Publication of CN102163263A publication Critical patent/CN102163263A/zh
Application granted granted Critical
Publication of CN102163263B publication Critical patent/CN102163263B/zh
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Abstract

本发明涉及一种风机叶片振动位移及其威布尔分布拟合方法,通过计算流体动力学软件FLUENT模拟了近海风场作用下叶片表面风压分布,并把流体域得出的风压作为结构域的压力载荷在ANSYS有限元分析软件中进行加载,进而计算出不同平均风速作用下风力机叶片叶尖处的振动位移,最后利用最小二乘法对风力机叶片叶尖处的振动位移随平均风速变化的曲线进行了威布尔分布拟合,得到风机叶片振动计算方法,结果表明该拟合方法精确度高,可以作为风机叶片振动计算方法的参考,大大提高计算效率。

Description

风机叶片振动位移及其威布尔分布拟合方法
技术领域
本发明涉及一种振动位移计算方法,特别涉及一种风机叶片振动位移及其威布尔分布拟合方法。
背景技术
目前风电在全球发展迅速,而风力机的安全运行是保证风力机稳定发电的基础,叶片作为风力机的关键部件,其性能好坏直接影响风力发电装置功率和整机运行与稳定,它展向长、弦向短、柔性较好,是容易发生振动的细长弹性体,对其振动特性的研究十分重要。目前国内外学者针对风力机叶片动力响应开展了一系列的工作,利用各种不同的方法、从不同的侧面对叶片的动力特性进行了探索。
发明内容
本发明是针对风力机叶片参数计算要求高的问题,提出了一种风机叶片振动位移及其威布尔分布拟合方法,以风力机叶片的简化模型为研究对象,根据流体流动守恒定律建立了流体流动控制方程,利用Newmark法求解了结构运动控制方程,建立了计算叶片振动位移的数学模型,分别从叶片的流体域和结构域入手,计算了不同平均风速下叶片叶尖处的振动位移,达到高精度的计算结果。
本发明的技术方案为:一种风机叶片振动位移及其威布尔分布拟合方法,具体包括如下步骤:
1)运用Fluent和Ansys软件对风力机叶片振动位移进行求解:
a)流体域计算压力载荷:首先在Fluent中将叶片模型设置为刚性结构,然后在来流入口给定风速边界条件进行流场分析,得到模型表面的风压分布,并将模型表面在各种风速边界条件下的风压分布数据记录下来,生成压力荷载数据库;
b)结构域计算位移:在Ansys软件中将叶片的材料参数设置为正常,根据不同的风速条件,将荷载数据库中的风压加载到叶片模型上,然后利用有限元数值程序来计算和分析结构的振动情况,得到在不同平均风速作用下叶片叶尖处的振动位移;
2)设叶尖处的振动位移                                                随平均风速变化的曲线满足威布尔分布:
式中:是在不同平均风速作用下叶尖的振动位移,分别为平均风速和位移的初值;为威布尔分布的形状参数和尺度参数;
3)对步骤2)中公式进行简化后再进行最小二乘法拟合,求出威布尔分布的形状参数和尺度参数,得到叶尖振动位移随平均风速变化的曲线拟合公式为
本发明的有益效果在于:本发明风机叶片振动位移及其威布尔分布拟合方法,结合国内外风力机叶片的理论研究和工程背景,建立了计算叶片振动位移的数学模型,分别从叶片的流体域和结构域入手,计算了不同平均风速下叶片叶尖处的振动位移,并以此为基础对风速位移变化曲线进行了威布尔分布拟合,经验证该拟合方法精度高,可以作为风机叶片振动计算方法的参考,大大提高计算效率。
附图说明
图1为本发明用于计算压力载荷的流场计算模型正视图;
图2为本发明用于计算压力载荷的流场计算模型左视图;
图3为本发明用于计算压力载荷的流场计算模型俯视图;
图4为本发明用于计算压力载荷的流场计算模型立体示意图;
图5为本发明结构域的有限元网格正视图;
图6为本发明结构域的有限元网格左视图;
图7本发明结构域的有限元网格立体示意图;
图8本发明叶尖振动位移随平均风速变化的曲线图。
具体实施方式
通过计算流体动力学软件FLUENT模拟了近海风场作用下叶片表面风压分布,并把流体域得出的风压作为结构域的压力载荷在ANSYS有限元分析软件中进行加载,进而计算出不同平均风速作用下风力机叶片叶尖处的振动位移,最后利用最小二乘法对风力机叶片叶尖处的振动位移随平均风速变化的曲线进行了威布尔分布拟合,得到风机叶片振动计算方法,结果表明该拟合方法精确度高。
流体域控制方程求解风压:
流体流动的基本守恒定律包括:质量守恒定律、动量守恒定律、能量守恒定律,控制方程是这些守恒定律的数学描述。为了便于对上述控制方程进行分析,用同一程序进行求解,建立了控制方程的通用形式。用表示通用变量,控制方程可以表示为
                             
式中,——空气密度;——通用变量,可以代表各方向速度分量; ——广义扩散系数;——广义源项,——哈密顿算子。式中各项依次为瞬态项、对流项、扩散项和源项,对于特定的方程, 也具有特定的形式。对于连续性方程,取;对于动量方程,取为各方向速度分量;对于两方程湍流模型,;这里指标取值范围是(1,2,3),根据而定。
对控制方程(1)采用有限体积离散,根据计算网格,在控制体积及时间段(时间从)上积分并引入Guass散度定理,则求解积分形式的守恒方程通用形式如下:
                    
式左边第一项表明变量的总量在控制体积内随时间的变化量,左边第二项表示变量因对流而引起的沿控制体表面外法线方向的流出率。右边第一项是扩散项的积分——控制体内变量因扩散引起的净增加量,右边第二项是源项的积分——控制体内由于产生、耗散或其他原因源项引起的变量净增加量,——涡量,
因此,通过(2)式在设定风速初始值的情况下进行迭代求解,直至求得的速度场满足连续性方程,得出此时刻的速度作为风载荷的计算值,并由此风速计算出风场中结构各部位承受的风压
结构域控制方程求解位移:
在Ansys中对工程结构进行有限元离散,如图4、5所示其运动方程为
                             
其中,——质量矩阵;——阻尼矩阵;——刚度矩阵。结构的动力响应由其位移,速度和加速度来描述。——作用结构节点处风力荷载向量,由式(2)计算得到。
对离散运动微分方程(3)采用Newmark逐步积分法,则可得到
                     
以上给出了结构动力有限元分析模型以及在时间上的求解方法,具体的计算步骤如下:
1)分别计算刚度矩阵、质量矩阵,这里忽略结构阻尼的影响,给定初始挠度和速度为零,初始加速度可由略去节点列向量以后的方程式计算得到;
2)由式(3)计算时刻的载荷列阵并代入式(4),用Newmark方法求解得到时刻叶片动力响应所对应的位移、速度、加速度;
3)重复1)~ 2)来计算下一时刻的各物理量。
运用Fluent和Ansys软件对风力机叶片振动位移进行求解分为两步进行。
1)流体域计算压力载荷:首先在Fluent中将叶片模型设置为刚性结构,然后在来流入口给定风速边界条件进行流场分析,得到模型表面的风压分布,并将模型表面在各种风速边界条件下的风压分布数据记录下来,生成压力荷载数据库。用于计算压力载荷的流场计算模型三视图如图1~4所示。
2)结构域计算位移:在Ansys软件中将叶片的材料参数设置为正常(弹性结构),根据不同的风速条件,将荷载数据库中的风压加载到叶片模型上,然后利用有限元数值程序来计算和分析结构的振动情况。结构域的有限元网格划分方式如图5、6、7所示。
威布尔分布函数下的速度—位移曲线拟合:
设叶片在展向和弦向的弹性模量相同,材料为各向同性。简化叶片的几何特性长度(轴方向)a=25m,宽度(轴方向)b=5m,厚度(轴方向)h=0.5m。玻璃钢叶片的材料参数见下表。.
密度 泊松比 弹性模量
1950 kg/m3 0.14 17.5 GPa
根据以上两个应用软件的求解方法,经相关的网格划分和条件设置,计算得到在不同平均风速作用下叶片叶尖处的振动位移,如图8示的七个数据点(实心圆点)。
下面结合数据点给出速度位移曲线的拟合方法,并对拟合曲线的精准度进行验证。
设叶尖处的振动位移随平均风速变化的曲线满足威布尔分布:
                          (5)
式中:是在不同平均风速作用下叶尖的振动位移,分别为平均风速和位移的初值;为威布尔分布的形状参数和尺度参数。
对于式(5)变化,将其化简成线性关系
                                  (6)
式中:
再进行最小二乘法拟合,计算出的值,并求出威布尔分布的形状参数和尺度参数,便可确定速度位移曲线。
针对图8中的数据点,结合上述方法,得到叶尖振动位移随平均风速变化的曲线拟合公式为
                            (7)
根据式(7)求得叶尖振动位移随平均风速变化的曲线,如图6所示。
为例,代入速度位移曲线拟合公式(7),得到叶尖的振动位移(图8中的空心圆点),本文有限元方法计算得到的叶尖振动位移为,以拟合公式的计算结果为基准,计算误差为:
                           (8)
可见由本文风机叶片振动位移及其威布尔分布拟合公式的确定方法切实可行,风力机叶尖处的振动位移随平均风速变化拟合公式具有高的精确度。

Claims (1)

1.一种风机叶片振动位移及其威布尔分布拟合方法,其特征在于,具体包括如下步骤:
1)运用Fluent和Ansys软件对风力机叶片振动位移进行求解:
a)流体域计算压力载荷:首先在Fluent中将叶片模型设置为刚性结构,然后在来流入口给定风速边界条件进行流场分析,得到模型表面的风压分布,并将模型表面在各种风速边界条件下的风压分布数据记录下来,生成压力荷载数据库;
b)结构域计算位移:在Ansys软件中将叶片的材料参数设置为正常,根据不同的风速条件,将荷载数据库中的风压加载到叶片模型上,然后利用有限元数值程序来计算和分析结构的振动情况,得到在不同平均风速作用下叶片叶尖处的振动位移;
2)设叶尖处的振动位移w随平均风速v变化的曲线满足威布尔分布:
式中:w是在不同平均风速v作用下叶尖的振动位移,v0、w0分别为平均风速和位移的初值;m、η为威布尔分布的形状参数和尺度参数;
3)对步骤2)中公式进行简化,将化简成线性关系y=ax+b,式中:a=m,b=-mlnη,x=ln(v0-v),y=lnln(w0/w),再进行最小二乘法拟合,计算出a和b的值,求出威布尔分布的形状参数m和尺度参数η,得到叶尖振动位移w随平均风速v变化的曲线拟合公式为 w = 0.41517 exp [ - ( 50 - v 18.4076 ) 1.3137 ] .
CN201110101441.7A 2011-04-22 2011-04-22 风机叶片振动位移及其威布尔分布拟合方法 Expired - Fee Related CN102163263B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201110101441.7A CN102163263B (zh) 2011-04-22 2011-04-22 风机叶片振动位移及其威布尔分布拟合方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201110101441.7A CN102163263B (zh) 2011-04-22 2011-04-22 风机叶片振动位移及其威布尔分布拟合方法

Publications (2)

Publication Number Publication Date
CN102163263A CN102163263A (zh) 2011-08-24
CN102163263B true CN102163263B (zh) 2014-11-19

Family

ID=44464485

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201110101441.7A Expired - Fee Related CN102163263B (zh) 2011-04-22 2011-04-22 风机叶片振动位移及其威布尔分布拟合方法

Country Status (1)

Country Link
CN (1) CN102163263B (zh)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102489975A (zh) * 2011-12-15 2012-06-13 湖南科技大学 一种矿用风机叶片加工工艺优选方法
CN102878016B (zh) * 2012-10-26 2014-10-29 华北电力大学 基于智能结构的大型风力机叶片摆振抑制系统及控制方法
CN104483192B (zh) * 2014-11-27 2017-01-25 福达合金材料股份有限公司 一种基于威布尔分布的电触头材料静熔焊力数据处理方法
CN107014444B (zh) * 2017-05-27 2023-08-29 山东罗泰风机有限公司 一种风机动态性能参数测量系统
CN113221281B (zh) * 2021-05-18 2024-02-09 上海绿色环保能源有限公司 一种预测风速对风机叶片动力特性影响的方法

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101532906A (zh) * 2009-04-27 2009-09-16 东南大学 风力发电机叶片的流体动力学和结构力学分析方法
CN101908088A (zh) * 2010-07-22 2010-12-08 北京航空航天大学 一种基于时域双向迭代的叶轮机叶片颤振应力预测方法

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101532906A (zh) * 2009-04-27 2009-09-16 东南大学 风力发电机叶片的流体动力学和结构力学分析方法
CN101908088A (zh) * 2010-07-22 2010-12-08 北京航空航天大学 一种基于时域双向迭代的叶轮机叶片颤振应力预测方法

Also Published As

Publication number Publication date
CN102163263A (zh) 2011-08-24

Similar Documents

Publication Publication Date Title
CN104298869B (zh) 一种弹性水翼的流固耦合特性数值预测方法
CN101908088B (zh) 一种基于时域双向迭代的叶轮机叶片颤振应力预测方法
CN102163263B (zh) 风机叶片振动位移及其威布尔分布拟合方法
CN102938003B (zh) 一种叶轮机械计入错频的气动弹性稳定性数值预测方法
Ke et al. Aerodynamic performance and wind-induced effect of large-scale wind turbine system under yaw and wind-rain combination action
Allaerts et al. Sensitivity and feedback of wind-farm-induced gravity waves
CN107895069A (zh) 一种基于复合材料结构的流固耦合数值预测方法
CN104281730B (zh) 一种大转动变形的板壳结构动响应的有限元分析方法
CN110717216B (zh) 不规则波下带柔性气囊直升机横摇响应预报方法
Rainbird et al. Blockage-tolerant wind tunnel measurements for a NACA 0012 at high angles of attack
CN103310060A (zh) 一种跨音速极限环颤振分析方法
Andersen et al. Quantifying variability of Large Eddy Simulations of very large wind farms
CN104091003B (zh) 一种基础运动时柔性壳结构大变形响应的有限元建模方法
Vitsas et al. Multiscale aeroelastic simulations of large wind farms in the atmospheric boundary layer
Sørensen et al. Aerodynamic effects of compressibility for wind turbines at high tip speeds
Irawan et al. Numerical simulation of the effect of axial distance between two rotors in counter-rotating wind turbines
Sarlak et al. Comparison of two LES codes for wind turbine wake studies
İ̇brahim et al. Aerodynamic Optimization of NACA 0012 Airfoil
Szmelter et al. MPDATA error estimator for mesh adaptivity
Padewska et al. Analysis of fluid-structure interaction of a torus subjected to wind loads
CN103177162A (zh) 一种基于交错迭代耦合技术的薄壁结构动力学热性预测方法
CN104156557A (zh) 运动固壁问题中边界条件的高阶修正技术
US7953563B2 (en) Determining effects of turbine blades on fluid motion
Wang et al. The added mass of a closed-type cushion in uniform flow
Calabretta et al. A Three-Dimensional Vortex Particle-Panel Method for Modeling Propulsion-Airframe Interaction

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C14 Grant of patent or utility model
GR01 Patent grant
CB03 Change of inventor or designer information

Inventor after: Zhang Jianping

Inventor after: Fu Yang

Inventor after: Zhang Kaihua

Inventor after: Wei Shurong

Inventor after: Huang Lingling

Inventor before: Zhang Jianping

CB03 Change of inventor or designer information
CF01 Termination of patent right due to non-payment of annual fee

Granted publication date: 20141119

Termination date: 20200422

CF01 Termination of patent right due to non-payment of annual fee