CN102142902A - Method and device for realizing direct detection and coherent detection - Google Patents
Method and device for realizing direct detection and coherent detection Download PDFInfo
- Publication number
- CN102142902A CN102142902A CN2010105541509A CN201010554150A CN102142902A CN 102142902 A CN102142902 A CN 102142902A CN 2010105541509 A CN2010105541509 A CN 2010105541509A CN 201010554150 A CN201010554150 A CN 201010554150A CN 102142902 A CN102142902 A CN 102142902A
- Authority
- CN
- China
- Prior art keywords
- light signal
- signal
- optical signal
- delay
- output
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 238000001514 detection method Methods 0.000 title claims abstract description 78
- 230000001427 coherent effect Effects 0.000 title claims abstract description 37
- 238000000034 method Methods 0.000 title claims abstract description 26
- 230000003287 optical effect Effects 0.000 claims abstract description 360
- 230000010287 polarization Effects 0.000 claims abstract description 56
- 230000008878 coupling Effects 0.000 claims description 77
- 238000010168 coupling process Methods 0.000 claims description 77
- 238000005859 coupling reaction Methods 0.000 claims description 77
- 230000003111 delayed effect Effects 0.000 claims description 61
- 230000005540 biological transmission Effects 0.000 claims description 3
- 238000010586 diagram Methods 0.000 description 7
- 230000010363 phase shift Effects 0.000 description 5
- 230000001934 delay Effects 0.000 description 4
- 230000005684 electric field Effects 0.000 description 2
- 238000004891 communication Methods 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 239000013307 optical fiber Substances 0.000 description 1
- 230000035945 sensitivity Effects 0.000 description 1
- 230000003595 spectral effect Effects 0.000 description 1
- 238000001228 spectrum Methods 0.000 description 1
Images
Classifications
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04J—MULTIPLEX COMMUNICATION
- H04J14/00—Optical multiplex systems
- H04J14/06—Polarisation multiplex systems
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04J—MULTIPLEX COMMUNICATION
- H04J14/00—Optical multiplex systems
- H04J14/02—Wavelength-division multiplex systems
- H04J14/0221—Power control, e.g. to keep the total optical power constant
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04B—TRANSMISSION
- H04B10/00—Transmission systems employing electromagnetic waves other than radio-waves, e.g. infrared, visible or ultraviolet light, or employing corpuscular radiation, e.g. quantum communication
- H04B10/60—Receivers
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04J—MULTIPLEX COMMUNICATION
- H04J14/00—Optical multiplex systems
- H04J14/002—Coherencemultiplexing
Landscapes
- Engineering & Computer Science (AREA)
- Computer Networks & Wireless Communication (AREA)
- Signal Processing (AREA)
- Physics & Mathematics (AREA)
- Electromagnetism (AREA)
- Optical Communication System (AREA)
- Optical Modulation, Optical Deflection, Nonlinear Optics, Optical Demodulation, Optical Logic Elements (AREA)
Abstract
一种实现直接检测和相干检测的方法和装置,首先,将接收到的光信号分成第一路光信号和第二路光信号,第一路进行功率分配得到第一光信号和第二光信号,第二路光信号进行偏振分束得到第一光信号和第二光信号;然后,根据接收到的控制信号选择输出功率分配后的光信号或输出偏振分束后的光信号;最后,对输出的光信号进行直接检测或相干检测。其根据控制信号选择对光信号进行功率分配或偏振分束,可以灵活的进行直接检测或相干检测,使在单偏振系统或偏振复用系统中能够适应中间节点的不同速率。
A method and device for realizing direct detection and coherent detection. Firstly, the received optical signal is divided into a first optical signal and a second optical signal, and power distribution is performed on the first optical signal to obtain the first optical signal and the second optical signal. , the second optical signal is polarized and split to obtain the first optical signal and the second optical signal; then, according to the received control signal, select the optical signal after output power distribution or output the optical signal after polarization splitting; finally, the The output optical signal is directly detected or coherently detected. It selects power allocation or polarization splitting for optical signals according to the control signal, and can flexibly perform direct detection or coherent detection, so that it can adapt to different rates of intermediate nodes in single polarization systems or polarization multiplexing systems.
Description
技术领域technical field
本发明涉及通信技术,尤其涉及一种实现直接检测和相干检测的方法和装置。The present invention relates to communication technology, in particular to a method and device for realizing direct detection and coherent detection.
背景技术Background technique
目前为了提高光纤传输效率和频谱效率,需要采用不同的调制格式,例如比较重要的调制格式包括DPSK(Differential Phase Shift Keying,差分相移键控)、QPSK(Quadrature Phase Shift Keying,四相相移键控)或PDM-QPSK(Polarization Division Multiplexing-QPSK,偏振复用的四相相移键控)等都被广泛的采用,其中DPSK和DQPSK等码型都需要采用直接检测,而PDM-QPSK等码型则需要采用相干检测。At present, in order to improve the optical fiber transmission efficiency and spectrum efficiency, different modulation formats need to be adopted. For example, the more important modulation formats include DPSK (Differential Phase Shift Keying, differential phase shift keying), QPSK (Quadrature Phase Shift Keying, quadrature phase shift keying) control) or PDM-QPSK (Polarization Division Multiplexing-QPSK, polarization multiplexed quadrature phase-shift keying), etc. are widely used, among which DPSK and DQPSK code types need to use direct detection, and PDM-QPSK codes type requires coherent detection.
直接检测是将接收到的光信号直接送入光电探测器,从而得出有用信号的过程;而相干检测则是利用本振信号与接收到的光信号进行混频处理得出有用信号的过程,它与直接检测相比,可以提高接收机的灵敏度,同时适用于更高频谱效率的调制码型。Direct detection is the process of sending the received optical signal directly into the photodetector to obtain a useful signal; while coherent detection is the process of mixing the local oscillator signal with the received optical signal to obtain a useful signal. Compared with direct detection, it can improve the sensitivity of the receiver, and at the same time, it is suitable for modulation patterns with higher spectral efficiency.
目前只有单独对DQPSK或DPSK进行直接检测或单独对PDM-QPSK进行相干检测的方法和装置,并没有一个可以同时实现直接检测和相干检测的方法和装置。At present, there are only methods and devices for direct detection of DQPSK or DPSK alone, or coherent detection for PDM-QPSK alone, and there is no method and device that can realize direct detection and coherent detection at the same time.
发明内容Contents of the invention
本发明的实施例提供了一种实现直接检测和相干检测的方法和装置,可以根据控制信号灵活的选择直接检测或相干检测。Embodiments of the present invention provide a method and device for realizing direct detection and coherent detection, which can flexibly select direct detection or coherent detection according to a control signal.
本发明实施例提供了一种实现直接检测和相干检测的装置,包括:An embodiment of the present invention provides a device for realizing direct detection and coherent detection, including:
接收单元,用于接收光信号;a receiving unit, configured to receive an optical signal;
光分路器,用于将接收单元接收到的光信号分成第一路光信号和第二路光信号,第一路光信号送入功率分配单元,第二路光信号送入偏振分束单元;The optical splitter is used to divide the optical signal received by the receiving unit into the first optical signal and the second optical signal, the first optical signal is sent to the power distribution unit, and the second optical signal is sent to the polarization beam splitting unit ;
功率分配单元,用于将第一路光信号进行功率分配输出第一光信号和第二光信号;A power distribution unit, configured to perform power distribution on the first optical signal and output the first optical signal and the second optical signal;
偏振分束单元,用于将第二路光信号进行偏振分束输出第一光信号和第二光信号;a polarization beam splitting unit, configured to polarize and split the second optical signal to output the first optical signal and the second optical signal;
切换单元,用于根据接收到的控制信号选择功率分配单元输出的光信号或偏振分束单元输出的光信号;A switching unit, configured to select the optical signal output by the power distribution unit or the optical signal output by the polarization beam splitting unit according to the received control signal;
检测单元,用于将切换单元输出的光信号进行直接检测或相干检测。The detection unit is used for direct detection or coherent detection of the optical signal output by the switching unit.
本发明实施例还提供了一种实现直接检测和相干检测的方法,包括:The embodiment of the present invention also provides a method for realizing direct detection and coherent detection, including:
将接收到的光信号分成第一路光信号和第二路光信号;Divide the received optical signal into the first optical signal and the second optical signal;
第一路进行功率分配得到第一光信号和第二光信号,第二路光信号进行偏振分束得到第一光信号和第二光信号;Performing power distribution on the first path to obtain a first optical signal and a second optical signal, and performing polarization splitting on the second path of optical signals to obtain the first optical signal and second optical signal;
根据接收到的控制信号选择输出功率分配后的光信号或输出偏振分束后的光信号;Select the optical signal after output power distribution or the optical signal after output polarization splitting according to the received control signal;
对输出的光信号进行直接检测或相干检测。The output optical signal is directly detected or coherently detected.
由上述本发明的实施例提供的技术方案可以看出,其根据控制信号选择输出功率分配后的光信号或偏振分束后的光信号,可以灵活的进行直接检测或相干检测,使在单偏振系统或偏振复用系统中能够适应中间节点的不同速率。It can be seen from the technical solutions provided by the above-mentioned embodiments of the present invention that the optical signal after output power distribution or the optical signal after polarization splitting is selected according to the control signal, and direct detection or coherent detection can be flexibly performed, so that in a single polarization Different rates of intermediate nodes can be accommodated in the system or polarization multiplexing system.
附图说明Description of drawings
为了更清楚地说明本发明实施例的技术方案,下面将对实施例描述中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本发明的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动性的前提下,还可以根据这些附图获得其他的附图。In order to more clearly illustrate the technical solutions of the embodiments of the present invention, the following will briefly introduce the accompanying drawings that need to be used in the description of the embodiments. Obviously, the accompanying drawings in the following description are only some embodiments of the present invention. For Those of ordinary skill in the art can also obtain other drawings based on these drawings without any creative effort.
图1为本发明实施例提供的一种实现直接检测和相干检测的装置结构示意图;FIG. 1 is a schematic structural diagram of a device for realizing direct detection and coherent detection provided by an embodiment of the present invention;
图2为本发明实施例提供的一种实现直接检测和相干检测装置的进一步结构示意图;Fig. 2 is a further structural schematic diagram of a device for realizing direct detection and coherent detection provided by an embodiment of the present invention;
图3为本发明实施例提供的一种实现直接检测和相干检测的方法流程示意图;FIG. 3 is a schematic flowchart of a method for realizing direct detection and coherent detection provided by an embodiment of the present invention;
图4为本发明实施例提供的一种实现直接检测和相干检测方法的进一步流程示意图;FIG. 4 is a further schematic flow diagram of a method for implementing direct detection and coherent detection provided by an embodiment of the present invention;
图5为本发明实施例以接收到的光信号为DQPSK为例说明一种实现直接检测和相干检测的方法流程示意图;FIG. 5 is a schematic flow diagram illustrating a method for realizing direct detection and coherent detection by taking the received optical signal as DQPSK as an example in an embodiment of the present invention;
图6为本发明实施例以接收到的光信号为DQPSK为例说明一种实现直接检测和相干检测的装置结构示意图;6 is a schematic structural diagram of a device for realizing direct detection and coherent detection by taking the received optical signal as DQPSK as an example in an embodiment of the present invention;
图7为本发明实施例以接收到的光信号为PDM-QPSK为例说明一种实现直接检测和相干检测的方法流程示意图;FIG. 7 is a schematic flow diagram illustrating a method for realizing direct detection and coherent detection by taking the received optical signal as PDM-QPSK as an example in an embodiment of the present invention;
图8为本发明实施例以接收到的光信号为PDM-QPSK为例说明一种实现直接检测和相干检测的装置结构示意图。FIG. 8 is a schematic structural diagram of a device for realizing direct detection and coherent detection by taking the received optical signal as PDM-QPSK as an example according to an embodiment of the present invention.
具体实施方式Detailed ways
下面将结合本发明实施例中的附图,对本发明实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例仅仅是本发明一部分实施例,而不是全部的实施例。基于本发明中的实施例,本领域普通技术人员在没有作出创造性劳动前提下所获得的所有其他实施例,都属于本发明保护的范围。The following will clearly and completely describe the technical solutions in the embodiments of the present invention with reference to the accompanying drawings in the embodiments of the present invention. Obviously, the described embodiments are only some, not all, embodiments of the present invention. Based on the embodiments of the present invention, all other embodiments obtained by persons of ordinary skill in the art without creative efforts fall within the protection scope of the present invention.
本发明实施例提供了一种实现直接检测和相干检测的装置,如图1所示,包括:An embodiment of the present invention provides a device for realizing direct detection and coherent detection, as shown in FIG. 1 , including:
接收单元11,用于接收光信号;a receiving
光分路器12,用于将接收单元11接收到的光信号分成第一路光信号和第二路光信号,第一路光信号送入功率分配单元13,第二路光信号送入偏振分束单元14;The
功率分配单元13,用于将第一路光信号进行功率分配输出第一光信号和第二光信号;A
偏振分束单元14,用于将第二路光信号进行偏振分束输出第一光信号和第二光信号;A
切换单元15,用于根据接收到的控制信号选择功率分配单元13输出的光信号或偏振分束单元14输出的光信号;The
检测单元16,用于将切换单元15输出的光信号进行直接检测或相干检测。The
具体地,若切换单元选择输出的是功率分配单元13输出的光信号,则进行直接检测,若切换单元选择输出的是偏振分束单元14输出的光信号,则进行相干检测。Specifically, if the switching unit selects to output the optical signal output by the
进一步,上述装置,如图2所示,还可以包括:Further, the above-mentioned device, as shown in Figure 2, may also include:
控制单元21,用于接收由所述光信号的发送端发送的控制信号,并将所述控制信号发送给切换单元;或用于通过外部预留的接口接收在接收单元11反馈的控制信号,并将所述控制信号发送给切换单元。The
进一步,还可以人工选择控制单元21的控制信号,具体可以通过所述光信号的码型来选择,例如,若所述光信号为DPSK,则选择控制单元21发送控制信号控制切换单元15输出功率分配单元13输出的光信号;若所述光信号为PDM-QPSK,则选择控制单元21发送控制信号控制切换单元15输出偏振分束单元14输出的光信号。Further, the control signal of the
光信号的发送端可以根据光信号的码型发送控制信号给控制单元21,例如,若发送端发送的光信号为DPSK,则发送控制信号给控制单元21以控制切换单元15输出功率分配单元13输出的光信号;若发送端发送的光信号为PDM-QPSK,则发送控制信号给控制单元21以控制切换单元15输出偏振分束单元14输出的光信号。The sending end of the optical signal can send a control signal to the
接收单元11中可以含有功率检测模块,用于检测接收到的光信号在两个偏振态的功率是否相等,若相等,则为偏振复用信号,此时反馈控制信号控制切换单元15输出偏振分束单元14输出的光信号;若不相等,则为单偏振信号,此时反馈控制信号控制切换单元15输出功率分配单元13输出的光信号。例如,接收到的光信号为DPSK,则控制单元21收到接收单元11反馈的控制信号,并发送所述控制信号控制切换单元15输出功率分配单元13输出的光信号;若接收到的光信号为PDM-QPSK,则控制单元21收到接收单元11反馈的控制信号,并发送所述控制信号控制切换单元15输出偏振分束单元14输出的光信号。The
具体地,检测单元16包括:Specifically, the
第一分光延时子单元1601,用于将切换单元15输出的第一光信号进行分光得到第一非延时光信号和第二非延时光信号,并将其中的第一非延时光信号采用可调延时线进行延时处理,输出第一延时光信号和第二非延时光信号;The first splitting and delaying
第二分光延时子单元1602,用于将切换单元15输出的第二光信号进行分光得到第三非延时光信号和第四非延时光信号,并将其中的第四非延时光信号采用可调延时线进行延时处理,输出第三非延时光信号和第四延时光信号。The second splitting and delaying
具体地,可调延时线可以具体根据信号的符号速率确定延时的比特,即信号的符号速率的倒数即为延时比特,其采用延时可调,可以适应不同的工作速率,避免了现有的直接检测方法只能工作于固定的速率的情况。Specifically, the adjustable delay line can determine the delayed bit according to the symbol rate of the signal, that is, the reciprocal of the symbol rate of the signal is the delay bit, and its adjustable delay can adapt to different operating rates, avoiding the Existing direct detection methods can only work at a fixed rate.
进一步,检测单元16还包括:Further, the
第一分光子单元1611,用于将第一分光延时子单元1601输出的第一延时光信号进行耦合,输出第一耦合光信号和第二耦合光信号;The
第二分光子单元1612,用于根据控制信号将第一分光延时子单元1601输出的第二非延时光信号或将本振光信号进行耦合,输出第三耦合光信号和第四耦合光信号;The
第三分光子单元1613,用于根据控制信号将第二分光延时子单元1602输出的第三非延时光信号或将本振光信号进行耦合,输出第五耦合光信号和第六耦合光信号;The third
第四分光子单元1614,用于将第二分光延时子单元1602输出的第四延时光信号进行耦合,输出第七耦合光信号和第八耦合光信号;The fourth
第一相位延迟子单元1621,用于将第一分光子单元1611输出的第二耦合光信号进行相位延迟得到第二相位延迟光信号;The first
第二相位延迟子单元1622,用于将第二分光子单元1612输出的第四耦合光信号进行相位延迟得到第四相位延迟光信号;The second
第三相位延迟子单元1623,用于将第三分光子单元1613输出的第六耦合光信号进行相位延迟得到第六相位延迟光信号;The third
第四相位延迟子单元1624,用于将第四分光子单元1614输出的第八耦合光信号进行相位延迟得到第八相位延迟光信号;The fourth
第一耦合输出子单元1631,用于将第一分光子单元1611输出的第一耦合光信号与第二分光子单元1612输出的第三耦合光信号进行耦合后输出;The first
第二耦合输出子单元1632,用于将第一相位延迟子单元1621输出的第二相位延迟光信号与第二相位延迟子单元1622输出的第四相位延迟光信号进行耦合后输出;The second
第三耦合输出子单元1633,用于将第三分光子单元1613输出的第五耦合光信号与第四分光子单元1614输出的第七耦合光信号进行耦合后输出;The third
第四耦合输出子单元1634,用于将第三相位延迟子单元1623输出的第六相位延迟光信号与第四相位延迟子单元1624输出的第八相位延迟光信号进行耦合后输出。The fourth coupling output subunit 1634 is configured to couple the sixth phase delayed optical signal output by the third
具体地,第二分光子单元1612和第三分光子单元1613中的本振光信号可以由两个激光器分别提供,也可以由一个激光器通过分光得到,第二分光子单元1612和第三分光子单元1613中的控制信号由控制单元提供,当所述控制单元21控制切换单元15选择输出功率分配单元13输出的光信号,则控制第二分光子单元1612将第一分光延时子单元1601输出的第二非延时光信号进行耦合,以及控制第三分光子单元1613将第二分光延时子单元1602输出的第三非延时光信号进行耦合;当所述控制单元21控制切换单元15选择输出偏振分束单元14输出的光信号,则控制第二分光子单元1612将本振光信号进行耦合,以及控制第三分光子单元1613将本振光信号进行耦合。Specifically, the local oscillator optical signals in the
上述第一相位延迟子单元1621、第二相位延迟子单元1622、第三相位延迟子单元1623和第四相位延迟子单元1624中,相位延迟是根据接收到的光信号的码型确定延迟的相位。例如,对于DQPSK信号,若原始光信号I路和Q路信号的码型分别为01、11、10和00,则I路和Q路信号分别对应的电流Iu和Iv与信号n+1时刻和n时刻的相位差φn+1-φn的对应关系如下:In the first
根据上述对应关系可以获得接收机的电场相位,从而即可确定延迟的相位。The phase of the electric field of the receiver can be obtained according to the above correspondence, so that the phase of the delay can be determined.
上述第一分光子单元1611、第二分光子单元1612、第三分光子单元1613和第四分光子单元1614一般选用2×2的耦合器,其中,第一分光子单元1611和第四分光子单元1614使用其中的一个输入端,另一个输入端为空信号;第二分光子单元1612的一个输入端连接第二非延时信号,另一个输入端连接本振光信号,使用时只闭合其中的一个输入端,另一个输入端也为空信号;第三分光子单元1613的一个输入端连接第三非延时信号,另一个输入端连接本振光信号,使用时只闭合其中的一个输入端,另一个输入端也为空信号;第一耦合子单元1631、第二耦合子单元1632、第三耦合子单元1633和第四耦合子单元1634可以是2×2的耦合器。The first photo-splitting sub-unit 1611, the second photo-splitting sub-unit 1612, the third photo-splitting sub-unit 1613 and the fourth photo-splitting sub-unit 1614 generally use 2×2 couplers, wherein the first photo-splitting sub-unit 1611 and the fourth photo-splitting sub-unit 1611
本发明实施例还提供了一种实现直接检测和相干检测的方法,如图3所示,包括:The embodiment of the present invention also provides a method for realizing direct detection and coherent detection, as shown in FIG. 3 , including:
步骤31、将接收到的光信号分成第一路光信号和第二路光信号;
步骤32、第一路光信号进行功率分配得到第一光信号和第二光信号,第二路光信号进行偏振分束得到第一光信号和第二光信号;Step 32: performing power distribution on the first optical signal to obtain a first optical signal and a second optical signal, and performing polarization splitting on the second optical signal to obtain a first optical signal and a second optical signal;
步骤33、根据接收到的控制信号选择输出功率分配后的光信号或输出偏振分束后的光信号;
步骤34、对输出的光信号进行直接检测或相干检测。
具体地,若根据接收到的控制信号选择输出的是功率分配后的光信号,则进行直接检测,若根据接收到的控制信号选择输出的是偏振分束后的光信号,则进行相干检测。Specifically, if the optical signal after power distribution is selected to be output according to the received control signal, direct detection is performed; if the optical signal after polarization splitting is selected to be output according to the received control signal, coherent detection is performed.
进一步,所述控制信号是由所述光信号的发送端发送的,或所述控制信号是由所述光信号的接收端反馈的,还可以人工选择控制信号,具体工作人员可以通过所述光信号的码型来选择,例如,若所述光信号为DPSK,则选择控制信号控制输出功率分配后的光信号;若所述光信号为PDM-QPSK,则选择控制信号控制输出偏振分束后的光信号。Further, the control signal is sent by the sending end of the optical signal, or the control signal is fed back by the receiving end of the optical signal, and the control signal can also be manually selected, and the specific staff can use the optical signal For example, if the optical signal is DPSK, then select the control signal to control the output power distribution of the optical signal; if the optical signal is PDM-QPSK, then select the control signal to control the output after polarization splitting light signal.
光信号的发送端也可以根据光信号的码型发送控制信号,例如,若发送端发送的光信号为DPSK,则发送控制信号以控制输出功率分配后的光信号;若发送端发送的光信号为PDM-QPSK,则发送控制信号以控制输出偏振分束后的光信号。The sending end of the optical signal can also send a control signal according to the code pattern of the optical signal. For example, if the optical signal sent by the sending end is DPSK, then send a control signal to control the optical signal after output power distribution; if the optical signal sent by the sending end If it is PDM-QPSK, a control signal is sent to control the output of the optical signal after polarization splitting.
光信号的接收端可以通过检测接收到的光信号在两个偏振态的功率是否相等来反馈控制信号,若相等,则为偏振复用信号,此时反馈控制信号控制输出偏振分束后的光信号;若不相等,则为单偏振信号,此时反馈控制信号控制输出功率分配后的光信号。例如,若接收到的光信号为DPSK,则反馈控制信号以控制输出功率分配后的光信号;若接收到的光信号为PDM-QPSK,则反馈控制信号以控制输出偏振分束后的光信号。The receiving end of the optical signal can feedback the control signal by detecting whether the power of the received optical signal in the two polarization states is equal. signal; if they are not equal, it is a single-polarized signal, and the feedback control signal controls the optical signal after output power distribution. For example, if the received optical signal is DPSK, the control signal is fed back to control the optical signal after output power distribution; if the received optical signal is PDM-QPSK, the control signal is fed back to control the output of the optical signal after polarization splitting .
进一步,如图4所示,对输出的光信号进行直接检测或相干检测可以包括:Further, as shown in Figure 4, performing direct detection or coherent detection on the output optical signal may include:
步骤41、将功率分配后或偏振分束后输出的第一光信号进行分光得到第一非延时光信号和第二非延时光信号,并将其中的第一非延时光信号采用可调延时线进行延时处理,输出第一延时光信号和第二非延时光信号;
同时,将功率分配后或偏振分束后输出的第二光信号进行分光得到第三非延时光信号和第四非延时光信号,并将其中的第四非延时光信号采用可调延时线进行延时处理,输出第三非延时光信号和第四延时光信号。At the same time, the second optical signal output after power distribution or polarization splitting is split to obtain a third non-delayed optical signal and a fourth non-delayed optical signal, and the fourth non-delayed optical signal is used in an adjustable The delay line performs delay processing, and outputs the third non-delayed optical signal and the fourth delayed optical signal.
具体地,可调延时线可以具体根据信号的符号速率确定延时的比特,即信号的符号速率的倒数即为延时比特,其采用延时可调,可以适应不同的工作速率,避免了现有的直接检测方法只能工作于固定的速率的情况。Specifically, the adjustable delay line can determine the delayed bit according to the symbol rate of the signal, that is, the reciprocal of the symbol rate of the signal is the delay bit, and its adjustable delay can adapt to different operating rates, avoiding the Existing direct detection methods can only work at a fixed rate.
步骤42、将所述第一延时光信号进行耦合,输出第一耦合光信号和第二耦合光信号;根据控制信号将所述第二非延时光信号或将本振光信号进行耦合,输出第三耦合光信号和第四耦合光信号;根据控制信号将所述第三非延时光信号或将本振光信号进行耦合,输出第五耦合光信号和第六耦合光信号;将所述第四延时光信号进行耦合,输出第七耦合光信号和第八耦合光信号。Step 42: Coupling the first delayed optical signal, outputting the first coupled optical signal and the second coupled optical signal; coupling the second non-delayed optical signal or the local oscillator optical signal according to the control signal, output the third coupled optical signal and the fourth coupled optical signal; couple the third non-delayed optical signal or the local oscillator optical signal according to the control signal, and output the fifth coupled optical signal and the sixth coupled optical signal; The fourth delayed optical signal is coupled to output the seventh coupled optical signal and the eighth coupled optical signal.
具体地,所述控制信号是由所述光信号的发送端发送的,或所述控制信号是由所述光信号的接收端反馈的。本振光信号可以由两个激光器分别提供,也可以由一个激光器通过分光得到,当根据控制信号选择输出功率分配后的光信号,则将第二非延时光信号和第三非延时光信号分别进行耦合;当根据控制信号选择输出偏振分束后的光信号,则将本振光信号分别进行耦合。Specifically, the control signal is sent by the sending end of the optical signal, or the control signal is fed back by the receiving end of the optical signal. The local oscillator optical signal can be provided by two lasers separately, or can be obtained by one laser through optical splitting. When the optical signal after output power distribution is selected according to the control signal, the second non-delayed optical signal and the third non-delayed optical signal The signals are respectively coupled; when the optical signal after polarization splitting is selected to be output according to the control signal, the local oscillator optical signal is respectively coupled.
步骤43、将所述第二耦合光信号进行相位延迟得到第二相位延迟光信号;将所述第四耦合光信号进行相位延迟得到第四相位延迟光信号;将所述第六耦合光信号进行相位延迟得到第六相位延迟光信号;将所述第八耦合光信号进行相位延迟得到第八相位延迟光信号;Step 43: Perform phase delay on the second coupled optical signal to obtain a second phase delayed optical signal; perform phase delay on the fourth coupled optical signal to obtain a fourth phase delayed optical signal; perform phase delay on the sixth coupled optical signal Phase delaying to obtain a sixth phase-delayed optical signal; performing phase delay on the eighth coupled optical signal to obtain an eighth phase-delayed optical signal;
具体地,相位延迟是根据接收到的光信号的码型确定延迟的相位。例如,对于DQPSK信号,若原始光信号I路和Q路信号的码型分别为01、11、10和00,则I路和Q路信号分别对应的电流Iu和Iv与信号n+1时刻和n时刻的相位差φn+1-φn的对应关系如下:Specifically, the phase delay is to determine the delayed phase according to the code pattern of the received optical signal. For example, for a DQPSK signal, if the code patterns of the original optical signal I and Q signals are 01, 11, 10 and 00 respectively, then the currents I u and I v corresponding to the I and Q signals are the same as the signal n+1 The corresponding relationship between the phase difference φ n+1 -φ n at time and n time is as follows:
根据上述对应关系可以获得接收机的电场相位,从而即可确定延迟的相位。The phase of the electric field of the receiver can be obtained according to the above correspondence, so that the phase of the delay can be determined.
步骤44、将所述第一耦合光信号与所述第三耦合光信号进行耦合后输出;将所述第二相位延迟光信号与所述第四相位延迟光信号进行耦合后输出;将所述第五耦合光信号与所述第七耦合光信号进行耦合后输出;将所述第六相位延迟光信号与所述第八相位延迟光信号进行耦合后输出。Step 44: Coupling the first coupled optical signal with the third coupled optical signal and then outputting; coupling the second phase-delayed optical signal with the fourth phase-delayed optical signal and outputting it; The fifth coupled optical signal is coupled with the seventh coupled optical signal and then output; the sixth phase-delayed optical signal is coupled with the eighth phase-delayed optical signal and then output.
下面以接收到的光信号为DQPSK为例,如图5所示,结合图6的装置对上述方法进行具体说明:Taking the received optical signal as DQPSK as an example, as shown in Figure 5, the above method will be described in detail in conjunction with the device in Figure 6:
步骤51、接收单元11接收到DQPSK信号,光分路器12将接收到的光信号分成第一路光信号和第二路光信号,第一路光信号送入功率分配单元13,第二路光信号送入偏振分束单元14。
步骤52、功率分配单元13将第一路光信号进行功率分配输出第一光信号和第二光信号,偏振分束单元14将第二路光信号进行偏振分束输出第一光信号和第二光信号。Step 52: The
步骤53、根据控制信号选择功率分配单元13输出的光信号,控制信号是由控制单元21发送的。
步骤54、第一分光延时子单元1601将输出的第一光信号进行分光得到光信号R(11)和R(12),第二分光延时子单元1602将输出的第二光信号进行分光得到光信号R(13)和R(14),并将其中的光信号R(11)和R(14)采用可调延时线延时预定的比特后得到光信号R(1)和R(4),所述预定的比特可以根据信号的符号速率确定。Step 54: The first splitting and delaying
步骤55、根据控制信号将延时处理后的光信号R(1)和R(4)以及光信号R(12)和R(13)分别送入第一分光子单元1611、第四分光子单元1614、第二分光子单元1612和第三分光子单元1613进行耦合,得到光信号r(1)、r(2)、r(3)、r(4)、r(5)、r(6)、r(7)和r(8),此时控制单元21控制R(12)和R(13)所在线路上的开关闭合。
步骤56、将耦合得到的光信号r(2)、r(4)、r(6)和r(8)分别送入第一相位延迟子单元1621、第二相位延迟子单元1622、第三相位延迟子单元1623和第四相位延迟子单元1624进行相位延迟,得到光信号X(2)、X(4)、X(6)和X(8)。
具体的,第一相位延迟子单元1621、第二相位延迟子单元1622、第三相位延迟子单元1623和第四相位延迟子单元1624根据接收到的光信号的码型确定延迟的相位,具体为第一相位延迟单元延迟相位-π/4,第二相位延迟单元延迟相位π/4,第三相位延迟单元延迟相位0,第四相位延迟单元延迟相位-3π/4。Specifically, the first
步骤57、将光信号r(1)与r(3)、X(2)与X(4)、r(5)与r(7)以及X(6)与X(8)分别送入第一耦合子单元1631、第二耦合子单元1632、第三耦合子单元1633和第四耦合子单元1634进行耦合,选取耦合后的光信号x(2)和x(4)输出即为正确接收的信号,其它光信号可以忽略。
同理,若接收到的光信号为DPSK,其步骤与步骤51到步骤56基本相同,步骤57则选取耦合后的光信号x(1)、x(2)、x(3)和x(4)输出即为正确接收的信号。Similarly, if the received optical signal is DPSK, the steps are basically the same as
下面以接收到的光信号为PDM-QPSK为例,如图7所示,结合图8的装置对上述方法进行具体说明:Taking the received optical signal as PDM-QPSK as an example, as shown in Figure 7, the above method will be described in detail in conjunction with the device in Figure 8:
步骤71、接收单元11接收到PDM-QPSK信号,光分路器12将接收到的光信号分成第一路光信号和第二路光信号,第一路光信号送入功率分配单元13,第二路光信号送入偏振分束单元14。
步骤72、功率分配单元13将第一路光信号进行功率分配输出第一光信号和第二光信号,偏振分束单元14将第二路光信号进行偏振分束输出第一光信号和第二光信号。Step 72: The
步骤73、根据控制信号选择偏振分束单元14输出的光信号,控制信号由控制单元21发送的。
步骤74、第一分光延时子单元1601将输出的第一光信号进行分光得到光信号F(11)和F(12),第二分光延时子单元1602将输出的第二光信号进行分光得到光信号F(13)和F(14),并将其中的光信号F(11)和F(14)采用可调延时线延时预定的比特后得到光信号F(1)和F(4),所述预定的比特可以根据信号的符号速率确定,由于相干检测下对于延时的比特数没有要求,故均延时为0比特也可以,只要保证两路延时处理的光信号延时相同的比特数即可。Step 74: The first splitting and delaying
步骤75、根据控制信号将延时处理后的光信号F(1)和F(4)以及本振信号F(5)和F(6)分别第一分光子单元1611、第四分光子单元1614、第二分光子单元1612和第三分光子单元1613进行耦合,得到光信号f(1)、f(2)、f(3)、f(4)、f(5)、f(6)、f(7)和f(8),此时控制单元21控制本振信号所在的线路上的开关闭合。
步骤76、将耦合后得到的光信号f(2)、f(6)、f(4)和f(8)分别送入第一相位延迟子单元1621、第二相位延迟子单元1622、第三相位延迟子单元1623和第四相位延迟子单元1624进行相位延迟,得到光信号Z(2)、Z(4)、Z(6)和Z(8)。
具体地,第一相位延迟子单元1621、第二相位延迟子单元1622、第三相位延迟子单元1623和第四相位延迟子单元1624根据接收到的光信号的码型确定延迟的相位,具体为第一相位延迟单元和第三相位延迟单元延迟相位0,第二相位延迟单元和第四相位延迟单元延迟相位π/2。Specifically, the first
步骤77、将光信号f(1)与f(3)、Z(2)与Z(4)、f(5)与f(7)以及Z(6)与Z(8)分别送入第一耦合子单元1631、第二耦合子单元1632、第三耦合子单元1633和第四耦合子单元1634进行耦合,选取耦合后的光信号z(1)、z(2)、z(3)和z(4)输出即为正确接收的信号。
本发明实施例根据控制信号选择对光信号进行功率分配或偏振分束,即通过切换单元选择输出功率分配单元输出的光信号或输出偏振分束单元输出的光信号,即根据控制信号即可完成直接检测或相干检测的选择,从而进行直接检测或相干检测,实现了对不同码型的光信号进行解调。分光延时单元组采用可调延时线进行延时处理,并具体根据信号的符号速率确定延时的比特,达到了可以根据工作速率进行调节的目的,由于延时可调,故可以适应不同的工作速率,解决了现有的直接检测方法中,接收机的延时量固定,只能工作于固定的速率的问题。In the embodiment of the present invention, the power distribution or polarization splitting of the optical signal is selected according to the control signal, that is, the optical signal output by the output power distribution unit or the optical signal output by the output polarization beam splitting unit is selected through the switching unit, that is, it can be completed according to the control signal The selection of direct detection or coherent detection, so as to perform direct detection or coherent detection, and realize the demodulation of optical signals of different code types. The splitting delay unit group uses an adjustable delay line for delay processing, and determines the delay bit according to the symbol rate of the signal, so as to achieve the purpose of adjusting according to the working rate. Since the delay is adjustable, it can adapt to different It solves the problem that in the existing direct detection method, the receiver has a fixed delay and can only work at a fixed rate.
以上所述,仅为本发明较佳的具体实施方式,但本发明的保护范围并不局限于此,任何熟悉本技术领域的技术人员在本发明揭露的技术范围内,可轻易想到的变化或替换,都应涵盖在本发明的保护范围之内。因此,本发明的保护范围应该以权利要求的保护范围为准。The above is only a preferred embodiment of the present invention, but the scope of protection of the present invention is not limited thereto. Any person skilled in the art within the technical scope disclosed in the present invention can easily think of changes or Replacement should be covered within the protection scope of the present invention. Therefore, the protection scope of the present invention should be determined by the protection scope of the claims.
Claims (13)
Priority Applications (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201010554150.9A CN102142902B (en) | 2010-11-19 | 2010-11-19 | Method and device for realizing direct detection and coherent detection |
PCT/CN2011/075210 WO2011147335A1 (en) | 2010-11-19 | 2011-06-02 | Method and apparatus for implementing direct detection and coherent detection |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201010554150.9A CN102142902B (en) | 2010-11-19 | 2010-11-19 | Method and device for realizing direct detection and coherent detection |
Publications (2)
Publication Number | Publication Date |
---|---|
CN102142902A true CN102142902A (en) | 2011-08-03 |
CN102142902B CN102142902B (en) | 2013-12-18 |
Family
ID=44410160
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN201010554150.9A Expired - Fee Related CN102142902B (en) | 2010-11-19 | 2010-11-19 | Method and device for realizing direct detection and coherent detection |
Country Status (2)
Country | Link |
---|---|
CN (1) | CN102142902B (en) |
WO (1) | WO2011147335A1 (en) |
Cited By (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN105052056A (en) * | 2013-03-15 | 2015-11-11 | 日本电气株式会社 | Optical transmitter/receiver, optical communication system, and optical transmission/reception method |
WO2016062186A1 (en) * | 2014-10-20 | 2016-04-28 | Huawei Technologies Co., Ltd. | Carrier-signal power ratio control in direct detection optical systems |
CN106453180A (en) * | 2015-08-10 | 2017-02-22 | 博通集成电路(上海)有限公司 | Circuit and method for improving phase detection |
CN107346993A (en) * | 2017-07-18 | 2017-11-14 | 深圳市杰普特光电股份有限公司 | Optical signal coherence detection and device |
CN110463090A (en) * | 2017-08-16 | 2019-11-15 | 华为技术有限公司 | A kind of optical sender, photoreceiver and optical transmission method |
Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5760941A (en) * | 1996-02-29 | 1998-06-02 | Rice University | System and method for performing optical code division multiple access communication using bipolar codes |
CN1743936A (en) * | 2004-09-01 | 2006-03-08 | 华为技术有限公司 | Light spectrum detecting device and method, and Raman amplifier feedback control device and method |
US20090052907A1 (en) * | 2007-08-20 | 2009-02-26 | Nec Laboratories America, Inc. | Wavelength transmission system and method using 3-dimensional ldpc-coded modulation |
WO2010105684A1 (en) * | 2009-03-19 | 2010-09-23 | Agilent Technologies, Inc. | Calibrating an optical downconverter |
WO2010119576A1 (en) * | 2009-04-16 | 2010-10-21 | Nec Corporation | Method of and system for detecting skew between parallel signals |
Family Cites Families (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP4553556B2 (en) * | 2003-03-25 | 2010-09-29 | 富士通株式会社 | WDM optical signal quality monitoring method and apparatus, and optical transmission system using the same |
JP4755690B2 (en) * | 2006-09-26 | 2011-08-24 | 株式会社日立製作所 | Optical field receiver and optical transmission system |
JP2011035735A (en) * | 2009-08-03 | 2011-02-17 | Fujitsu Ltd | Transmission apparatus, transmission system, and method of communication |
-
2010
- 2010-11-19 CN CN201010554150.9A patent/CN102142902B/en not_active Expired - Fee Related
-
2011
- 2011-06-02 WO PCT/CN2011/075210 patent/WO2011147335A1/en active Application Filing
Patent Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5760941A (en) * | 1996-02-29 | 1998-06-02 | Rice University | System and method for performing optical code division multiple access communication using bipolar codes |
CN1743936A (en) * | 2004-09-01 | 2006-03-08 | 华为技术有限公司 | Light spectrum detecting device and method, and Raman amplifier feedback control device and method |
US20090052907A1 (en) * | 2007-08-20 | 2009-02-26 | Nec Laboratories America, Inc. | Wavelength transmission system and method using 3-dimensional ldpc-coded modulation |
WO2010105684A1 (en) * | 2009-03-19 | 2010-09-23 | Agilent Technologies, Inc. | Calibrating an optical downconverter |
WO2010119576A1 (en) * | 2009-04-16 | 2010-10-21 | Nec Corporation | Method of and system for detecting skew between parallel signals |
Cited By (13)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN105052056B (en) * | 2013-03-15 | 2018-05-22 | 日本电气株式会社 | Light emitting/receiving device, optical communication system and optical transmitting/receiving method |
US9584220B2 (en) | 2013-03-15 | 2017-02-28 | Nec Corporation | Optical transmission/reception device, optical communication system and optical transmission/reception method |
CN105052056A (en) * | 2013-03-15 | 2015-11-11 | 日本电气株式会社 | Optical transmitter/receiver, optical communication system, and optical transmission/reception method |
US10447387B2 (en) | 2013-03-15 | 2019-10-15 | Nec Corporation | Optical transmission/ reception device, optical communication system and optical transmission/ reception method |
US10880003B2 (en) | 2013-03-15 | 2020-12-29 | Nec Corporation | Optical transmission/ reception device, optical communication system and optical transmission/ reception method |
US11277202B2 (en) | 2013-03-15 | 2022-03-15 | Nec Corporation | Optical transmission/reception device, optical communications system and optical transmission/reception method |
WO2016062186A1 (en) * | 2014-10-20 | 2016-04-28 | Huawei Technologies Co., Ltd. | Carrier-signal power ratio control in direct detection optical systems |
US9608723B2 (en) | 2014-10-20 | 2017-03-28 | Huawei Technologies Co., Ltd. | Carrier-signal power ratio control in direct detection optical systems |
CN106453180A (en) * | 2015-08-10 | 2017-02-22 | 博通集成电路(上海)有限公司 | Circuit and method for improving phase detection |
CN107346993A (en) * | 2017-07-18 | 2017-11-14 | 深圳市杰普特光电股份有限公司 | Optical signal coherence detection and device |
CN110463090A (en) * | 2017-08-16 | 2019-11-15 | 华为技术有限公司 | A kind of optical sender, photoreceiver and optical transmission method |
CN110463090B (en) * | 2017-08-16 | 2021-02-23 | 华为技术有限公司 | Optical transmitter, optical receiver and optical transmission method |
US11018775B2 (en) | 2017-08-16 | 2021-05-25 | Huawei Technologies Co., Ltd. | Optical transmitter, optical receiver, and optical transmission method |
Also Published As
Publication number | Publication date |
---|---|
WO2011147335A1 (en) | 2011-12-01 |
CN102142902B (en) | 2013-12-18 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
EP1686707B1 (en) | Optical receiver and optical reception method compatible with differential quadrature phase shift keying | |
US7606504B2 (en) | Optical receiver and optical receiving method corresponding to differential M-phase shift keying system | |
CN103414553B (en) | The quantum key distribution system compensated based on time slot interleaving active polarization and method | |
CN101895495B (en) | Method and system for transmitting and receiving by orthogonally dual-polarized differential quaternary phase shift keying | |
US9749057B2 (en) | Detection and alignment of XY skew | |
US20070065157A1 (en) | Optical signal reception device and method of controlling optical signal reception | |
US8909062B2 (en) | Optical signal regeneration and amplification of M-PSK and M-QAM modulation formats using reconfigurable wavelength selective processors and phase-sensitive amplifiers | |
EP2352239A1 (en) | A method, device and system for optic-demodulating the optical carrier of polarization division multiplexing | |
CN102142902B (en) | Method and device for realizing direct detection and coherent detection | |
US20150063825A1 (en) | Signal synchronization transmission system, synchronization drive system for optical modulator, signal synchronization transmission method, and non-transitory computer readable medium storing program thereof | |
US7962043B2 (en) | Multichannel optical transport network skew control | |
CN103414516B (en) | Based on two-way wire/wireless mixed light cut-in method and the system of same/heterodyne detection | |
KR20110030136A (en) | Polarization splitters, optical hybrids and optical receivers comprising them | |
CN102946282B (en) | Optical transmission system, light Transmit-Receive Unit and coincidence frequency method of adjustment thereof | |
US7555061B2 (en) | Optical communication device | |
WO2007052380A1 (en) | Photoreceptor using mach-zehnder interferometer | |
CN103168437A (en) | Adaptive Receiver Without FEC Feedback | |
CN101141202B (en) | DPSK light modulation signal receiving device and method thereof | |
EP2584717B1 (en) | Method and system for testing jitter compatibility | |
JP7385386B2 (en) | Power receiving device and optical fiber power supply system | |
US8165477B2 (en) | Light receiving apparatus using DQPSK demodulation method, and DQPSK demodulation method | |
EP3128685A1 (en) | Detection and alignment of xy skew | |
CN116015477B (en) | Light quantum forwarding method and device supporting wavelength division multiplexing and time division multiplexing | |
CN114285566A (en) | Signal processing apparatus and method, electronic apparatus, and storage medium | |
JP5907175B2 (en) | Optical communication apparatus, optical transmitter, and optical transmission method |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
C06 | Publication | ||
PB01 | Publication | ||
C10 | Entry into substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
C14 | Grant of patent or utility model | ||
GR01 | Patent grant | ||
ASS | Succession or assignment of patent right |
Owner name: SHENZHEN LIANCHUANG INTELLECTUAL PROPERTY SERVICE Free format text: FORMER OWNER: HUAWEI TECHNOLOGY CO., LTD. Effective date: 20150703 |
|
C41 | Transfer of patent application or patent right or utility model | ||
TR01 | Transfer of patent right |
Effective date of registration: 20150703 Address after: 518129 Nanshan District Nanshan digital cultural industry base, east block, Guangdong, Shenzhen 407 Patentee after: Shenzhen LIAN intellectual property service center Address before: 518129 Bantian HUAWEI headquarters office building, Longgang District, Guangdong, Shenzhen Patentee before: Huawei Technologies Co., Ltd. |
|
C41 | Transfer of patent application or patent right or utility model | ||
TR01 | Transfer of patent right |
Effective date of registration: 20160201 Address after: 224500 Jiangsu Jiangsu Binhai Economic Development Zone Yancheng City coastal industrial park north of Zhongshan Road Province Patentee after: JIANGSU KELI NEW MATERIAL CO., LTD. Address before: 518129 Nanshan District Nanshan digital cultural industry base, east block, Guangdong, Shenzhen 407 Patentee before: Shenzhen LIAN intellectual property service center |
|
CF01 | Termination of patent right due to non-payment of annual fee |
Granted publication date: 20131218 Termination date: 20161119 |
|
CF01 | Termination of patent right due to non-payment of annual fee |