CN102154226B - A chimeric virus of the complete envelope protein of hepatitis C virus and GB virus B - Google Patents
A chimeric virus of the complete envelope protein of hepatitis C virus and GB virus B Download PDFInfo
- Publication number
- CN102154226B CN102154226B CN201110003392A CN201110003392A CN102154226B CN 102154226 B CN102154226 B CN 102154226B CN 201110003392 A CN201110003392 A CN 201110003392A CN 201110003392 A CN201110003392 A CN 201110003392A CN 102154226 B CN102154226 B CN 102154226B
- Authority
- CN
- China
- Prior art keywords
- virus
- hepatitis
- envelope protein
- seq
- chimeric
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Fee Related
Links
- 241000711549 Hepacivirus C Species 0.000 title claims abstract description 108
- 241001529916 Hepatitis GB virus B Species 0.000 title claims abstract description 104
- 241000700605 Viruses Species 0.000 title claims abstract description 88
- 101710091045 Envelope protein Proteins 0.000 title claims abstract description 66
- 101710188315 Protein X Proteins 0.000 title claims abstract description 66
- 102100021696 Syncytin-1 Human genes 0.000 title claims abstract 4
- 108090000623 proteins and genes Proteins 0.000 claims abstract description 45
- 210000002966 serum Anatomy 0.000 claims abstract description 25
- 239000012634 fragment Substances 0.000 claims description 60
- 238000011144 upstream manufacturing Methods 0.000 claims description 27
- 239000013612 plasmid Substances 0.000 claims description 19
- 238000000034 method Methods 0.000 claims description 16
- 101710172711 Structural protein Proteins 0.000 claims description 14
- 238000007857 nested PCR Methods 0.000 claims description 10
- 108020004414 DNA Proteins 0.000 claims description 7
- 108020004511 Recombinant DNA Proteins 0.000 claims description 6
- 230000003321 amplification Effects 0.000 claims description 6
- 238000003199 nucleic acid amplification method Methods 0.000 claims description 6
- 238000003757 reverse transcription PCR Methods 0.000 claims description 6
- 108020000999 Viral RNA Proteins 0.000 claims description 5
- 239000002299 complementary DNA Substances 0.000 claims description 4
- FWMNVWWHGCHHJJ-SKKKGAJSSA-N 4-amino-1-[(2r)-6-amino-2-[[(2r)-2-[[(2r)-2-[[(2r)-2-amino-3-phenylpropanoyl]amino]-3-phenylpropanoyl]amino]-4-methylpentanoyl]amino]hexanoyl]piperidine-4-carboxylic acid Chemical compound C([C@H](C(=O)N[C@H](CC(C)C)C(=O)N[C@H](CCCCN)C(=O)N1CCC(N)(CC1)C(O)=O)NC(=O)[C@H](N)CC=1C=CC=CC=1)C1=CC=CC=C1 FWMNVWWHGCHHJJ-SKKKGAJSSA-N 0.000 claims description 3
- 238000001976 enzyme digestion Methods 0.000 claims description 3
- 230000002441 reversible effect Effects 0.000 claims description 3
- 101710137500 T7 RNA polymerase Proteins 0.000 claims description 2
- 241001515942 marmosets Species 0.000 abstract description 33
- 208000015181 infectious disease Diseases 0.000 abstract description 22
- 108091092724 Noncoding DNA Proteins 0.000 abstract description 16
- 238000011160 research Methods 0.000 abstract description 9
- 241000288906 Primates Species 0.000 abstract description 7
- 238000011156 evaluation Methods 0.000 abstract description 7
- 102000004169 proteins and genes Human genes 0.000 abstract description 7
- 101710132601 Capsid protein Proteins 0.000 abstract description 6
- 241000282693 Cercopithecidae Species 0.000 abstract description 6
- 238000002347 injection Methods 0.000 abstract description 6
- 239000007924 injection Substances 0.000 abstract description 6
- 229960005486 vaccine Drugs 0.000 abstract description 4
- 230000036039 immunity Effects 0.000 abstract description 3
- 238000002360 preparation method Methods 0.000 abstract description 3
- 230000002265 prevention Effects 0.000 abstract description 3
- 238000010253 intravenous injection Methods 0.000 abstract description 2
- 238000000746 purification Methods 0.000 abstract description 2
- 150000001875 compounds Chemical class 0.000 abstract 1
- 238000003018 immunoassay Methods 0.000 abstract 1
- 102100038132 Endogenous retrovirus group K member 6 Pro protein Human genes 0.000 description 27
- 108091032973 (ribonucleotides)n+m Proteins 0.000 description 12
- 238000006243 chemical reaction Methods 0.000 description 9
- 208000006454 hepatitis Diseases 0.000 description 9
- 230000003612 virological effect Effects 0.000 description 6
- 238000013461 design Methods 0.000 description 5
- 230000002458 infectious effect Effects 0.000 description 5
- 238000003753 real-time PCR Methods 0.000 description 5
- 238000010276 construction Methods 0.000 description 4
- 238000001962 electrophoresis Methods 0.000 description 4
- 231100000283 hepatitis Toxicity 0.000 description 4
- 238000001727 in vivo Methods 0.000 description 4
- 238000011081 inoculation Methods 0.000 description 4
- 210000004185 liver Anatomy 0.000 description 4
- 206010008909 Chronic Hepatitis Diseases 0.000 description 3
- 208000005176 Hepatitis C Diseases 0.000 description 3
- 210000004369 blood Anatomy 0.000 description 3
- 239000008280 blood Substances 0.000 description 3
- 230000003993 interaction Effects 0.000 description 3
- 239000013642 negative control Substances 0.000 description 3
- 230000003472 neutralizing effect Effects 0.000 description 3
- 239000013641 positive control Substances 0.000 description 3
- 239000000523 sample Substances 0.000 description 3
- 238000012163 sequencing technique Methods 0.000 description 3
- 102000004190 Enzymes Human genes 0.000 description 2
- 108090000790 Enzymes Proteins 0.000 description 2
- 241000710781 Flaviviridae Species 0.000 description 2
- 241000384317 HCV/GBV-B chimeric virus Species 0.000 description 2
- 241001428817 Hepatitis C virus subtype 1b Species 0.000 description 2
- 101000666856 Homo sapiens Vasoactive intestinal polypeptide receptor 1 Proteins 0.000 description 2
- 101710144128 Non-structural protein 2 Proteins 0.000 description 2
- 101710199667 Nuclear export protein Proteins 0.000 description 2
- 241000288961 Saguinus imperator Species 0.000 description 2
- 102100038388 Vasoactive intestinal polypeptide receptor 1 Human genes 0.000 description 2
- 230000001154 acute effect Effects 0.000 description 2
- 238000004113 cell culture Methods 0.000 description 2
- 230000007969 cellular immunity Effects 0.000 description 2
- 238000010367 cloning Methods 0.000 description 2
- 238000010586 diagram Methods 0.000 description 2
- 239000012149 elution buffer Substances 0.000 description 2
- 238000002474 experimental method Methods 0.000 description 2
- 238000000605 extraction Methods 0.000 description 2
- 210000003191 femoral vein Anatomy 0.000 description 2
- 208000010710 hepatitis C virus infection Diseases 0.000 description 2
- 230000028993 immune response Effects 0.000 description 2
- 230000034184 interaction with host Effects 0.000 description 2
- 108020004707 nucleic acids Proteins 0.000 description 2
- 102000039446 nucleic acids Human genes 0.000 description 2
- 150000007523 nucleic acids Chemical class 0.000 description 2
- 239000008363 phosphate buffer Substances 0.000 description 2
- 230000001681 protective effect Effects 0.000 description 2
- 230000010076 replication Effects 0.000 description 2
- 230000029812 viral genome replication Effects 0.000 description 2
- 230000009385 viral infection Effects 0.000 description 2
- 108020003589 5' Untranslated Regions Proteins 0.000 description 1
- 241000710780 Bovine viral diarrhea virus 1 Species 0.000 description 1
- 241000288951 Callithrix <genus> Species 0.000 description 1
- 241000288950 Callithrix jacchus Species 0.000 description 1
- 108091026890 Coding region Proteins 0.000 description 1
- 108090000626 DNA-directed RNA polymerases Proteins 0.000 description 1
- 102000004163 DNA-directed RNA polymerases Human genes 0.000 description 1
- 102100038980 Exosome complex component CSL4 Human genes 0.000 description 1
- 108700006884 Hepatitis C virus HVR1 Proteins 0.000 description 1
- 108700029057 Hepatitis C virus p7 Proteins 0.000 description 1
- 108060004795 Methyltransferase Proteins 0.000 description 1
- 108091028043 Nucleic acid sequence Proteins 0.000 description 1
- 241000282579 Pan Species 0.000 description 1
- 108091005804 Peptidases Proteins 0.000 description 1
- 239000004365 Protease Substances 0.000 description 1
- 101710194807 Protective antigen Proteins 0.000 description 1
- 241000288959 Saguinus Species 0.000 description 1
- 108010003533 Viral Envelope Proteins Proteins 0.000 description 1
- 101800001476 Viral genome-linked protein Proteins 0.000 description 1
- 208000036142 Viral infection Diseases 0.000 description 1
- PPBOKXIGFIBOGK-BDTUAEFFSA-N bvdv Chemical compound C([C@@H](C(=O)N[C@@H](CCCCN)C(=O)N[C@@H](CCC(N)=O)C(=O)N[C@@H]([C@@H](C)CC)C(=O)N[C@@H](CC(N)=O)C(=O)N[C@@H](CCCNC(N)=N)C(=O)NCC(=O)N[C@@H](CC(C)C)C(=O)N[C@@H](CCCCN)C(=O)N[C@@H](CCCCN)C(O)=O)NC(=O)[C@H](CC(C)C)NC(=O)[C@H](CO)NC(=O)[C@H](CC=1C=CC(O)=CC=1)NC(=O)[C@@H](NC(=O)[C@H](CC(C)C)NC(=O)[C@H](CC(O)=O)NC(=O)[C@H](CC(C)C)NC(=O)[C@@H](N)C(C)C)[C@@H](C)CC)C1=CN=CN1 PPBOKXIGFIBOGK-BDTUAEFFSA-N 0.000 description 1
- 208000019425 cirrhosis of liver Diseases 0.000 description 1
- LXWYCLOUQZZDBD-LIYNQYRNSA-N csfv Chemical compound C([C@H](NC(=O)[C@H](CC(C)C)NC(=O)[C@H](CC(C)C)NC(=O)[C@H](CCC(O)=O)NC(=O)[C@H](CC(C)C)NC(=O)[C@@H](N)[C@@H](C)CC)C(=O)N[C@@H](CCCCN)C(=O)N[C@@H](CC=1C=CC=CC=1)C(=O)N[C@@H](CCCNC(N)=N)C(=O)N[C@@H](CC(O)=O)C(=O)N[C@@H](CC(N)=O)C(=O)N[C@@H]([C@@H](C)CC)C(=O)N[C@@H](CCCCN)C(=O)N[C@@H](CO)C(=O)N[C@@H](CO)C(=O)N[C@@H](C(C)C)C(=O)N[C@@H](CCCNC(N)=N)C(=O)N[C@@H](CCC(O)=O)C(O)=O)C1=CC=C(O)C=C1 LXWYCLOUQZZDBD-LIYNQYRNSA-N 0.000 description 1
- 238000001514 detection method Methods 0.000 description 1
- 238000011161 development Methods 0.000 description 1
- 239000000539 dimer Substances 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 229940124737 hepatitis-C vaccine Drugs 0.000 description 1
- 230000001553 hepatotropic effect Effects 0.000 description 1
- 230000005745 host immune response Effects 0.000 description 1
- 230000001939 inductive effect Effects 0.000 description 1
- 238000001990 intravenous administration Methods 0.000 description 1
- RCRODHONKLSMIF-UHFFFAOYSA-N isosuberenol Natural products O1C(=O)C=CC2=C1C=C(OC)C(CC(O)C(C)=C)=C2 RCRODHONKLSMIF-UHFFFAOYSA-N 0.000 description 1
- 201000007270 liver cancer Diseases 0.000 description 1
- 208000019423 liver disease Diseases 0.000 description 1
- 208000014018 liver neoplasm Diseases 0.000 description 1
- 239000000463 material Substances 0.000 description 1
- 239000000203 mixture Substances 0.000 description 1
- 239000002773 nucleotide Substances 0.000 description 1
- 125000003729 nucleotide group Chemical group 0.000 description 1
- 101800000605 p13 Proteins 0.000 description 1
- 230000001717 pathogenic effect Effects 0.000 description 1
- 230000007170 pathology Effects 0.000 description 1
- 230000003449 preventive effect Effects 0.000 description 1
- 238000011809 primate model Methods 0.000 description 1
- 239000000243 solution Substances 0.000 description 1
- 238000001356 surgical procedure Methods 0.000 description 1
- 229940126585 therapeutic drug Drugs 0.000 description 1
- 230000001225 therapeutic effect Effects 0.000 description 1
- 238000013518 transcription Methods 0.000 description 1
- 230000035897 transcription Effects 0.000 description 1
Images
Landscapes
- Micro-Organisms Or Cultivation Processes Thereof (AREA)
- Medicines Containing Antibodies Or Antigens For Use As Internal Diagnostic Agents (AREA)
- Peptides Or Proteins (AREA)
Abstract
Description
技术领域 technical field
本发明涉及病毒、组合物及其制备或纯化领域,特别涉及以引入外来基因材料修饰的病毒领域。The present invention relates to the field of virus, composition and its preparation or purification, in particular to the field of virus modified by introducing foreign gene material.
背景技术 Background technique
丙型肝炎病毒(Hepatitis C Virus,HCV)是经血液传播的、引起急/慢性肝炎的主要致病因子之一,全球各地HCV感染流行状况差异较大,以发展中国家最为严重。目前全世界范围内,大约有1.7亿人感染了丙型肝炎病毒。丙型肝炎病毒感染者中50-85%发展成为慢性肝炎,其中10-20%进一步发展为诸如肝硬化等复合慢性肝病,1-5%的病人在二三十年后发展为肝癌。然而,目前对丙型肝炎病毒感染仍缺乏十分有效的治疗药物,更严峻的是,迄今全球还没有丙肝预防性疫苗。直到今天丙型肝炎的研究也还没有取得突破性的进展,关键因素是由于丙型肝炎病毒只能感染人类和黑猩猩,因此缺乏理想的丙型肝炎病毒感染小型灵长类动物模型,极大地限制了丙型肝炎病毒免疫防治的研究。Hepatitis C virus (HCV) is one of the main pathogenic factors of acute/chronic hepatitis transmitted by blood. The prevalence of HCV infection varies greatly around the world, especially in developing countries. Worldwide, approximately 170 million people are currently infected with the hepatitis C virus. 50-85% of hepatitis C virus infected patients develop into chronic hepatitis, 10-20% of them further develop into complex chronic liver diseases such as liver cirrhosis, and 1-5% develop into liver cancer after 20 or 30 years. However, there is still a lack of very effective therapeutic drugs for hepatitis C virus infection at present, and what is more serious is that there is no hepatitis C preventive vaccine in the world so far. Until today, the research on hepatitis C has not made breakthrough progress. The key factor is that because hepatitis C virus can only infect humans and chimpanzees, there is a lack of ideal small primate models for hepatitis C virus infection, which greatly limits Research on the immune control of hepatitis C virus.
丙型肝炎病毒是一种黄病毒科肝病毒属的病毒,其基因组由结构(核心,囊膜)和非结构(蛋白酶,螺旋酶,酶辅助因子)蛋白及非编码区组成。囊膜蛋白(E)二聚体(E1E2,含p7蛋白)直接介入与宿主细胞的相互作用,并诱导机体产生中和抗体和特异性细胞免疫,是主要的保护性抗原。近年,丙型肝炎病毒全基因组感染性克隆的细胞培养成功,使丙型肝炎病毒细胞培养有了很大进展。然而,自然感染(野生)毒株尚不能细胞培养,特别是尚无有效的小型灵长类动物感染模型模拟真实的丙型肝炎病毒感染,依旧极大地限制着丙型肝炎病毒免疫研究。Hepatitis C virus is a virus belonging to the Hepavirus genus of the Flaviviridae family. Its genome consists of structural (core, envelope) and nonstructural (protease, helicase, enzyme cofactor) proteins and non-coding regions. Envelope protein (E) dimer (E1E2, containing p7 protein) is directly involved in the interaction with host cells, and induces the body to produce neutralizing antibodies and specific cellular immunity, and is the main protective antigen. In recent years, the successful cell culture of the whole genome infectious clone of hepatitis C virus has made great progress in the cell culture of hepatitis C virus. However, naturally infected (wild) strains cannot be cultured in cells, especially there is no effective small primate infection model to simulate real HCV infection, which still greatly limits the research on HCV immunity.
现有技术中,利用嵌合病毒的研究已见于HCV/HIV、HCV/VSV、HCV/YFV、HCV/CSFV、HCV/BVDV和HCV/PV。这些构建的HCV嵌合病毒或称伪病毒(pseudotype virus)主要用于丙型肝炎病毒蛋白与细胞的相互作用、中和抗体测定,以及基因调控等研究。由于这些骨架病毒均无嗜肝细胞性,故不能用于丙型肝炎疫苗免疫防治研究。In the prior art, studies using chimeric viruses have been found in HCV/HIV, HCV/VSV, HCV/YFV, HCV/CSFV, HCV/BVDV and HCV/PV. These constructed HCV chimeric viruses or pseudotype viruses are mainly used for research on the interaction between hepatitis C virus protein and cells, the determination of neutralizing antibodies, and gene regulation. Since none of these skeleton viruses have hepatotropic properties, they cannot be used in the research on the immune prevention and treatment of hepatitis C vaccine.
GB病毒B(GBV-B)是一种最近似丙型肝炎病毒,同属黄病毒科肝病毒属的病毒。与丙型肝炎病毒不同,GB病毒B可在小型灵长类动物狨猴common marmoset(Callithrix jacchuejacchus)和小娟猴(Tamarin,Saguinus spp)体内复制并导致急或慢性肝炎。但是GB病毒B仍然与丙型肝炎病毒存在差异,不能完全模拟丙型肝炎病毒在灵长类动物体内的感染和免疫状态,因此,如果以GB病毒B基因组为骨架,以丙型肝炎病毒的功能基因取代GB病毒B的相应功能区,构建HCV/GBV-B嵌合病毒,则是利用感染模型研究丙型肝炎病毒免疫的理想方案。然而,由于将丙型肝炎病毒的完整功能蛋白基因替换到GB病毒B基因组中存在一定的困难,并且构建的含完整功能蛋白的嵌合病毒是否能够感染小型灵长类动物存在不确定性和风险性,因此,目前利用HCV/GBV-B嵌合病毒的研究仅见于将较小基因片段的丙型肝炎病毒的5’-NCR,p7或HVR1替换到GB病毒B基因组中,这些只包含了丙型肝炎病毒很短基因片段的嵌合病毒只能用于研究这些特定基因片段的功能,无法表明丙型肝炎病毒与宿主之间的相互作用,不能完全模拟丙型肝炎病毒在灵长类动物体内的免疫反应。上述将丙型肝炎病毒的5’-NCR,p7或HVR1替换到GB病毒B基因组中的方案,参见Rijnbrand,R.et al.Achimeric GB virus B with 5’nontranslated RNA sequence from hepatitis C virus causeshepatitis in tamarins.Hepatology.41,986-994(2005)、Takikawa,S.et al.Functionalanalyses of GB virus B p13 protein:Development of a recombinant GB virus B hepatitisvirus with a p7 protein.Proc Natl Acad Sci USA.103,3345-3350(2006)、Haqshenas,G.,Dong,X.,Netter,H.,Torresi,J.&Gowans,E.J.A chimeric GB virus B encodingthe hepatitis C virus hypervariable region 1 is infectious in vivo.J.Gen.Virol.88,895-902(2007).和Griffin,S.et al.Chimeric GB virus B genomes containinghepatitis C virus p7 are infectious in vivo.J.Hepatol.49,908-915(2008)等文献的报导。GB virus B (GBV-B) is a virus that is closest to hepatitis C virus and belongs to the Hepavirus genus of the Flaviviridae family. Unlike hepatitis C virus, GB virus B replicates in the small primate marmosets common marmoset (Callithrix jacchuejacchus) and lesser marmoset (Tamarin, Saguinus spp) and causes acute or chronic hepatitis. However, GB virus B is still different from hepatitis C virus, and cannot completely simulate the infection and immune status of hepatitis C virus in primates. Therefore, if the GB virus B genome is used as the backbone, the function of hepatitis C virus The gene replaces the corresponding functional region of GB virus B to construct the HCV/GBV-B chimeric virus, which is an ideal solution to study the immunity of hepatitis C virus by using the infection model. However, there are certain difficulties in replacing the complete functional protein gene of hepatitis C virus into the GB virus B genome, and there are uncertainties and risks in whether the constructed chimeric virus with complete functional protein can infect small primates Therefore, the current research using HCV/GBV-B chimeric virus has only been found in the replacement of the 5'-NCR, p7 or HVR1 of the hepatitis C virus with smaller gene segments into the GB virus B genome, which only contains C Chimeric viruses with very short gene segments of hepatitis virus can only be used to study the function of these specific gene segments, and cannot show the interaction between hepatitis C virus and the host, and cannot completely simulate the interaction of hepatitis C virus in primates immune response. For the above scheme of replacing 5'-NCR, p7 or HVR1 of hepatitis C virus into GB virus B genome, see Rijnbrand, R. et al. Achimeric GB virus B with 5'nontranslated RNA sequence from hepatitis C virus cause shepatitis in tamarins .Hepatology.41, 986-994(2005), Takikawa, S.et al.Functional analyzes of GB virus B p13 protein: Development of a recombinant GB virus B hepatitis virus with a p7 protein.Proc Natl Acad Sci USA.103, 3345 3350(2006), Haqshenas, G., Dong, X., Netter, H., Torresi, J.&Gowans, E.J.A chimeric GB virus B encodingthe hepatitis C virus
发明内容 Contents of the invention
本发明要求解决的技术问题是提供一种丙型肝炎病毒完整囊膜蛋白与GB病毒B的嵌合病毒,该病毒可感染狨猴,模拟丙型肝炎病毒在灵长类动物体内感染及免疫状态,进行丙型肝炎病毒免疫防治研究与疫苗评价。The technical problem to be solved by the present invention is to provide a chimeric virus of the complete envelope protein of hepatitis C virus and GB virus B, which can infect marmosets, and simulate the infection and immune status of hepatitis C virus in primates , research and vaccine evaluation of hepatitis C virus immune prevention and control.
一种丙型肝炎病毒完整囊膜蛋白与GB病毒B的嵌合病毒,该嵌合病毒由GB病毒B的5’端非编码区及核心蛋白基因序列、丙型肝炎病毒的完整囊膜蛋白基因序列和GB病毒B的非结构蛋白及3’端非编码区序列依次连接构成。A chimeric virus of the complete envelope protein of hepatitis C virus and GB virus B, the chimeric virus consists of the 5' non-coding region of GB virus B and the core protein gene sequence, and the complete envelope protein gene of hepatitis C virus sequence and the non-structural protein of GB virus B and the sequence of the 3' end non-coding region are sequentially connected to form.
本发明所述的丙型肝炎病毒完整囊膜蛋白与GB病毒B的嵌合病毒的基因结构和构建模式见图1。其中GB病毒B全基因组由5’端非编码区(5’-NCR)、核心蛋白基因(core)、完整囊膜蛋白基因(E1E2p13)、非结构蛋白2到5B(NS2-NS3-NS4A-NS4B-NS5A-NS5B)基因和3’端非编码区(3’-NCR)组成。虚线代表用丙型肝炎病毒完整囊膜蛋白(E1E2p7)基因(图中阴影部分表示)替换GB病毒B相应区域,得到的丙型肝炎病毒完整囊膜蛋白与GB病毒B的嵌合病毒全基因组由GB病毒B5’端非编码区(5’-NCR)及核心蛋白基因(core)、丙型肝炎病毒完整囊膜蛋白基因(E1E2p7)、GB病毒B非结构蛋白2到5B(NS2-NS3-NS4A-NS4B-NS5A-NS5B)基因和3’端非编码区(3’-NCR)组成。The gene structure and construction mode of the chimeric virus of the complete envelope protein of hepatitis C virus and GB virus B according to the present invention are shown in FIG. 1 . Among them, the whole genome of GB virus B consists of 5' non-coding region (5'-NCR), core protein gene (core), complete envelope protein gene (E1E2p13),
本发明上述的丙型肝炎病毒的完整囊膜蛋白基因序列可以是不同基因型丙型肝炎病毒的完整囊膜蛋白基因序列,还可以是同一基因型不同独立来源的丙型肝炎病毒的完整囊膜蛋白基因序列。本发明上述的丙型肝炎病毒的完整囊膜蛋白基因序列最好是1b基因型丙型肝炎病毒的完整囊膜蛋白基因序列。1b基因型丙型肝炎病毒的完整囊膜蛋白基因序列与现有基因型1a、1b、2a、2b、3、4、5和6型丙型肝炎病毒之间的核苷酸序列同源性为63.2%,可以代表全部基因型丙型肝炎病毒的完整囊膜蛋白。The complete envelope protein gene sequence of the above-mentioned hepatitis C virus of the present invention can be the complete envelope protein gene sequence of different genotypes of hepatitis C virus, and can also be the complete envelope of hepatitis C virus from different independent sources of the same genotype protein gene sequence. The complete envelope protein gene sequence of the above-mentioned hepatitis C virus of the present invention is preferably the complete envelope protein gene sequence of 1b genotype hepatitis C virus. The nucleotide sequence homology between the complete envelope protein gene sequence of HCV genotype 1b and existing
本发明所述的嵌合病毒,当所述的丙型肝炎病毒的完整囊膜蛋白基因序列是1b基因型丙型肝炎病毒的完整囊膜蛋白基因序列时,其序列如SEQ ID NO:1所示,其中,1-913位为GB病毒B的5’端非编码区及核心蛋白基因序列,914-2767位为丙型肝炎病毒的完整囊膜蛋白基因序列,2768-9525位为GB病毒B的非结构蛋白及3’端非编码区序列。Chimeric virus of the present invention, when the complete envelope protein gene sequence of described hepatitis C virus is the complete envelope protein gene sequence of 1b genotype hepatitis C virus, its sequence is shown in SEQ ID NO:1 Among them, positions 1-913 are the 5' non-coding region and core protein gene sequence of GB virus B, positions 914-2767 are the complete envelope protein gene sequence of hepatitis C virus, positions 2768-9525 are GB virus B non-structural proteins and 3' non-coding region sequences.
本发明所述的嵌合病毒可以依据本领域常用的制备方法得到,本发明人推荐的方法如下:The chimeric virus of the present invention can be obtained according to the commonly used preparation methods in the art, and the method recommended by the inventor is as follows:
(1)从1b型丙型肝炎病毒血清样本中提取出RNA并RT-PCR逆转录为cDNA,然后巢式PCR扩增丙型肝炎病毒的完整结构蛋白基因片段并与pMD-20T载体连接,得到含有丙型肝炎病毒完整结构蛋白基因片段的质粒;其中所述巢式PCR扩增的引物如下:(1) Extract RNA from type 1b hepatitis C virus serum samples and reverse transcribe it into cDNA by RT-PCR, then amplify the complete structural protein gene fragment of hepatitis C virus by nested PCR and connect it with pMD-20T carrier to obtain A plasmid containing the complete structural protein gene fragment of hepatitis C virus; wherein the primers for the nested PCR amplification are as follows:
上游外引物序列为SEQ ID NO:2所示的序列;The upstream outer primer sequence is the sequence shown in SEQ ID NO: 2;
下游外引物序列为SEQ ID NO:3所示的序列;The downstream outer primer sequence is the sequence shown in SEQ ID NO: 3;
上游内引物序列为SEQ ID NO:4所示的序列;The upstream internal primer sequence is the sequence shown in SEQ ID NO: 4;
下游内引物序列为SEQ ID NO:5所示的序列;The downstream internal primer sequence is the sequence shown in SEQ ID NO: 5;
(2)取GB病毒B全基因组的质粒,采用PCR方法从中扩增GB病毒B的完整囊膜蛋白基因上游的NotI-core和下游NS2-AflII两基因片段;取步骤(1)所得到的质粒,采用PCR方法从中扩增丙型肝炎病毒的完整囊膜蛋白基因片段;其中,(2) Get the plasmid of the whole genome of GB virus B, adopt the PCR method to amplify the NotI-core upstream of the complete envelope protein gene of GB virus B and the downstream NS2-AflII two gene fragments therefrom; Get the resulting plasmid of step (1) , using the PCR method to amplify the complete envelope protein gene fragment of hepatitis C virus therefrom; wherein,
扩增GB病毒B的NotI-core基因片段的上游引物序列为SEQ ID NO:6所示的序列;The upstream primer sequence for amplifying the NotI-core gene fragment of GB virus B is the sequence shown in SEQ ID NO: 6;
扩增GB病毒B的NotI-core基因片段的下游引物序列为SEQ ID NO:7所示的序列;The downstream primer sequence for amplifying the NotI-core gene fragment of GB virus B is the sequence shown in SEQ ID NO: 7;
扩增丙型肝炎病毒的完整囊膜蛋白基因片段的上游引物序列为SEQ ID NO:8所示的序列;The upstream primer sequence for amplifying the complete envelope protein gene fragment of hepatitis C virus is the sequence shown in SEQ ID NO: 8;
扩增丙型肝炎病毒的完整囊膜蛋白基因片段的下游引物序列为SEQ ID NO:9所示的序列;The downstream primer sequence for amplifying the complete envelope protein gene fragment of hepatitis C virus is the sequence shown in SEQ ID NO: 9;
扩增GB病毒B NS2-AflII基因片段的上游引物序列为SEQ ID NO:10所示的序列;The upstream primer sequence for amplifying the GB virus B NS2-AflII gene fragment is the sequence shown in SEQ ID NO: 10;
扩增GB病毒B NS2-AflII基因片段的下游引物序列为SEQ ID NO:11所示的序列;The downstream primer sequence for amplifying the GB virus B NS2-AflII gene fragment is the sequence shown in SEQ ID NO: 11;
将扩增的PCR产物分别进行电泳并凝胶回收目的条带,所得到的三段DNA用OverlappingPCR的方法,按丙型肝炎病毒的完整囊膜蛋白基因片段、GB病毒B的NS2-AflII基因片段和GB病毒B的NotI-core基因片段顺序进行连接,得重组DNA片段;The amplified PCR products were electrophoresed and the target bands were recovered from the gel. The obtained three segments of DNA were divided into the complete envelope protein gene fragment of hepatitis C virus and the NS2-AflII gene fragment of GB virus B by the method of OverlappingPCR. Sequential connection with the NotI-core gene fragment of GB virus B to obtain a recombinant DNA fragment;
另取GB病毒B全基因组的质粒用NotI与AflII进行双酶切,回收去除NotI与AflII两位点间含有GB病毒B的完整囊膜蛋白基因片段的DNA片段,并与所述重组DNA片段连接,得嵌合全基因组质粒;Take another GB virus B whole genome plasmid and use NotI and AflII to perform double enzyme digestion, recover and remove the DNA fragment containing the complete envelope protein gene fragment of GB virus B between the NotI and AflII sites, and connect to the recombinant DNA fragment , to obtain a chimeric whole genome plasmid;
(3)将所得嵌合全基因质粒的全基因组序列于SacI位点切断,并以其为模板,由T7 RNA聚合酶转录合成嵌合病毒的RNA。(3) The full genome sequence of the gained chimeric full-gene plasmid is cut at the SacI site, and with it as a template, the RNA of the chimeric virus is transcribed by T7 RNA polymerase.
本发明建立的丙型肝炎病毒完整囊膜蛋白与GB病毒B的嵌合病毒,用于置换GB病毒B完整囊膜蛋白的片段为丙型肝炎病毒完整囊膜蛋白1854bp长片段,相比之前置换GBV-B较短片段构建嵌合病毒的报道是一个较大的突破,并且完整囊膜蛋白直接介入与宿主细胞的相互作用,诱导机体产生中和抗体和特异性细胞免疫,是主要的保护性抗原,因此该嵌合病毒感染狨猴后,可以真实反映出丙型肝炎病毒的免疫应答情况,用于筛查丙型肝炎病毒完整囊膜蛋白保护性抗原表位,更好地了解丙型肝炎病毒感染、病理学、宿主免疫反应以及疫苗和治疗性抗体临床前研究与评价。The chimeric virus of the complete envelope protein of hepatitis C virus and GB virus B established by the present invention is used to replace the fragment of the complete envelope protein of GB virus B with a 1854bp long fragment of the complete envelope protein of hepatitis C virus, compared with the previous replacement The report on the construction of chimeric viruses with shorter fragments of GBV-B is a major breakthrough, and the complete envelope protein directly intervenes in the interaction with host cells, inducing the body to produce neutralizing antibodies and specific cellular immunity, which is the main protective Therefore, after the chimeric virus infects marmosets, it can truly reflect the immune response of hepatitis C virus, which can be used to screen the protective epitope of the complete envelope protein of hepatitis C virus and better understand hepatitis C Viral infection, pathology, host immune response, and preclinical research and evaluation of vaccines and therapeutic antibodies.
附图说明Description of drawings
图1是丙型肝炎病毒完整囊膜蛋白与GB病毒B的嵌合病毒的基因结构和构建方法示意图。Figure 1 is a schematic diagram of the gene structure and construction method of the chimeric virus of the complete envelope protein of hepatitis C virus and GB virus B.
图2是狨猴肝内注射嵌合病毒RNA后血清中病毒载量变化直方图;其中,黑色方块表示嵌合病毒,白色方块表示GB病毒B。Figure 2 is a histogram of changes in serum viral load after intrahepatic injection of chimeric virus RNA in marmoset monkeys; wherein, black squares represent chimeric viruses, and white squares represent GB virus B.
图3是原代嵌合病毒感染狨猴血清静脉接种感染第二代狨猴后血清中病毒载量变化直方图;其中,黑色方块表示嵌合病毒,白色方块表示GB病毒B。Figure 3 is a histogram of viral load changes in the serum of marmosets infected with the primary chimeric virus after intravenous inoculation with the second generation of marmosets; black squares represent chimeric viruses, and white squares represent GB virus B.
附图4是原代及传代狨猴血清中嵌合病毒RNA RT-nested PCR鉴定电泳图。Accompanying
具体实施方式 Detailed ways
下面结合附图与具体实施例对本发明作进一步的详细描述。这些实施例仅用于说明本发明而不用于限制本发明的范围。The present invention will be further described in detail below in conjunction with the accompanying drawings and specific embodiments. These examples are only for illustrating the present invention and are not intended to limit the scope of the present invention.
实施例1、制备丙型肝炎病毒完整囊膜蛋白与GB病毒B的嵌合病毒
(1)制备丙型肝炎病毒完整结构蛋白基因(其中包含完整囊膜蛋白基因片段)(1) Prepare the complete structural protein gene of hepatitis C virus (which includes the complete envelope protein gene fragment)
(a)用罗氏核酸提取试剂盒按说明书操作从200μl血清中提取丙型肝炎病毒1b型血清样本中的病毒RNA,溶于50μl Elution buffer中。(a) Extract viral RNA from HCV type 1b serum samples from 200 μl serum with the Roche Nucleic Acid Extraction Kit according to the instructions, and dissolve in 50 μl Elution buffer.
(b)设计并合成扩增丙型肝炎病毒1b型完整结构蛋白基因的上游外引物、下游外引物、上游内引物和下游内引物;用RT-PCR的方法将提取的丙型肝炎病毒RNA逆转录为eDNA;用巢式PCR的方法分两轮扩增丙型肝炎病毒完整结构蛋白基因片段。将扩增得到的丙型肝炎病毒完整结构蛋白基因与pMD-20T载体连接,用TOP10感受态细胞进行转化,得到含有丙型肝炎病毒完整结构蛋白基因片段的质粒。(b) Design and synthesize the upstream outer primers, downstream outer primers, upstream inner primers and downstream inner primers for amplifying the complete structural protein gene of hepatitis C virus type 1b; reverse the extracted hepatitis C virus RNA by RT-PCR It was recorded as eDNA; the complete structural protein gene fragment of hepatitis C virus was amplified in two rounds by nested PCR. The amplified complete structural protein gene of the hepatitis C virus is connected with the pMD-20T vector, transformed with TOP10 competent cells, and the plasmid containing the complete structural protein gene fragment of the hepatitis C virus is obtained.
其中,所述的扩增丙型肝炎病毒1b型完整结构蛋白基因的引物如下:Wherein, the primers for amplifying the complete structural protein gene of hepatitis C virus type 1b are as follows:
上游外引物序列为SEQ ID NO:2所示的序列;The upstream outer primer sequence is the sequence shown in SEQ ID NO: 2;
下游外引物序列为SEQ ID NO:3所示的序列;The downstream outer primer sequence is the sequence shown in SEQ ID NO: 3;
上游内引物序列为SEQ ID NO:4所示的序列;The upstream internal primer sequence is the sequence shown in SEQ ID NO: 4;
下游内引物序列为SEQ ID NO:5所示的序列。The downstream internal primer sequence is the sequence shown in SEQ ID NO:5.
其中,提取出的RNA逆转录为eDNA,反应体系及条件如下(TaKaRa):Among them, the extracted RNA is reverse-transcribed into eDNA, and the reaction system and conditions are as follows (TaKaRa):
巢式PCR的方法分两轮扩增丙型肝炎病毒完整结构蛋白基因片段,反应体系及条件如下(TaKaRa): The nested PCR method is divided into two rounds to amplify the complete structural protein gene fragment of hepatitis C virus. The reaction system and conditions are as follows (TaKaRa):
(2)构建丙型肝炎病毒完整囊膜蛋白与GB病毒B的嵌合全基因组质粒(2) Construction of a chimeric full-genome plasmid of the complete envelope protein of hepatitis C virus and GB virus B
(a)取GB病毒B全基因组的质粒(命名为pGBB,美国Jens Bukh博士惠赠。地址:NIH,NIAID,LID,Hepatitis Viruses Section,Building 7,Room 201,7 Center Dr.MSC 0740,Bethesda,MD 20892-0740.传真:(301)402-0524.E-mail:jbukhniaid.nih.gov),采用PCR方法从中扩增GB病毒B的完整囊膜蛋白基因上游的NotI-core和下游NS2-AflII两基因片段;取步骤(1)所得到的质粒,采用PCR方法从中扩增丙型肝炎病毒的完整囊膜蛋白基因片段。引物设计符合overlapping PCR的要求。其中,(a) Take the plasmid of the whole genome of GB virus B (named pGBB, donated by Dr. Jens Bukh, USA. Address: NIH, NIAID, LID, Hepatitis Viruses Section,
扩增GB病毒B的NotI-core基因片段的上游引物序列为SEQ ID NO:6所示的序列;The upstream primer sequence for amplifying the NotI-core gene fragment of GB virus B is the sequence shown in SEQ ID NO: 6;
扩增GB病毒B的NotI-core基因片段的下游引物序列为SEQ ID NO:7所示的序列;The downstream primer sequence for amplifying the NotI-core gene fragment of GB virus B is the sequence shown in SEQ ID NO: 7;
扩增丙型肝炎病毒的完整囊膜蛋白基因片段的上游引物序列为SEQ ID NO:8所示的序列;The upstream primer sequence for amplifying the complete envelope protein gene fragment of hepatitis C virus is the sequence shown in SEQ ID NO: 8;
扩增丙型肝炎病毒的完整囊膜蛋白基因片段的下游引物序列为SEQ ID NO:9所示的序列;The downstream primer sequence for amplifying the complete envelope protein gene fragment of hepatitis C virus is the sequence shown in SEQ ID NO: 9;
扩增GB病毒B的NS2-AflII基因片段的上游引物序列为SEQ ID NO:10所示的序列;The upstream primer sequence for amplifying the NS2-AflII gene fragment of GB virus B is the sequence shown in SEQ ID NO: 10;
扩增GB病毒B的NS2-AflII基因片段的下游引物序列为SEQ ID NO:11所示的序列。The downstream primer sequence for amplifying the NS2-AflII gene fragment of GB virus B is the sequence shown in SEQ ID NO: 11.
用普通PCR方法分别对上述三片段进行扩增,扩增体系及反应条件分别如下:The above three fragments were respectively amplified by ordinary PCR method, and the amplification system and reaction conditions were as follows:
扩增GB病毒B的NotI-core基因片段(TaKaRa):Amplify the NotI-core gene fragment (TaKaRa) of GB virus B:
扩增丙型肝炎病毒完整囊膜蛋白基因片段:Amplification of the complete envelope protein gene fragment of hepatitis C virus:
扩增GB病毒B的NS2-AflII基因片段:Amplify the NS2-AflII gene fragment of GB virus B:
将扩增的PCR产物进行电泳并凝胶回收目的条带。The amplified PCR products were electrophoresed and the target bands were recovered from the gel.
(b)将回收的三段DNA用Overlapping PCR的方法进行连接,得重组DNA片段。首先将丙型肝炎病毒完整囊膜蛋白基因片段与GB病毒B的NS2-AflII基因片段连接,反应体系及条件如下:(b) Ligate the recovered three pieces of DNA by the method of Overlapping PCR to obtain a recombinant DNA fragment. First, the complete envelope protein gene fragment of hepatitis C virus is connected with the NS2-AflII gene fragment of GB virus B, and the reaction system and conditions are as follows:
连接得到的目的条带(丙型肝炎病毒完整囊膜蛋白与GB病毒B的NS2-AflII连接片段)再与GB病毒B的NotI-core基因片段连接,反应体系及条件如下:The target band obtained by connection (the complete envelope protein of hepatitis C virus and the NS2-AflII connection fragment of GB virus B) is connected with the NotI-core gene fragment of GB virus B again, and the reaction system and conditions are as follows:
则得到重组DNA片段。A recombinant DNA fragment is then obtained.
(c)另取GB病毒B全基因组的质粒用NotI与AflII进行双酶切,回收去除NotI与AflII两位点间含有GB病毒B的完整囊膜蛋白基因片段的DNA片段,并与所述重组DNA片段连接,得嵌合全基因组质粒。(c) Take the plasmid of the complete genome of GB virus B and carry out double enzyme digestion with NotI and AflII, reclaim and remove the DNA fragment containing the complete envelope protein gene fragment of GB virus B between the two sites of NotI and AflII, and recombine with the The DNA fragments were ligated to obtain a chimeric whole genome plasmid.
(d)测序后,SEQ ID NO:1所示为丙型肝炎病毒完整囊膜蛋白与GB病毒B嵌合全基因组序列,全长9525bp,其中1-913位为GB病毒B的的5’端非编码区和核心蛋白基因序列,914-2767位为1b基因型丙型肝炎病毒的完整囊膜蛋白基因序列,2768-9525位为GB病毒B的非结构蛋白及3’端非编码区序列。(d) After sequencing, SEQ ID NO: 1 shows the chimeric complete genome sequence of the complete envelope protein of hepatitis C virus and GB virus B, the full length is 9525bp, and positions 1-913 are the 5' end of GB virus B Non-coding region and core protein gene sequence, 914-2767 is the complete envelope protein gene sequence of genotype 1b hepatitis C virus, 2768-9525 is the non-structural protein and 3' end non-coding region sequence of GB virus B.
(3)制备丙型肝炎病毒完整囊膜蛋白与GB病毒B的嵌合病毒RNA(3) Prepare the chimeric virus RNA of the complete envelope protein of hepatitis C virus and GB virus B
将所得嵌合全基因质粒的全基因组序列用SacI位点切断,并以其为模板,利用T7转录试剂盒按说明书操作,在T7启动子指导下,由RNA聚合酶转录合成嵌合病毒RNA。Cut the whole genome sequence of the obtained chimeric whole gene plasmid with SacI site, and use it as a template, use the T7 transcription kit to operate according to the instructions, under the guidance of the T7 promoter, transcribe and synthesize the chimeric virus RNA by RNA polymerase.
实施例2、嵌合病毒在狨猴体内感染性评价Example 2. Infectivity evaluation of chimeric virus in marmoset
嵌合病毒感染性评价标准:①有感染性:病毒复制,狨猴血清中检测到病毒载量并验证正确;②无感染性:病毒不复制,狨猴血清中检测不到病毒载量。Evaluation criteria for chimeric virus infectivity: ① Infectious: virus replicates, and the viral load is detected in marmoset serum and verified to be correct; ② Non-infectious: virus does not replicate, and viral load cannot be detected in marmoset serum.
感染狨猴的方法可以是肝内注射嵌合病毒和静脉注射含嵌合病毒的原代狨猴血清对狨猴感染。具体感染步骤及评价如下:The method of infecting marmosets can be intrahepatic injection of chimeric virus and intravenous injection of primary marmoset serum containing chimeric virus to infect marmosets. The specific infection steps and evaluation are as follows:
1.肝内注射嵌合病毒RNA及狨猴血清中病毒载量的测定1. Intrahepatic injection of chimeric viral RNA and determination of viral load in marmoset serum
(1)肝内注射嵌合病毒RNA(1) Intrahepatic injection of chimeric virus RNA
选用健康成年实验动物狨猴(ALT、AST等肝脏酶活性正常、GB病毒B阴性)(300-400g左右/只),分为三组,分别手术暴露肝脏,肝内注射制备的嵌合病毒RNA(注射前溶于磷酸缓冲液)、GB病毒B或磷酸缓冲液,嵌合病毒及GB病毒B接种量为300μg/只,缝合。分别建立:Choose healthy adult marmosets (with normal liver enzyme activity such as ALT, AST, and GB virus B negative) (about 300-400g/monkey), divide them into three groups, expose the liver by surgery, and inject the prepared chimeric virus RNA into the liver (dissolved in phosphate buffer before injection), GB virus B or phosphate buffer, the inoculation amount of chimeric virus and GB virus B was 300 μg/only, and sutured. build respectively:
①嵌合病毒感染狨猴实验组;① Chimeric virus infected marmoset experimental group;
②GB病毒B感染狨猴阳性对照组;②GB virus B infected marmoset positive control group;
③无病毒感染狨猴阴性对照组。③Negative control group of marmosets without virus infection.
(2)狨猴血清中病毒载量的测定(2) Determination of viral load in marmoset serum
(a)根据GB病毒B的5’端非编码区基因序列设计上下游引物及探针。(a) Design upstream and downstream primers and probes based on the 5' UTR gene sequence of GB virus B.
扩增GB病毒B5’端非编码区上游引物为SEQ ID NO:12所示的序列;The upstream primer for amplifying the non-coding region of the B5' end of GB virus is the sequence shown in SEQ ID NO: 12;
扩增GB病毒B5’端非编码区下游引物为SEQ ID NO:13所示的序列;Amplify the downstream primer of the GB virus B5' end non-coding region as the sequence shown in SEQ ID NO: 13;
扩增GB病毒B5’端非编码区探针为SEQ ID NO:14所示的序列。The amplified GB virus B5' end non-coding region probe is the sequence shown in SEQ ID NO: 14.
(b)狨猴接种后,每1-2周股静脉采血0.5-1ml。分离血清,用罗氏核酸提取试剂盒按说明书操作从100μl血清中提取病毒RNA,溶于50μl Elution buffer中。然后,用RT-PCR的方法将提取的病毒RNA逆转录为cDNA。用上述扩增GB病毒B的5’端非编码区的上下游引物及探针,采用定量PCR方法测定病毒体内复制情况。(b) After marmoset inoculation, 0.5-1 ml of blood was collected from the femoral vein every 1-2 weeks. The serum was separated, and viral RNA was extracted from 100 μl serum with Roche nucleic acid extraction kit according to the instructions, and dissolved in 50 μl Elution buffer. Then, the extracted viral RNA was reverse-transcribed into cDNA by RT-PCR. Using the above-mentioned upstream and downstream primers and probes for amplifying the 5' non-coding region of GB virus B, the replication of the virus in vivo was determined by quantitative PCR.
提取出的RNA逆转录为cDNA,反应体系及条件如下(TaKaRa):The extracted RNA was reverse-transcribed into cDNA, and the reaction system and conditions were as follows (TaKaRa):
定量PCR反应体系及条件如下:The quantitative PCR reaction system and conditions are as follows:
结果如附图2。由图2可看出丙型肝炎病毒完整囊膜蛋白与GB病毒B嵌合病毒感染狨猴实验组及GB病毒B阳性对照组均出现典型的病毒复制与清除状况。阴性对照组血清内未检测到病毒。结果证明丙型肝炎病毒完整囊膜蛋白与GB病毒B嵌合病毒RNA可以在肝脏内包装复制,嵌合病毒在狨猴体内具有感染性。The results are shown in Figure 2. It can be seen from Figure 2 that typical virus replication and clearance conditions appeared in the marmoset experimental group infected with the intact envelope protein of hepatitis C virus and the GB virus B chimeric virus and the GB virus B positive control group. No virus was detected in the serum of the negative control group. The results proved that the complete envelope protein of hepatitis C virus and the chimeric virus RNA of GB virus B can be packaged and replicated in the liver, and the chimeric virus is infectious in marmosets.
2.原代嵌合病毒感染狨猴的血清接种感染与传代2. Serum inoculation infection and passage of primary chimeric virus infected marmosets
将经检测含有嵌合病毒、GB病毒B的狨猴血清分别传代接种,接种病毒量为104copies,血清静脉注射到其它健康狨猴体内,同时做阴性对照,相应建立实施例2步骤1(1)中三组狨猴的传代实验组。每1-2周股静脉采血0.5-1ml,采用定量PCR(QPCR)方法测定病毒体内复制情况,检测方法同实施例2步骤1(2)。The marmoset serum tested to contain chimeric virus and GB virus B was subcultured and inoculated separately, the amount of virus inoculated was 10 4 copies, and the serum was intravenously injected into other healthy marmoset monkeys, and a negative control was made at the same time, and
结果如附图3。由图3可看出丙型肝炎病毒完整囊膜蛋白与GB病毒B的嵌合病毒传代感染实验组及GB病毒B阳性对照传代感染组也均出现典型的病毒复制与清除状况。阴性对照组血清内未检测到病毒。结果证明丙型肝炎病毒完整囊膜蛋白与GB病毒B的嵌合病毒可传代感染。The results are shown in Figure 3. It can be seen from Figure 3 that the chimeric virus subculture infection experiment group of the complete envelope protein of hepatitis C virus and GB virus B and the GB virus B positive control subculture infection group also showed typical virus replication and clearance conditions. No virus was detected in the serum of the negative control group. The results prove that the chimeric virus of the complete envelope protein of hepatitis C virus and GB virus B can be subcultured and infected.
3.原代及传代嵌合病毒感染狨猴血清中嵌合病毒的鉴定3. Identification of chimeric virus in the serum of marmoset monkeys infected with primary and passage chimeric virus
为进一步证明上述实施例2步骤1和2中采用定量PCR检测到的病毒为带有GB病毒B骨架的嵌合病毒,而非GB病毒B全病毒,根据丙型肝炎病毒完整囊膜蛋白基因序列中的E1序列和GB病毒B的E1序列分别设计引物进行巢式PCR(RT-nested)鉴定。In order to further prove that the virus detected by quantitative PCR in
(1)根据丙型肝炎病毒完整囊膜蛋白基因序列中的E1序列设计引物。(1) Design primers according to the E1 sequence in the complete envelope protein gene sequence of hepatitis C virus.
鉴定嵌合病毒的上游外引物为SEQ ID NO:15所示的序列;The upstream outer primer for identifying the chimeric virus is the sequence shown in SEQ ID NO: 15;
鉴定嵌合病毒的下游外引物为SEQ ID NO:16所示的序列;The downstream outer primer for identifying the chimeric virus is the sequence shown in SEQ ID NO: 16;
鉴定嵌合病毒的上游内引物为SEQ ID NO:17所示的序列;The upstream internal primer for identifying the chimeric virus is the sequence shown in SEQ ID NO: 17;
鉴定嵌合病毒的下游内引物为SEQ ID NO:18所示的序列。The downstream internal primer for identifying the chimeric virus is the sequence shown in SEQ ID NO: 18.
(2)根据GB病毒B的E1序列设计引物。(2) Design primers according to the E1 sequence of GB virus B.
鉴定GB病毒B的上游外引物为SEQ ID NO:19所示的序列;Identify the upstream outer primer of GB virus B as the sequence shown in SEQ ID NO: 19;
鉴定GB病毒B的下游外引物为SEQ ID NO:20所示的序列;Identify the downstream outer primer of GB virus B as the sequence shown in SEQ ID NO: 20;
鉴定GB病毒B的上游内引物为SEQ ID NO:21所示的序列;Identify the upstream inner primer of GB virus B as the sequence shown in SEQ ID NO: 21;
鉴定GB病毒B的下游内引物为SEQ ID NO:22所示的序列。The downstream internal primer for identifying GB virus B is the sequence shown in SEQ ID NO: 22.
(3)以原代和传代嵌合病毒狨猴感染模型血清中提取的病毒基因组为模板,用鉴定嵌合病毒的引物进行逆转录和巢式PCR扩增,反应体系及条件同实施例1。结果如附图4,其中2、3、4孔道为原代丙型肝炎病毒完整囊膜蛋白与GB病毒B的嵌合病毒模型鉴定结果,5、6、7为传代丙型肝炎病毒完整囊膜蛋白与GB病毒B的嵌合病毒模型鉴定结果。电泳条带大小为165bp,扩增产物克隆测序后正确,说明原代及传代丙型肝炎病毒完整囊膜蛋白与GB病毒B的嵌合病毒狨猴感染模型血清中检测到的病毒确为丙型肝炎病毒完整囊膜蛋白与GB病毒B的嵌合病毒。(3) Using the virus genome extracted from the serum of the marmoset infection model of the primary and passage chimeric virus as a template, reverse transcription and nested PCR amplification were performed with primers for identifying the chimeric virus, and the reaction system and conditions were the same as in Example 1. The results are shown in Figure 4, in which
(4)以原代和传代GB病毒B狨猴感染模型血清中提取的病毒基因组为模板,用鉴定GB病毒B的引物进行逆转录和巢式PCR扩增,反应体系及条件同实施例1。结果如附图4,电泳孔道8~11所示,电泳条带大小为217bp,扩增产物克隆测序后正确,说明原代及传代GB病毒B狨猴感染模型血清中检测到的病毒确为GB病毒B。(4) Using the virus genome extracted from the serum of the primary and passage GB virus B marmoset infection model as a template, carry out reverse transcription and nested PCR amplification with primers for identifying GB virus B, and the reaction system and conditions are the same as in Example 1. The results are shown in Figure 4, as shown in the electrophoresis wells 8-11, the size of the electrophoresis band is 217bp, and the amplified product is correct after cloning and sequencing, indicating that the virus detected in the serum of the primary and passage GB virus B marmoset infection model is indeed GB virus B.
Claims (1)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201110003392A CN102154226B (en) | 2011-01-10 | 2011-01-10 | A chimeric virus of the complete envelope protein of hepatitis C virus and GB virus B |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201110003392A CN102154226B (en) | 2011-01-10 | 2011-01-10 | A chimeric virus of the complete envelope protein of hepatitis C virus and GB virus B |
Publications (2)
Publication Number | Publication Date |
---|---|
CN102154226A CN102154226A (en) | 2011-08-17 |
CN102154226B true CN102154226B (en) | 2012-10-17 |
Family
ID=44435901
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN201110003392A Expired - Fee Related CN102154226B (en) | 2011-01-10 | 2011-01-10 | A chimeric virus of the complete envelope protein of hepatitis C virus and GB virus B |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN102154226B (en) |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN103757032B (en) * | 2014-01-28 | 2017-06-06 | 中国人民解放军第三0二医院 | A kind of HCV chimerics with influenza virus as carrier and preparation method thereof |
Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2004005498A1 (en) * | 2002-07-03 | 2004-01-15 | Board Of Regents, The University Of Texas System | Chimeric gb virus b (gbv-b) |
US7244585B1 (en) * | 1999-06-04 | 2007-07-17 | The Board Of Regents Of The University Of Texas System | 3′ Sequence of the GB virus B (GBV-B) genome |
WO2010008010A1 (en) * | 2008-07-15 | 2010-01-21 | 株式会社先端生命科学研究所 | Hcv/gbv-b chimeric virus |
-
2011
- 2011-01-10 CN CN201110003392A patent/CN102154226B/en not_active Expired - Fee Related
Patent Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US7244585B1 (en) * | 1999-06-04 | 2007-07-17 | The Board Of Regents Of The University Of Texas System | 3′ Sequence of the GB virus B (GBV-B) genome |
WO2004005498A1 (en) * | 2002-07-03 | 2004-01-15 | Board Of Regents, The University Of Texas System | Chimeric gb virus b (gbv-b) |
WO2010008010A1 (en) * | 2008-07-15 | 2010-01-21 | 株式会社先端生命科学研究所 | Hcv/gbv-b chimeric virus |
Non-Patent Citations (1)
Title |
---|
李婷婷等.F-050 丙型肝炎病毒结构蛋白的嵌合病毒狨猴感染模型.《中国输血杂志》.2010,第23卷(第s1期),167. * |
Also Published As
Publication number | Publication date |
---|---|
CN102154226A (en) | 2011-08-17 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
Houghton | Discovery of the hepatitis C virus | |
Buonocore et al. | Characterization of vesicular stomatitis virus recombinants that express and incorporate high levels of hepatitis C virus glycoproteins | |
Huang et al. | Capped RNA transcripts of full-length cDNA clones of swine hepatitis E virus are replication competent when transfected into Huh7 cells and infectious when intrahepatically inoculated into pigs | |
Vassilaki et al. | Role of the hepatitis C virus core+ 1 open reading frame and core cis-acting RNA elements in viral RNA translation and replication | |
US8454974B2 (en) | Adaptive mutations allow establishment of JFH1-based cell culture systems for hepatitis C virus genotype 4A | |
US8563706B2 (en) | Efficient cell culture system for hepatitis C virus genotype 1A and 1B | |
US20110294195A1 (en) | EFFICIENT CELL CULTURE SYSTEM FOR HEPATITIS C VIRUS GENOTYPE 7a | |
EP2828382B1 (en) | Hcv full-length infectious cell culture systems and applications thereof | |
EP2551345A1 (en) | Hcv variant with high productivity of infectious hepatitis c virus, and use thereof | |
CN102154227B (en) | Chimeric virus of complete structural protein of hepatitis C virus and GB virus B | |
CN102154226B (en) | A chimeric virus of the complete envelope protein of hepatitis C virus and GB virus B | |
CN105886531B (en) | The construction method of molecular labeling swine fever virus attenuated vaccine | |
EP3212775B1 (en) | Optimized hcv full-length infectious cell culture systems and applications thereof | |
Haqshenas et al. | A chimeric GB virus B encoding the hepatitis C virus hypervariable region 1 is infectious in vivo | |
CN110129341A (en) | Full-length Infectious Cloning of Hepatitis C Virus Genotype 6a Chinese Strain and Its Application | |
CN102268412B (en) | Hepatitis C virus (HCV) nonstructural protein/GB virus B (GBV-B) hybrid virus | |
Yi et al. | Genotype 1a HCV (H77S) infection system | |
Marnata et al. | Determinants involved in hepatitis C virus and GB virus B primate host restriction | |
EP4273247A1 (en) | Nucleic acid, vector and host cell for preparing hbv cccdna | |
CN117737089B (en) | 3B type hepatitis C virus subgenomic replicon and application thereof | |
Kawaguchi et al. | Reproduction in vitro of a quasispecies from a hepatitis C virus-infected patient and determination of factors that influence selection of a dominant species | |
Suzuki et al. | Persistent replication of a hepatitis C virus genotype 1b‐based chimeric clone carrying E1, E2 and p6 regions from GB virus B in a New World monkey | |
CN1093172C (en) | Hepatitis C virus and its external cell culture method | |
CN102234634B (en) | High-transduction-efficiency hepatophilic cell hepatitis C virus pseudo-particle and envelope protein coded sequence thereof | |
Kusov et al. | Immunogenic epitopes on the surface of the hepatitis A virus capsid: Impact of secondary structure and/or isoelectric point on chimeric virus assembly |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
C06 | Publication | ||
PB01 | Publication | ||
C10 | Entry into substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
C14 | Grant of patent or utility model | ||
GR01 | Patent grant | ||
CF01 | Termination of patent right due to non-payment of annual fee |
Granted publication date: 20121017 Termination date: 20150110 |
|
EXPY | Termination of patent right or utility model |