CN102147424A - 三轴集成硅微谐振式加速度计 - Google Patents

三轴集成硅微谐振式加速度计 Download PDF

Info

Publication number
CN102147424A
CN102147424A CN 201110048609 CN201110048609A CN102147424A CN 102147424 A CN102147424 A CN 102147424A CN 201110048609 CN201110048609 CN 201110048609 CN 201110048609 A CN201110048609 A CN 201110048609A CN 102147424 A CN102147424 A CN 102147424A
Authority
CN
China
Prior art keywords
group
resonance type
mass
micro
silicon micro
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN 201110048609
Other languages
English (en)
Other versions
CN102147424B (zh
Inventor
杨波
黄丽斌
王寿荣
李宏生
陈卫卫
李秀亮
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Southeast University
Original Assignee
Southeast University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Southeast University filed Critical Southeast University
Priority to CN 201110048609 priority Critical patent/CN102147424B/zh
Publication of CN102147424A publication Critical patent/CN102147424A/zh
Application granted granted Critical
Publication of CN102147424B publication Critical patent/CN102147424B/zh
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Pressure Sensors (AREA)

Abstract

本发明公开了一种三轴集成硅微谐振式加速度计,包括上层微加速度计结构和下层玻璃基座;所述微加速度计结构键合在玻璃基座上,玻璃基座上设有信号引线,微加速度计结构上的电极与相应的信号引线连接,所述上层微加速度计结构包括位于左边的全解耦双轴硅微谐振式加速度计和位于右边的单轴硅微谐振式加速度计。本发明结构简单、紧凑、体积较小,交叉轴间机械耦合和电气耦合较小,更利于加工和封装。

Description

三轴集成硅微谐振式加速度计
技术领域
本发明属于微电子机械系统(MEMS)和微惯性测量技术领域,特别涉及一种硅微谐振式加速度计。
背景技术
硅微加速度计是一种典型的MEMS惯性传感器,具有体积小、重量轻、低成本、低能耗、高可靠性、易于数字化、可满足恶劣环境应用等特点,有着重要的军用价值和广阔的应用前景。经过近二十多年的发展,国内外硅微加速度计已形成了比较成熟的理论,且有诸多低端商业化的产品出现,其测量精度已经达到mg(偏置稳定性)量级以上,基本能够满足低精度MIMU系统要求。目前,硅微加速度计研究热点主要集中在高精度、多轴集成、耐高冲击、输出信号数字化等方向。
硅微谐振式加速度计是一种高精度的微型加速度计。区别于一般电容检测式加速度计,硅谐振式加速度计将被测加速度转换为谐振器的频率变化,直接输出数字信号,具有灵敏度和分辨率高、动态范围宽、抗干扰能力强、稳定性好、信号处理方便等优点,使其成为新一代高精度微机械加速度计的发展方向。
目前大部分机构研发的是单轴硅微谐振式加速计,其实验室的最好性能指标(德雷珀实验室2005年试验结果)为:偏置稳定性0.19ug,标度因数稳定性0.14ppm,噪声水平4.5ug·Hz-1/2,已达到惯性级导航甚至战略级导航性能指标要求,为双轴和三轴集成硅微谐振式加速计的研究奠定了坚实的基础。同时,少数机构对双轴集成硅微谐振式加速度计进行了初步的理论和试验探讨。然而,许多类似微型惯性测量组合(MIMU)的应用,测量空间三个方向(X,Y,Z)的加速度需要组合安装两个或两个以上的谐振式加速度计(单轴或双轴),该方式体积、功耗、重量相对较大,成本较高,还存在安装误差,限制了硅微谐振式加速度计的应用推广。
发明内容
发明目的:针对上述现有存在的问题和不足,本发明的目的是提供一种结构简单、紧凑、体积较小,交叉轴间机械耦合和电气耦合较小,更利于加工和封装的三轴集成硅微谐振式加速度计。
技术方案:为实现上述发明目的,本发明采用的技术方案为:一种三轴集成硅微谐振式加速度计,包括上层微加速度计结构和下层玻璃基座;所述微加速度计结构键合在玻璃基座上,玻璃基座上设有信号引线,微加速度计结构上的电极与相应的信号引线连接,所述上层微加速度计结构包括位于左边的全解耦双轴硅微谐振式加速度计和位于右边的单轴硅微谐振式加速度计;所述全解耦双轴硅微谐振式加速度计由四个完全相同的线性谐振器子结构和第一质量块组成,四个线性谐振器子结构上下左右对称设置;第一质量块分别通过第一组解耦梁与四个线性谐振器子结构连接,四个线性谐振器子结构的横梁通过第二组解耦梁与固定基座连接。
所述第一横梁和第二横梁只能在X轴方向运动,第一线性谐振器子结构和第二线性谐振器子结构只能敏感X轴向的加速度;所述第三横梁和第四横梁只能在Y轴方向运动,第三线性谐振器子结构和第四线性谐振器子结构只能敏感Y轴向的加速度。
所述单轴硅微谐振式加速度计由第二质量块和两个扭转谐振器组成;所述第二质量块通过第一组扭杆分别连接设于玻璃基座上固定基座键合点上的第一锚点和第二锚点;所述两个扭转谐振器分别由第二组扭杆和第三组扭杆、第一扭转质量块和第二扭转质量块、第一组电极和第二组电极组成;所述第二质量块通过第二组扭杆和第三组扭杆分别与第一扭转质量块和第二扭转质量块相连,第一组电极和第二组电极分别设于第一扭转质量块和第二扭转质量块的下面。
所述固定基座与下层玻璃基座的对应键合点相连,第一锚点和第二锚点分别与下层玻璃基座的对应键合点相连。
有益效果:(1)本发明将三个方向的加速度敏感元件集成在单一芯片上,进一步减小了MIMU系统的体积、重量、功耗、成本和安装误差,同时保持谐振式加速度计高精度、高灵敏度和数字化输出等优势。(2)采用全对称全解耦双轴谐振式加速度计(敏感X轴和敏感Y轴)和单轴扭摆式谐振加速度计(敏感Z轴)设计方案,能同时实现三轴加速度测量,且加工工艺兼容。(3)全解耦双轴谐振式加速度计结构在两个敏感方向具有相同机械特性,且实现了X轴和Y轴的完全解耦。(4)本发明结构简单、紧凑、体积较小,交叉轴间机械耦合和电气耦合较小,相关设计技术成熟,更利于加工和封装。
附图说明
图1是本发明三轴集成硅微谐振式加速度计结构示意图;
图2是本发明三轴集成硅微谐振式加速度计的线性谐振器子结构示意图;
图3是本发明三轴集成硅微谐振式加速度计下层玻璃基座上的引线示意图。
具体实施方式
下面结合附图和具体实施例,进一步阐明本发明,应理解这些实施例仅用于说明本发明而不用于限制本发明的范围,在阅读了本发明之后,本领域技术人员对本发明的各种等价形式的修改均落于本申请所附权利要求所限定的范围。
如图1所示,一种三轴集成硅微谐振式加速度计,包括上、下两层;上层为制作在单晶硅片上的三轴集成硅微谐振式加速度计结构100、200,下层为制作在玻璃基座300上的信号引线,微加速度计结构键合在玻璃基座300上,微加速度计结构上的电极与相应的信号引线连接。上层微加速度计结构包括位于左边的全解耦双轴硅微谐振式加速度计100(敏感X轴和敏感Y轴)和位于右边的单轴硅微谐振式加速度计200(敏感Z轴)。
所述的全解耦双轴硅微谐振式加速度计100由四个完全相同的线性谐振器子结构101a、101b、101c、101d和第一质量块102组成,该线性谐振器子结构101a、101b、101c、101d上下左右对称设置。第一质量块102分别通过第一组解耦梁106a1、106a2、106b1、106b2、106c1、106c2、106d1、106d2与四个线性谐振器子结构101a、101b、101c、101d连接,四个线性谐振器子结构的横梁103a、103b、103c、103d通过第二组解耦梁105a1、105a2、105b1、105b2、105c1、105c2、105d1、105d2与固定基座104a1、104a2、104b1、104b2、104c1、104c2、104d1、104d2连接,固定基座安装在玻璃基座上的固定基座键合点上,使上层的微加速度计结构部分悬空在下层的玻璃基座部分之上。第一组解耦梁106a1、106a2、106b1、106b2、106c1、106c2、106d1、106d2采用直梁结构,第二组解耦梁105a1、105a2、105b1、105b2、105c1、105c2、105d1、105d2采用U型折叠梁结构。第二组解耦梁105a1、105a2、105b1、105b2、105c1、105c2、105d1、105d2和第一组解耦梁106a1、106a2、106b1、106b2、106c1、106c2、106d1、106d2将X轴和Y轴方向的运动进行了解耦。第一横梁103a和第二横梁103b被限制仅能在X轴方向运动,因此第一线性谐振器子结构101a和第二线性谐振器子结构101b仅能敏感X轴向的加速度;第三横梁103c和第四横梁103d被限制仅能在Y轴方向运动,因此第三线性谐振器子结构101c和第四线性谐振器子结构101d仅能敏感Y轴向的加速度。
所述单轴硅微谐振式加速度计200由第二质量块202和两个扭转谐振器201a、201b组成;所述第二质量块202通过第一组扭杆204a、204b分别连接第一锚点203a和第二锚点203b,锚点安装在玻璃衬底上固定基座键合点上,使上层的机械结构部分悬空在下层的玻璃衬底部分之上;所述两个扭转谐振器201a、201b分别由第二组扭杆205a、205b和第三组扭杆206a、206b、第一扭转质量块211和第二扭转质量块212、第一组电极207a、207b、208a、208b、208c、208d和第二组电极209a、209b、210a、210b、210c、210d组成;所述第二质量块202通过第二组扭杆205a、205b和第三组扭杆206a、206b分别与第一扭转质量块211和第二扭转质量块212相连,第一组电极207a、207b、208a、208b、208c、208d和第二组电极209a、209b、210a、210b、210c、210d分别布置在第一扭转质量块211和第二扭转质量块212的下面。扭转谐振器驱动采用双边驱动,双边信号提取,驱动时分别在第三组电极208a、208b、210a、210b和第四组电极208c、208d、210c、210d上施加带直流偏置的交流电压,且第三组电极208a、208b、210a、210b和第四组电极208c、208d、210c、210d上施加的直流电压相同,交流电压反向。驱动信号提取时利用差动敏感电极207a、207b、209a、209b进行驱动信号提取。
如图2所示,全解耦双轴硅微谐振式加速度计100的每个线性谐振器子结构由一个横梁103c、两组完全相同且对称分布的杠杆107c1和107c2、两组谐振梁112c1、112c2组成。横梁103c通过短直梁108c1、108c2分别与杠杆107c1、107c2一端连接,杠杆107c1、107c2的另一端通过短直梁114c1、114c2与谐振梁112c1、112c2连接,杠杆107c1、107c2的支点处通过短直梁115c1、115c2与固定基座109c1、109c2连接。谐振梁112c1、112c2的另一端与固定基座113c连接, 该固定基座113c键合在玻璃基座300上,使谐振梁112c1、112c2悬空在玻璃基座300之上。谐振梁112c1、112c2上连接着梳齿架和活动梳齿、固定梳齿。活动梳齿布置在梳齿架上,在谐振梁的两侧对称布置。固定梳齿直接布置在固定基座110c1、110c2、110c3、110c4、111c1、111c2上。固定基座分为固定驱动基座111c1、111c2和驱动信号提取基座110c1、110c2、110c3、110c4。线性谐振器采用单边静电驱动,单边电容检测的工作方式,驱动时在固定驱动基座111c1、111c2上施加带直流偏置的交流电压,通过驱动信号提取基座110c1、110c2、110c3、110c4进行驱动运动信号提取。
如图3所示, 玻璃基座300包括信号引线和金属硅/玻璃键合点。信号引线包括公共电极引线302a1、302a2和310a、310b,驱动输入引线301a1、301a2、301b1、301b2、301c1、301c2、301d1、301d2和308a、308b、312a、312b,驱动信号提取引线303a、303b、303c、303d和309a、309b、311a、311b,地线313。金属硅/玻璃键合点包括固定基座键合点304a1、304a2、304b1、304b2、304c1、304c2、304d1、304d2、307a、307b、307c、307d和314a、314b,驱动梳齿固定基座键合点305a1、305a2、305b1、305b2、305c1、305c2、305d1、305d2,驱动信号提取固定基座键合点306a1、306a2、306a3、306a4、306b1、306b2、306b3、306b4、306c1、306c2、306c3、306c4、306d1、306d2、306d3、306d4。固定基座104a1、104a2、104b1、104b2、104c1、104c2、104d1、104d2和203a、203b分别与下层玻璃衬底的对应键合点304a1、304a2、304b1、304b2、304c1、304c2、304d1、304d2和314a、314b相连。全解耦双轴硅微谐振式加速度计100的每个线性谐振器子结构的固定基座110c1、110c2、110c3、110c4、111c1、111c2、113c分别与下层玻璃衬底的对应键合点306c1、306c2、306c3、306c4、305c1、305c2、307c相连。
全解耦双轴硅微谐振式加速度计100在Y方向的第三线性谐振器子结构101c的驱动固定基座111c1、111c2上施加带直流偏置的交流驱动电压后,产生交变驱动力,在交变驱动力的作用下,谐振梁112c1、112c2沿X轴发生相向的简谐振动。通过驱动信号提取固定基座110c1、110c2、110c3、110c4将这种简谐振动提取出来,然后再将信号通过一定控制环节反馈给驱动电压,形成闭环自激控制系统,该闭环自激控制系统的频率将锁定在谐振梁的固有频率。当有沿Y轴方向的加速度输入时,第一质量块102将沿Y轴方向运动,加速度引起的力Fgy通过横梁103c传递到杠杆结构105c1、105c2放大了输入力,被放大了的力作用在谐振梁112c1、112c2上,使谐振梁的谐振频率发生变化,通过驱动反馈梳齿检测这种频率的变化量,并进行信号处理,就得到需要测量的输入加速度信号。由于沿Y轴的两个谐振器子结构是对称分布的,因此,加速度引起的力对两边谐振器子结构的作用一个是拉伸,而另一个是压缩,对两边谐振器子结构频率的影响一个是升高,另一个是降低,通过将两个谐振器子结构频率信号相减,可以更加准确地得到沿Y轴方向输入加速度的大小。对X轴方向的加速度测量与Y轴方向的测量方法是一致的,由于解耦梁的作用,当X轴方向有输入加速度时,质量块不会对Y轴方向的谐振器子结构产生影响;同样,在Y轴方向有输入时,质量块也不会对X轴方向的谐振器子结构产生影响。因此这种全解耦双轴硅微谐振式加速度计能够很好地隔离两个轴向的交叉耦合影响,使得到的测量信号更加准确。
单轴硅微谐振式加速度计(敏感Z轴)200的扭摆谐振器201a的驱动固定电极208a、208b、208c、208d上施加带直流偏置的交流驱动电压后,产生交变驱动力,在交变驱动力的作用下,第一扭转质量块211将绕内扭杆205a、205b发生简谐扭摆振动。通过驱动信号提取电极 207a、207b将这种简谐扭摆振动提取出来,然后再将信号通过一定控制环节反馈给驱动电压,形成闭环自激控制系统,该闭环自激控制系统的频率将锁定在扭摆谐振梁的固有频率。当有沿z轴方向的加速度输入时,由于第二质量块202在外扭杆204a、204b左右两边的质量不相等,第一质量块102将沿绕外扭杆204a、204b转动,导致扭摆谐振器201a的负刚度发生变化上,即扭摆谐振梁的闭环自激谐振频率发生变化,通过驱动反馈梳齿检测这种频率的变化量,并进行信号处理,就得到需要测量的输入加速度信号。由于沿z轴的两个摆谐谐振器子结构是对称分布的,因此,加速度引起的力对两边摆谐谐振器的闭环自激谐振频率一个是增加,而另一个是减少,通过将两个扭摆谐振器频率信号相减,就可以更加准确地得到沿Z轴方向输入加速度的大小。

Claims (4)

1.一种三轴集成硅微谐振式加速度计,包括上层微加速度计结构和下层玻璃基座(300);所述微加速度计结构键合在玻璃基座(300)上,玻璃基座(300)上设有信号引线,微加速度计结构上的电极与相应的信号引线连接,其特征在于:所述上层微加速度计结构包括位于左边的全解耦双轴硅微谐振式加速度计(100)和位于右边的单轴硅微谐振式加速度计(200);所述全解耦双轴硅微谐振式加速度计(100)由四个完全相同的线性谐振器子结构(101a、101b、101c、101d)和第一质量块(102)组成,四个线性谐振器子结构(101a、101b、101c、101d)上下左右对称设置;第一质量块(102)分别通过第一组解耦梁(106a1、106a2、106b1、106b2、106c1、106c2、106d1、106d2)与四个线性谐振器子结构(101a、101b、101c、101d)连接,四个线性谐振器子结构的横梁(103a、103b、103c、103d)通过第二组解耦梁(105a1、105a2、105b1、105b2、105c1、105c2、105d1、105d2)与固定基座(104a1、104a2、104b1、104b2、104c1、104c2、104d1、104d2)连接。
2.根据权利要求1所述三轴集成硅微谐振式加速度计,其特征在于:所述第一横梁(103a)和第二横梁(103b)在X轴方向运动;所述第三横梁(103c)和第四横梁(103d)在Y轴方向运动。
3.根据权利要求1所述三轴集成硅微谐振式加速度计,其特征在于:所述单轴硅微谐振式加速度计(200)由第二质量块(202)和两个扭转谐振器(201a、201b)组成;所述第二质量块(202)通过第一组扭杆(204a、204b)分别连接设于玻璃基座(300)上固定基座键合点上的第一锚点(203a)和第二锚点(203b);所述两个扭转谐振器(201a、201b)分别由第二组扭杆(205a、205b)和第三组扭杆(206a、206b)、第一扭转质量块(211)和第二扭转质量块(212)、第一组电极(207a、207b、208a、208b、208c、208d)和第二组电极(209a、209b、210a、210b、210c、210d)组成;所述第二质量块(202)通过第二组扭杆(205a、205b)和第三组扭杆(206a、206b)分别与第一扭转质量块(211)和第二扭转质量块(212)相连,第一组电极(207a、207b、208a、208b、208c、208d)和第二组电极(209a、209b、210a、210b、210c、210d)分别设于第一扭转质量块(211)和第二扭转质量块(212)的下面。
4.根据权利要求3所述三轴集成硅微谐振式加速度计,其特征在于:所述固定基座(104a1、104a2、104b1、104b2、104c1、104c2、104d1、104d2)与下层玻璃基座(300)的对应键合点(304a1、304a2、304b1、304b2、304c1、304c2、304d1、304d2)相连,第一锚点(203a)和第二锚点(203b)分别与下层玻璃基座(300)的对应键合点(314a、314b)相连。
CN 201110048609 2011-03-01 2011-03-01 三轴集成硅微谐振式加速度计 Expired - Fee Related CN102147424B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN 201110048609 CN102147424B (zh) 2011-03-01 2011-03-01 三轴集成硅微谐振式加速度计

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN 201110048609 CN102147424B (zh) 2011-03-01 2011-03-01 三轴集成硅微谐振式加速度计

Publications (2)

Publication Number Publication Date
CN102147424A true CN102147424A (zh) 2011-08-10
CN102147424B CN102147424B (zh) 2012-11-28

Family

ID=44421796

Family Applications (1)

Application Number Title Priority Date Filing Date
CN 201110048609 Expired - Fee Related CN102147424B (zh) 2011-03-01 2011-03-01 三轴集成硅微谐振式加速度计

Country Status (1)

Country Link
CN (1) CN102147424B (zh)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102749479A (zh) * 2012-06-18 2012-10-24 东南大学 基于负刚度效应的垂直轴硅微谐振式加速度计
CN103454449A (zh) * 2013-09-15 2013-12-18 滕金燕 一种三轴微机械加速度计
CN103913595A (zh) * 2014-04-02 2014-07-09 清华大学 三轴集成硅微谐振式加速度计
CN104698222A (zh) * 2015-02-15 2015-06-10 东南大学 三轴单片集成谐振电容式硅微加速度计及其加工方法
CN107421526A (zh) * 2017-07-04 2017-12-01 东南大学 一种仿生双轴毛发传感器装置
CN113391095A (zh) * 2020-03-12 2021-09-14 北京微元时代科技有限公司 一种单质量全对称三轴硅微加速度计
EP4339620A1 (en) * 2022-09-14 2024-03-20 Kabushiki Kaisha Toshiba Sensor and electronic device

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1821787A (zh) * 2005-12-09 2006-08-23 中国科学院上海微系统与信息技术研究所 三维集成微机械加速度传感器及制作方法
CN1979175A (zh) * 2005-12-01 2007-06-13 中国科学院电子学研究所 微机械硅谐振梁加速度计
CN201083760Y (zh) * 2007-10-19 2008-07-09 中国电子科技集团公司第十三研究所 三轴集成压阻式加速度传感器
CN101639487A (zh) * 2008-07-30 2010-02-03 罗伯特·博世有限公司 三轴加速度传感器
CN101963624A (zh) * 2010-09-27 2011-02-02 南京理工大学 硅微谐振式加速度计
CN202013362U (zh) * 2011-03-01 2011-10-19 东南大学 三轴集成硅微谐振式加速度计

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1979175A (zh) * 2005-12-01 2007-06-13 中国科学院电子学研究所 微机械硅谐振梁加速度计
CN1821787A (zh) * 2005-12-09 2006-08-23 中国科学院上海微系统与信息技术研究所 三维集成微机械加速度传感器及制作方法
CN201083760Y (zh) * 2007-10-19 2008-07-09 中国电子科技集团公司第十三研究所 三轴集成压阻式加速度传感器
CN101639487A (zh) * 2008-07-30 2010-02-03 罗伯特·博世有限公司 三轴加速度传感器
CN101963624A (zh) * 2010-09-27 2011-02-02 南京理工大学 硅微谐振式加速度计
CN202013362U (zh) * 2011-03-01 2011-10-19 东南大学 三轴集成硅微谐振式加速度计

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102749479A (zh) * 2012-06-18 2012-10-24 东南大学 基于负刚度效应的垂直轴硅微谐振式加速度计
CN102749479B (zh) * 2012-06-18 2014-04-23 东南大学 基于负刚度效应的垂直轴硅微谐振式加速度计
CN103454449A (zh) * 2013-09-15 2013-12-18 滕金燕 一种三轴微机械加速度计
CN103913595A (zh) * 2014-04-02 2014-07-09 清华大学 三轴集成硅微谐振式加速度计
CN104698222A (zh) * 2015-02-15 2015-06-10 东南大学 三轴单片集成谐振电容式硅微加速度计及其加工方法
CN104698222B (zh) * 2015-02-15 2017-06-16 东南大学 三轴单片集成谐振电容式硅微加速度计及其加工方法
CN107421526A (zh) * 2017-07-04 2017-12-01 东南大学 一种仿生双轴毛发传感器装置
CN107421526B (zh) * 2017-07-04 2020-05-05 东南大学 一种仿生双轴毛发传感器装置
CN113391095A (zh) * 2020-03-12 2021-09-14 北京微元时代科技有限公司 一种单质量全对称三轴硅微加速度计
EP4339620A1 (en) * 2022-09-14 2024-03-20 Kabushiki Kaisha Toshiba Sensor and electronic device

Also Published As

Publication number Publication date
CN102147424B (zh) 2012-11-28

Similar Documents

Publication Publication Date Title
CN102147424B (zh) 三轴集成硅微谐振式加速度计
CN101038299A (zh) 基于单质量块的单轴集成惯性测量器件
CN1948906B (zh) 一种电容式全解耦水平轴微机械陀螺
CN104931032B (zh) 一种单锚定点四质量块mems谐振式陀螺仪
CN107063222B (zh) 直接频率输出的三框架式双质量硅微机械陀螺仪
CN102147423B (zh) 双轴集成全解耦硅微谐振式加速度计
CN100585331C (zh) 双质量振动式硅微陀螺仪
CN100449265C (zh) 一种水平轴微机械陀螺及其制备方法
CN108507555A (zh) 一种mems微机械全解耦闭环陀螺仪
CN208140130U (zh) 一种mems微机械全解耦闭环陀螺仪结构
CN104459181A (zh) 一种用于流速、加速度和角速度敏感的仿生毛发传感器
CN105606083B (zh) 一种外支撑四质量块mems谐振式陀螺仪
CN107655465A (zh) 两级杠杆放大的谐振式仿生毛发流速、加速度微传感器
CN101858931A (zh) 框架式电容硅微机械加速度计
CN102749479B (zh) 基于负刚度效应的垂直轴硅微谐振式加速度计
CN107449423A (zh) 纳米光栅离心式三轴mems惯组装置
CN100447571C (zh) 微机械硅谐振梁加速度计
CN201965150U (zh) 双轴集成全解耦硅微谐振式加速度计
CN107449411A (zh) 纳米光栅非谐振式三轴角速率传感器
CN101298987B (zh) 一种健壮性音叉振动式微机械陀螺
CN107449415A (zh) 纳米光栅微机械陀螺
CN201852851U (zh) 框架式电容硅微机械加速度计
CN101759136A (zh) 一种全解耦振动式微机械陀螺
CN101746708B (zh) 一种全解耦电容式微机械陀螺
CN113514666B (zh) 一种基于pt对称谐振器的微机械加速度计及其检测方法

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C14 Grant of patent or utility model
GR01 Patent grant
CF01 Termination of patent right due to non-payment of annual fee
CF01 Termination of patent right due to non-payment of annual fee

Granted publication date: 20121128

Termination date: 20180301