CN102162730B - 基于全站仪和红外热像仪的煤矸石山表面温度场测量方法 - Google Patents

基于全站仪和红外热像仪的煤矸石山表面温度场测量方法 Download PDF

Info

Publication number
CN102162730B
CN102162730B CN201110005044XA CN201110005044A CN102162730B CN 102162730 B CN102162730 B CN 102162730B CN 201110005044X A CN201110005044X A CN 201110005044XA CN 201110005044 A CN201110005044 A CN 201110005044A CN 102162730 B CN102162730 B CN 102162730B
Authority
CN
China
Prior art keywords
point
surface temperature
film size
coordinate information
thermal infrared
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201110005044XA
Other languages
English (en)
Other versions
CN102162730A (zh
Inventor
胡振琪
赵艳玲
李晓静
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
China University of Mining and Technology CUMT
China University of Mining and Technology Beijing CUMTB
Original Assignee
China University of Mining and Technology Beijing CUMTB
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by China University of Mining and Technology Beijing CUMTB filed Critical China University of Mining and Technology Beijing CUMTB
Priority to CN201110005044XA priority Critical patent/CN102162730B/zh
Publication of CN102162730A publication Critical patent/CN102162730A/zh
Application granted granted Critical
Publication of CN102162730B publication Critical patent/CN102162730B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Radiation Pyrometers (AREA)

Abstract

本发明涉及基于全站仪和红外热像仪的煤矸石山表面温度场测量方法,属测绘和环境监测技术领域,该方法包括:将煤矸石划分为若干区域,每个区域对应红外热像仪的一个像幅,在每个区域设立最少5-6个标志点,利用全站仪建立图根控制网,在图根控制点同时使用全站仪测量标志点空间信息和红外热像仪测量温度信息,再通过插值法求得选定温度特征点的空间信息,从而绘制整个煤矸石山的表面温度场。本发明将全站仪地形测绘技术和热红外成像技术耦合,实现煤矸石表面温度的快速测量及温度场空间位置的准确定位,为自燃煤矸石山的治理提供基础支撑。

Description

基于全站仪和红外热像仪的煤矸石山表面温度场测量方法
技术领域
本发明属测绘和环境监测技术领域,特别涉及基于全站仪和红外热像仪的煤矸石山表面温度场测量方法。
背景技术
自燃煤矸石山对环境的危害和存在的环境风险很大,因此,自燃煤矸石山的治理已经成为当前研究的热点。对自燃矸石山的治理关键是探明高温区和着火点,以便采取相应的灭火和阻燃应对措施,达到治理的目的。
国内外对煤燃烧和硫化矿石燃烧的研究表明:燃烧主要表征参数是温度,因此,利用温度的探测确定着火点的位置是合适的,所以,煤矸石山表面和深部温度场的监测就成为自燃煤矸石山治理的基础和关键。
红外测温属于非接触测温的一种方法,通过对物体自身辐射的红外能量的测量来测定其表面温度,在生产加工、电力、医学、消防等方面都有广泛的应用;对煤田火灾的红外监测,因煤田面积大,目前一般采用航空和航天红外遥感,但由于感应精度低,这种红外监测手段对小面积的煤矸石山自燃监测则不适用。尽管对着火煤矸石山深部位置的探测是一个尚未解决的难题,红外技术也无法探测深部的着火情况,但表面温度场的探测相对来说是可行的。红外热像仪可以获取表面的温度参数,但无法获取空间信息,即无法确定各温度点的空间位置,必须与测绘技术相配合。
对矸石山表面各温度点的空间位置确定主要采用地形图测绘技术,往往利用国家或矿山已知控制点的空间坐标联测用于矸石山测图的控制点(称之为图根控制点)空间坐标信息,在图根控制的基础上测绘各个地表特征点的空间信息。对自燃矸石山而言,除一般地形变化的标志点以外,表面温度变化的位置也应作为地形测绘的标志点。
煤矸石山表面温度场测量的难题在于:
1)红外热像仪测量煤矸石山表面温度时的测点布设及测点数确定;
2)红外热像仪与空间信息获取的测绘技术的耦合;
3)煤矸石山地貌特征,尤其是难以到达区域的空间信息的获取;
4)红外热像仪的平面像片与煤矸石山表面曲面的耦合;
5)任意温度点的空间信息求取。
发明内容
本发明的目的是为解决上述难题,提出一种基于全站仪和红外热像仪的煤矸石山表面温度场测量的方法,旨在将全站仪地形测绘技术和热红外成像技术耦合,实现煤矸石表面温度的快速测量及温度场空间位置的准确定位,为自燃煤矸石山的治理提供基础支撑。
本发明提出的一种基于全站仪和红外热像仪的煤矸石山表面温度场测量方法,其特征在于,包括以下步骤:
1)区域和像幅划分:进行现场勘查,确定煤矸石山表面面积和地形特点,根据红外热像仪像幅的大小,将煤矸石划分为若干区域,每个区域对应红外热像仪的一个像幅,由此计算出煤矸石山区域数和红外成像的像幅数。为保证精度,各像幅之间的边缘重合,重合率为像幅面积的5%-10%;
2)区域标志点布设:在每个区域设立最少5-6个标志点,用来确定像幅标志点坐标信息;
3)图根控制网建立:根据煤矸石山的地形特点选取多个野外测量时仪器的架设点作为图根控制点,并使每个像幅中的至少有一个图根控制点;利用煤矸石山所在地区的已知空间坐标信息的控制点,使用全站仪获取图根控制点空间坐标信息,所有图根控制点及其坐标信息组成图根控制网;
4)野外观测:在图根控制点上架设全站仪,在图根控制点附近架设红外热像仪;使用全站仪对各区域内标志点进行测量,获取区域内标志点的空间坐标信息,同时利用红外热像仪测量区域表面温度信息取得热红外图像;
5)数据处理:在热红外图像上选取15-30个表面温度特征点,该表面温度特征点包括已经获得空间坐标信息的标志点和表面温度起伏的高点和低点;获取表面温度特征点的表面温度信息,同时利用像幅对应区域内标志点的空间坐标信息,获得表面温度特征点的空间坐标信息;最后利用各个特征点的表面温度和空间坐标信息绘制煤矸石山表面温度场。
本发明主要具有以下技术优点:
1)将热红外温度测量与地形测绘技术有机结合,解决了煤矸石山表面温度场的快速测量问题,为煤矸石山治理奠定了基础。
2)将地形测绘中的图根控制点布置与红外热像仪温度测量的需要相结合,不同于一般地形测量控制点的布设方法。
3)野外热红外温度测量与地形测绘技术有机结合,主要通过在红外热像仪拍摄的每个区域内设立最少5-6个标志点,在温度测量的同时利用全站仪测量标志点空间信息。
4)整个矸石山温度场的构成,是通过温度图像信息获取像幅内温度特征点的温度信息,同时利用每一像幅内像副标志点的空间信息、通过插值法获取像幅内每个温度特征点的空间信息,再通过各个温度特征点的温度和空间信息绘制煤矸石山温度场。
5)首次实现煤矸石山表面温度场的监测,为发现矸石山着火点和潜在着火点以及有效治理矸石山提供基础信息。
附图说明
图1为本发明方法流程图。
图2为本发明方法的野外热红外温度测量与地形测绘技术有机结合的测量示意图。
图3为本发明方法实施例的标志点布设及温度特征点采集示意图。
图4为本实施例的特征点空间信息求取示意图。
具体实施方法
本发明提出的一种基于全站仪和红外热像仪的煤矸石山表面温度场测量方法,结合附图及实施例详细说明如下:
本发明的一种基于全站仪和红外热像仪的煤矸石山表面温度场测量方法流程如图1所示,包括以下步骤;
1)区域和像幅划分:进行现场勘查,确定煤矸石山表面面积和地形特点,根据红外热像仪像幅的大小,将煤矸石划分为若干区域,每个区域对应红外热像仪的一个像幅,由此可计算出矸石山区域数和红外成像的像幅数。为保证精度,各像幅之间的边缘重合,保证重合率为像幅面积的5%-10%的重合率。
2)区域标志点布设:在划分好的区域内布设区域标志点,每个区域设立至少5-6个标志点,用来确定像幅空间坐标信息。区域标志点设立要求:在区域4角各1个,区域中间1-2个。另外,根据地形适当增加区域标志点个数。增加区域标志点的设立要求:在区域内地形起伏的高点和低点增加1-5标志点。根据像幅与区域的对应关系,利用投影原理,将区域内布设的区域标志点投影到像幅内的相应位置,称作为像幅标志点。
3)图根控制网建立:在区域标志点设立的同时,建立图根控制网。根据煤矸石山的地形特点选取多个野外测量时仪器的架设点作为图根控制点,并使每个像幅中的至少有一个图根控制点;利用已知控制点(煤矸石山所在地区的已知空间坐标信息的点)使用全站仪获取图根控制点空间坐标信息。所有图根控制点及其坐标信息组成图根控制网。
4)野外观测:野外观测的目的是获取区域内标志点的空间坐标信息。在图根控制点上架设全站仪,在图根控制点附近架设红外热像仪;使用全站仪对各区域内标志点进行测量,获取区域内标志点的空间坐标信息;同时利用红外热像仪测量每个区域表面温度信息得到相应的一幅热红外图像(一个像幅)。如图2所示,图中,矸石山山坡21上的某一图根控制点上架设全站仪22,在全站仪测量的前方为全站仪配套的棱镜23,在该图根控制点附近架设红外热像仪24。
5)数据处理:以上内容主要为野外作业,在野外作业的基础上需要室内数据处理,以期获得煤矸石山表面温度场信息,主要是在热红外图像上选取15-30个表面温度特征点,表面温度特征点包括已经获得空间坐标信息的标志点的和表面温度起伏的高点和低点;如图3所示,包括:图中标示▲的a、b、c、d、e、f6个红外图像上与该像幅对应区域的像幅标志点;标示●的20个表面温度起伏的高点和低点;在热红外图像上获取所有表面温度特征点的表面温度信息,同时利用像幅对应区域内标志点的空间坐标信息,通过插值法获取所有表面温度起伏的高点和低点的空间坐标信息;最后利用各表面温度特征点的表面温度和空间坐标信息绘制煤矸石山表面温度场。
表面温度特征点空间坐标信息求取:如图3所示的区域内6个标志点的空间坐标信息通过测量直接获得;20个表面温度起伏的高点和低点的空间坐标位置根据这些点与像幅标志点位置的相互关系,结合像幅标志点对应的区域标志点的空间坐标信息,利用插值法得到像幅中任意表面温度特征点的空间坐标信息。如图4所示,P点为区域内需要求取空间坐标位置的20个表面温度起伏的高点和低点中的一点,p为P对应在热红外图像上的点。计算过程如下:
p、a、b、c、d、e、f为像幅内表面温度特征点,分别对应区域内点P、A、B、C、D、E、F。表面温度特征点的平面坐标信息(x,y)可以通过红外热像仪中的图像处理程序得到,说明如下:p为需要求取空间坐标信息的表面温度特征点。
p包含在由a、d、e像幅标志点组成的三角形内,按照对应关系,P包含在区域标志点A、D、E组成的三角形内。像幅标志点a、d、e和p点的平面坐标信息(x,y)和区域标志点A、D、E的空间坐标信息(X,Y,Z)已知,根据三点确定一个平面的原理,由式(1)、(2)可以计算出区域内P点的平面坐标信息(XP,YP),由式(3)可以计算出P点的高程ZP,最终获得P点的空间坐标信息(XP,YP,ZP)。
x p y p X P 1 x a y a X A 1 x d y d X d 1 x e y e X E 1 = 0 - - - ( 1 )
x p y p X P 1 x a y a X A 1 x d y d X d 1 x e y e X E 1 = 0 - - - ( 2 )
X P - X A Y P - Y A Z P - Z A X D - X A Y D - Y A Z D - Z A X E - X A Y E - Y A Z E - Z A = 0 - - - ( 3 )
其它各表面温度的高低起伏点的空间坐标位置按上述相同原理得到。

Claims (3)

1.一种基于全站仪和红外热像仪的煤矸石山表面温度场测量方法,其特征在于,包括以下步骤:
1)区域和像幅划分:进行现场勘查,确定煤矸石山表面面积和地形特点,根据红外热像仪像幅的大小,将煤矸石划分为若干区域,每个区域对应红外热像仪的一个像幅,由此计算出煤矸石山区域数和红外成像的像幅数,各像幅之间的边缘重合,重合率为像幅面积的5%-10%;
2)区域标志点布设:在每个区域设立至少5个区域标志点,用来确定像幅标志点坐标信息;
3)图根控制网建立:根据煤矸石山的地形特点选取多个野外测量时仪器的架设点作为图根控制点,并使每个像幅中的至少有一个图根控制点;利用煤矸石山所在地区的已知空间坐标信息的控制点,使用全站仪获取图根控制点空间坐标信息,所有图根控制点及其坐标信息组成图根控制网;
4)野外观测:在图根控制点上架设全站仪,在图根控制点附近架设红外热像仪;使用全站仪对各区域标志点进行测量,获取区域标志点的空间坐标信息,同时利用红外热像仪测量区域表面温度信息取得热红外图像;
5)数据处理:在热红外图像上选取15-30个表面温度特征点,该表面温度特征点包括已经获得空间坐标信息的区域标志点和表面温度起伏的高点和低点;获取表面温度特征点的表面温度信息,同时利用像幅对应区域标志点的空间坐标信息,获得表面温度特征点的空间坐标信息;最后利用各个表面温度特征点的表面温度和空间坐标信息绘制煤矸石山表面温度场;
所述步骤2)中在每个区域设立最少5个区域标志点,用来确定像幅标志点坐标信息;具体包括:在各个区域4角各设立1个区域标志点,在区域中间设立1-2个区域标志点;根据像幅与区域的对应关系,利用投影原理,将区域内布设的区域标志点投影到像幅内的相应位置,作为像幅标志点。
2.如权利要求1所述的方法,其特征在于,所述步骤2)中还包括在区域内地形起伏的高点或低点增加1-5个区域标志点。
3.如权利要求1所述的方法,其特征在于,所述步骤5)中利用像幅对应区域标志点的空间坐标信息,获得表面温度特征点的空间坐标信息的具体方法为:根据表面温度特征点与像幅标志点位置的相互关系,结合像幅标志点对应的区域标志点的空间坐标信息,利用插值法得到像幅中任意表面温度特征点的空间坐标信息。
CN201110005044XA 2011-01-11 2011-01-11 基于全站仪和红外热像仪的煤矸石山表面温度场测量方法 Active CN102162730B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201110005044XA CN102162730B (zh) 2011-01-11 2011-01-11 基于全站仪和红外热像仪的煤矸石山表面温度场测量方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201110005044XA CN102162730B (zh) 2011-01-11 2011-01-11 基于全站仪和红外热像仪的煤矸石山表面温度场测量方法

Publications (2)

Publication Number Publication Date
CN102162730A CN102162730A (zh) 2011-08-24
CN102162730B true CN102162730B (zh) 2012-07-04

Family

ID=44464078

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201110005044XA Active CN102162730B (zh) 2011-01-11 2011-01-11 基于全站仪和红外热像仪的煤矸石山表面温度场测量方法

Country Status (1)

Country Link
CN (1) CN102162730B (zh)

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102628712B (zh) * 2012-04-24 2014-04-30 中国矿业大学 一种具有空间基准的矸石山表面温度场的快速构建方法
CN102798470B (zh) * 2012-08-14 2015-04-22 中国神华能源股份有限公司 矿区热异常范围的监测方法及装置
CN102927971B (zh) * 2012-10-31 2014-10-01 中国矿业大学(北京) 近景摄影测量和红外热像仪测量矸石山表面温度场方法
CN102878983B (zh) * 2012-10-31 2014-10-01 中国矿业大学(北京) 激光扫描仪和红外热像仪测量煤矸石山表面温度场方法
CN105842755A (zh) * 2016-05-12 2016-08-10 江苏建科节能技术有限公司 一种城市居住区热岛效应的测量装置及其方法
CN107870613A (zh) * 2017-11-07 2018-04-03 中国能源建设集团安徽省电力设计院有限公司 一种带有煤堆自燃防治功能的圆形煤场
CN109083633B (zh) * 2018-06-22 2022-03-11 山西元森科技有限公司 一种矸石山余热利用方法
CN110440762B (zh) * 2019-09-18 2022-05-03 中国电建集团贵州电力设计研究院有限公司 一种多旋翼无人机山区航测成图的网格化像控点布设方法
CN112001304A (zh) * 2020-08-21 2020-11-27 河北冀云气象技术服务有限责任公司 用于光伏电站的野外火情监控方法、终端设备及可读存储介质

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4005289A (en) * 1976-01-05 1977-01-25 The United States Of America As Represented By The United States Energy Research And Development Administration Method for identifying anomalous terrestrial heat flows
US6590640B1 (en) * 2000-07-20 2003-07-08 Boards Of Regents, The University Of Texas System Method and apparatus for mapping three-dimensional features
CN200986743Y (zh) * 2006-03-24 2007-12-05 刘德润 温度场红外线监控系统

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008273807A (ja) * 2007-05-02 2008-11-13 Shinshu Univ マイクロ波超高吸収発熱素材による温度制御反応場生成法と機能性ナノ粒子及びナノカーボン素材の合成方法

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4005289A (en) * 1976-01-05 1977-01-25 The United States Of America As Represented By The United States Energy Research And Development Administration Method for identifying anomalous terrestrial heat flows
US6590640B1 (en) * 2000-07-20 2003-07-08 Boards Of Regents, The University Of Texas System Method and apparatus for mapping three-dimensional features
CN200986743Y (zh) * 2006-03-24 2007-12-05 刘德润 温度场红外线监控系统

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
JP特开2008-273807A 2008.11.13
盛耀彬等.矸石山温度场红外热像的空间信息挖掘.《红外技术》.2007, *

Also Published As

Publication number Publication date
CN102162730A (zh) 2011-08-24

Similar Documents

Publication Publication Date Title
CN102162730B (zh) 基于全站仪和红外热像仪的煤矸石山表面温度场测量方法
CN102878983B (zh) 激光扫描仪和红外热像仪测量煤矸石山表面温度场方法
CN103806478B (zh) 一种地下连续墙变形的测量方法
CN105783810B (zh) 基于无人机摄影技术的工程土方量测量方法
CN103644896B (zh) 一种基于三维激光扫描的工程地质测绘方法
CN102927971B (zh) 近景摄影测量和红外热像仪测量矸石山表面温度场方法
CN110455256A (zh) 基于无人机倾斜摄影测量的地表沉降观测方法
CN104330073A (zh) 一种烟囱倾斜度的测量方法
CN103940410B (zh) 一种超高倍放大成图的数字航空摄影测量方法
CN103526783B (zh) 一种测量建筑基坑水平位移的方法
US11029151B2 (en) Traverse-type measurement method for dual-system bilateral-survey composite level
CN106052553A (zh) 基于三维激光扫描的土建临时工程的设计优化方法及装置
CN110440762B (zh) 一种多旋翼无人机山区航测成图的网格化像控点布设方法
CN108931230A (zh) 一种狭长型隧道变形监测方法
CN109635340A (zh) 一种基于倾斜摄影和bim的矿山加工系统设计方法
CN107393006A (zh) 一种衡量隧道整体变形的方法
CN103837196A (zh) 一种尾矿库干滩参数监测系统及方法
CN103759713A (zh) 一种基于全景影像的危岩落石调查方法
CN106803324B (zh) 一种基于系统测温的自燃矸石山火情特征诊治方法
CN110345906A (zh) 隧道拱顶下沉的实时标高测量方法及测量装置
CN102322854B (zh) 隧道监控量测点及tsp炮孔布设装置与方法
CN206223027U (zh) 埋地管道开挖检验埋深测量尺
CN115374511A (zh) 一种地铁隧道监测三维控制网仿真设计系统和方法
CN105279305B (zh) 一种地面三维激光扫描技术测站选取方法
CN107490363A (zh) 一种基于地表温度数据的产热企业生产强度监测方法

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C14 Grant of patent or utility model
GR01 Patent grant