CN102141524A - 检测焊球失效的电子散斑干涉系统及无损检测方法 - Google Patents

检测焊球失效的电子散斑干涉系统及无损检测方法 Download PDF

Info

Publication number
CN102141524A
CN102141524A CN2010101027959A CN201010102795A CN102141524A CN 102141524 A CN102141524 A CN 102141524A CN 2010101027959 A CN2010101027959 A CN 2010101027959A CN 201010102795 A CN201010102795 A CN 201010102795A CN 102141524 A CN102141524 A CN 102141524A
Authority
CN
China
Prior art keywords
speckle pattern
electronic speckle
sample
pattern interferometry
displacement
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN2010101027959A
Other languages
English (en)
Inventor
高云霞
王珺
肖斐
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fudan University
Original Assignee
Fudan University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fudan University filed Critical Fudan University
Priority to CN2010101027959A priority Critical patent/CN102141524A/zh
Publication of CN102141524A publication Critical patent/CN102141524A/zh
Pending legal-status Critical Current

Links

Images

Landscapes

  • Investigating Materials By The Use Of Optical Means Adapted For Particular Applications (AREA)

Abstract

本发明属于电子封装领域,涉及一种用于检测板级组装球栅阵列封装器件中焊球失效的电子散斑干涉测试系统及其检测方法。该系统包括:检测样品的固定与加载部分,电子散斑干涉的离面位移测试光路部分,和计算机数据分析处理部分。离面位移测试光路部分用于形成检测样品在机械载荷下变形后的干涉条纹,即表面微位移信息。计算机数据处理部分,用于采集条纹、进行相位解包和位移计算、定位失效区域。通过比较对标准品与样品的离面位移条纹确定样品是否发生焊球失效。该系统组成元件简单,测量过程不会损坏器件,检测方法简便、工艺整合性好,可实现流水线上的实时测量,从而大大提高板级组装球栅阵列封装器件中焊球失效的检测效率。

Description

检测焊球失效的电子散斑干涉系统及无损检测方法
技术领域
本发明属于电子封装领域,涉及用于检测板级组装球栅阵列(BGA,Ball GridArray)封装器件中焊球失效的电子散斑干涉(ESPI,Electronic Speckle PatternInterferometry)系统,及其检测方法。
背景技术
球栅阵列封装是I/O端子以球形或柱形焊点,按阵列形式分布的表面贴装形式。其能实现封装的高I/O数、高性能、多功能及高密度化,已经在电子封装领域得到广泛应用。但是,球栅阵列封装在再流焊等组装过程中,可能由于热失配或其他应力,在个别焊点发生裂纹、分层甚至脱落等失效。并且组装后焊点不外露,质量检测困难。目前常用的焊球失效分析手段,主要有电测试、边界扫描测试,和X射线扫描等方法。该方法步骤多、成本高、工艺集成性差、检测效率不高。
电子散斑干涉作为一种有效的无损检测手段,具有非接触、全场测量、高灵敏度、高精度等特点,已广泛应用于机械土木、航空航天、生物医学等领域。在相移技术的辅助下,电子散斑干涉的位移测量分辨率可达50纳米甚至以下,由于电子散斑干涉的这些优点,其在电子封装的可靠性检测方面有很好的应用前景。
发明内容
本发明的目的是提出一种用于检测板级组装球栅阵列封装器件中焊球失效的电子散斑干涉测试系统。
本发明的另一个目的是提出板级组装球栅阵列封装器件中焊球失效的检测方法。
本发明提供了一种用于检测板级组装球栅阵列封装器件中焊球失效的电子散斑干涉测试系统,包括:检测样品固定与加载部分,电子散斑干涉的离面位移测试光路部分,以及计算机数据处理部分;其中,检测样品的固定与加载部分用于对被测球栅阵列封装提供稳定夹持,以及对检测样品施加机械载荷;离面位移测试光路部分用于形成检测样品在机械载荷下变形后的干涉条纹,即表面微位移信息;计算机数据处理部分,用于采集条纹、进行相位解包和位移计算、定位失效区域,并通过进一步计算处理,最终确定失效焊点及其损坏程度。
计算机数据处理部分是安装了分析电子散斑干涉条纹软件的计算机。本发明所对应的计算机数据处理部分可以是通过数据线连接的本地计算机,也可以是通过局域网或广域网等网络连接的远程计算机。所有的数据处理计算,可以由计算机、硬件模块、定制软件、多个软件的组合中的一个或多个来完成。所述的分析电子散斑干涉条纹软件可以是本领域常用的软件,通常能够计算分析所测板级组装球栅阵列封装器件在失效相关的相位分布、位移分布、位移梯度、该区域中各焊球横、纵截面的位移曲线等操作中的一个、多个及其组合,然后与定标测试的对应信息进行比较。该软件还可以根据对应信息的比较结果,判断相位值、位移值、位移梯度等相对完好试样偏离最大的位置为失效焊点所在位置。
检测样品固定与加载部分包括常规的球栅阵列封装固定和施加机械载荷的装置。例如采用夹持装置进行固定。在同型号板级组装球栅阵列封装器件的定标测试,以及每次测试中,施加的夹持完全相同。在同型号板级组装球栅阵列封装器件的定标测试,以及每次测试中,所施加机械载荷的方向、作用位置完全相同,大小差别不大。
所述的离面位移测试光路部分包括发射光线装置、分光装置、反射装置和叠加干涉装置;四者依次连接并形成特定角度,发射光线装置发出的光线穿过分光装置,一束经反射装置反射、穿过样品并投射到叠加干涉装置,另一束经过反射也投射到叠加干涉装置,两束光线通过叠加干涉装置形成电子散斑干涉条纹。
所述的离面位移测试光路部分还可以包括调整激光束相位的装置,调整激光束相位的装置与反射装置连接。
所述的离面位移测试光路部分还可以包括调整激光束光强的装置,调整激光束光强的装置与反射装置连接。
所述的发射光线装置、分光装置、反射装置、叠加干涉装置、调整激光束相位的装置和调整激光束光强的装置均可以采用常见的装置器件。例如,以激光器作为发射光线装置,以分光镜作为分光装置、以反射镜作为反射装置、以棱镜作为叠加干涉装置、以压电陶瓷相移器作为调整激光束相位的装置,以双偏振片作为调整激光束光强的装置。
具体而言,本发明的电子散斑干涉测试系统中,离面位移测试光路部分包括激光器、分光镜、扩束镜、全反镜和棱镜;激光器与分光镜连接,分光镜分别与扩束镜和全反镜连接,棱镜分别与扩束镜和全反镜连接;激光器发射出的激光经过分光镜分为两束,一束经过扩束镜后穿过待测样品投射到棱镜一个侧面,另一束经全反镜反射投射到棱镜的另一侧面,两束激光通过棱镜发生叠加干涉。
所述的离面位移测试光路部分还可以包括压电陶瓷相移器和双偏振片,两者都与全反镜连接。压电陶瓷相移器用于调整全反镜反射的激光的相位,双偏振片用于调整全反镜反射的激光的光强。
上述电子散斑干涉的离面位移测试光路部分可以是零散的光学组件,也可以是集成的检测仪器。可根据实际需要,在不影响实际功能的前提下,添加、减少、组合、或重新放置部分组件。例如可以调换全反镜与压电陶瓷相移器的位置,或者使用其他具有调整光强功能的器件来代替双偏振片,等等。另外,该光路部分可以包括相移相关器件,以提高位移测量的精确度,也可以省略该功能,使用傅立叶变换等其他方法来处理条纹,计算相位。
参照图1,上述测试系统包括三个主要部分:1.检测样品的固定与加载部分,2.电子散斑干涉的离面位移测试光路部分,3.计算机数据处理、分析部分。第1部分,检测样品的固定与加载部分用于对被测样品提供稳定夹持,以及对待测样品提供机械加载,机械加载可采用位移控制或力控制。第2部分,电子散斑离面位移测试光路用于形成待测样品在机械载荷下变形后的干涉条纹。电子散斑干涉的离面位移测试光路如图1所示。该光路原理是:激光器发射632纳米波长的红色激光、或532纳米波长的绿色激光,以及其他可见光波长范围的激光,激光束通过分光镜一分为二,其中一束激光通过扩束镜扩束、照射到被测封装表面。测封装表面反射的激光束由光学镜头接收,并将之投射到四方棱镜侧面之一。另外一束激光经全反镜,通过调整全反镜,使其以预定角度照射到压电陶瓷相移器上。压电陶瓷相移器与相移控制器(未显示)电连接,根据相移控制器的信号,改变该激光束的相位,该激光束再通过双偏振片调整激光束的光强,然后经另一扩束镜将该激光束扩束、照射到四方棱镜另一侧面。四方棱镜互相垂直的相邻侧面分别接收光学镜头和扩束镜送来的激光束,并使之在对角面上发生叠加干涉,该对角面由作为光接收面的两相邻侧面的两条非相交侧棱构成。位于四方棱镜正后方的CCD成像系统与四方棱镜光连接,并与计算机处理部分(未显示)连接,CCD接收四方棱镜传来的两束激光的叠加光信号,并将之转换为电信号,传送到计算机中,作为下一步计算处理的输入信息。第3部分,计算机数据处理、分析部分包括采集干涉条纹、并对条纹进行相位解包和位移计算,定位失效区域,然后对该区域进行进一步计算处理,最终确定失效焊点及其损坏程度。三个部分相互结合,形成检测板级组装球栅阵列封装器件中焊球失效的检测系统和方法。
相应的,本发明提供了一种球栅阵列封装中焊球失效的电子散斑干涉检测方法,包括以下步骤:
(1)对同一型号板级组装球栅阵列封装器件的完好检测样品进行定标测试,测量并记录完好样品在一定夹持、机械加载情况下的离面位移条纹;
(2)保持相同夹持、加载条件情况下,测量并记录待测板级组装球栅阵列封装器件的离面位移条纹;
(3)对上述两组离面位移条纹进行初步比较。
如果两组离面位移条纹不一致,则确定发生失效。如果两组离面位移条纹一致,则未发生失效,检测结束。
当两组离面位移条纹不一致时,可以通过对失效相关区域进行进一步计算处理,最终确定失效焊点及其损坏程度。
上述测试方法包括:对同一型号完好板级组装球栅阵列封装器件进行定标测试,测量并记录完好样品在机械载荷下的离面位移条纹,载荷大小应控制在使样品仅产生微小弹性变形的范围内;保持相同的夹持条件,测量并记录待测球栅阵列封装的离面位移条纹;对上述两组条纹进行相位解包和位移计算,比较焊球所在区域的单位载荷作用下的相位变化和位移分布,若有失效发生,则可根据条纹变化定位失效区域;然后对失效相关区域进行进一步计算处理,获得该区域中位移梯度、各焊点所在横、纵截面的位移分布等信息,最终确定失效焊点及其损坏程度。
所述的电子散斑干涉检测方法包括:测量并记录确知完好的同型号板级组装球栅阵列封装器件的电子散斑干涉条纹,计算该检测样品的整体相位分布、位移分布、位移梯度、各焊球横和纵截面的位移曲线信息。
所述的条纹初步比较可以是,比较当前样品测试所得条纹与定标测试中样品的条纹形状,判断条纹形状与定标测试相同的器件完好。也可以包括,比较当前测试所得条纹与定标测试中的条纹形状,判断条纹形状与定标测试不同的器件失效,并判断条纹形状异常所在位置为失效区域。
所述的进一步计算处理,包括:计算所测板级组装球栅阵列封装器件在失效相关的相位分布、位移分布、位移梯度、该区域中各焊球横、纵截面的位移曲线等操作中的一个、多个及其组合。然后与定标测试的对应信息进行比较。还包括,根据对应信息的比较结果,判断相位值、位移值、位移梯度等相对完好试样偏离最大的位置为失效焊点所在位置。通常,根据相位值、位移值、位移梯度等相对完好试样的偏离量,判断缺陷程度。偏离越大,缺陷越严重。
由于散斑干涉在加载的同时即产生,通过条纹计算位移、及进一步计算分析都可做到实时结果反馈,因此通过上述测试系统和测试方法,可以在不损坏被测封装的前提下,对流水线上的板级组装球栅阵列封装器件进行实时检测。通过单次加载和单次测量,即可检测组装器件中焊点是否发生失效,并定位失效区域、确定其损坏程度。
该方法与现有技术相比,具有以下优点和积极效果:
1.对器件没有特殊加工要求,测量过程不会损坏器件,可用于生产成品的质量检测;
2.操作步骤简单,夹持与加载可以通过机械自动化实现,图形处理及进一步计算则在电脑中完成,检测过程可以实现无人操作;
3.测试装置结构简单,成本低,只需在流水线后端,根据待测板级组装球栅阵列封装器件,添加夹持、加载的固定装置,并安装相应的电子散斑干涉离面位移测试光路系统,就能对产品进行批量测试,工业集成性好;
4.测试速度快,只需单次夹持及加载,就能通过计算机屏幕上显示的条纹形状、整体位移分布,特定焊点横、纵截面的位移分布等计算结果,判断被测器件焊点是否发生失效、定位失效焊点并分析该焊点的损坏程度,可以实现生产成品的实时检测。
本发明提出一种用电子散斑干涉结合计算分析、检测板级组装球栅阵列封装器件中焊球失效的检测系统及方法。该系统可以通过单次加载和单次测量,对整个板级组装球栅阵列封装器件进行检测,确定是否发生焊球失效、定位失效焊点、并通过计算分析识别焊点的失效模式。该检测方法设备简单、操作方便、工艺整合性好,可实现流水线上的实时测量,从而大大提高板级组装球栅阵列封装器件中焊球失效的检测效率。
附图说明
图1是光路图显示本发明所对应电子散斑干涉测试系统的离面位移测试光路。其中,1是激光器,2是分光镜,3是扩束镜,4是测封装,5是光学镜头,6是全反镜,7是压电陶瓷相移器,8是双偏振片,9是扩束镜,10是四方棱镜,11是CCD成像系统。
图2是用本发明所对应电子散斑干涉测试系统和方法检测的简易板级组装球栅阵列封装器件的示意图。
图3是本发明所对应电子散斑干涉测试方法的流程图。
图4是用本发明所对应电子散斑干涉测试系统检测完好的简易板级组装球栅阵列封装器件得到的离面位移条纹图。
图5是用本发明所对应电子散斑干涉测试系统检测焊球分层的简易板级组装球栅阵列封装器件得到的离面位移条纹图。
图6是用本发明所对应电子散斑干涉测试系统检测焊球脱落的简易板级组装球栅阵列封装器件得到的离面位移条纹图。
图7是通过进一步计算分析,得到的完好的简易板级组装球栅阵列封装器件在失效焊球区域的位移分布表面图。
图8通过进一步计算分析,得到的焊球分层的简易板级组装球栅阵列封装器件在失效焊球区域的位移分布表面图。
图9是通过进一步计算分析,得到的焊球脱落的简易板级组装球栅阵列封装器件在失效焊球区域的位移分布表面图。
具体实施方式
以下参照附图详细说明本发明实施例所对应的用于检测板级组装球栅阵列封装器件中焊球失效的电子散斑干涉测试系统及其测试方法。
实施例1用于检测板级组装球栅阵列封装中焊球失效的电子散斑干涉测试系统
该系统包括:固定与加载部分,电子散斑干涉的离面位移测试光路部分和计算机数据处理部分。其中,固定与加载部分用于对被测板级组装球栅阵列封装器件提供稳定夹持并提供机械加载;离面位移测试光路部分用于形成封装在机械载荷下变形后干涉条纹,即表面微位移;计算机数据处理部分用于采集条纹、进行相位解包和位移计算、定位失效区域,并通过进一步计算处理,最终确定失效焊点及其损坏程度。
参照图1,说明本发明实施例所对应的电子散斑干涉的离面位移测试光路部分。图1是其光路图,该光路包括:激光器1,其用于发射激光。激光器1可以发射632纳米波长的红色激光,或者发射532纳米波长的绿色激光,以及其他可见光波长范围的激光。分光镜2,其与激光器1光连接,用于接收激光器送来的激光,并将该激光束一分为二。位于分光镜一侧的扩束镜3,其与分光镜2光连接,用于接收分光镜2送来的激光束之一,并将该激光束扩束、照射到被测封装4表面。位于被测封装4正前方的光学镜头5,其用于接收被测封装4表面反射的激光束,并将之投射到四方棱镜10侧面之一。位于分光镜2另一侧的全反镜6,其与分光镜2光连接,用于反射分光镜2送来的另一激光束,调整该激光束的传播方向,使其以预定角度照射到压电陶瓷相移器7上。压电陶瓷相移器7,其与全反镜6光连接,并与相移控制器(未显示)电连接,用于反射全反镜6送来的激光,调整该激光束的传播方向,使其以预定角度照射到光强调制部件上,并且根据相移控制器的信号,改变该激光束的相位。双偏振片8,其与压电陶瓷相移器7光连接,用于调整压电陶瓷相移器7送来的激光束的光强。另一扩束镜9,其与双偏振片8光连接,用于接收双偏振片8送来的激光束,并将该激光束扩束、照射到四方棱镜10另一侧面。四方棱镜10,其分别与光学镜头5和扩束镜9光连接,以互相垂直的相邻侧面分别接收光学镜头5和扩束镜9送来的激光束,并使之在对角面上发生叠加干涉,该对角面由作为光接收面的两相邻侧面的两条非相交侧棱构成。位于四方棱镜10正后方的CCD成像系统11,其与四方棱镜10光连接,并与计算机处理部分(未显示)连接,CCD接收四方棱镜10传来的两束激光的叠加光信号,并将之转换为电信号,传送到计算机中,作为下一步计算处理的输入信息。
上述电子散斑干涉的离面位移测试光路部分可以是零散的光学组件,也可以是集成的检测仪器。可根据实际需要,在不影响实际功能的前提下,添加、减少、组合、或重新放置部分组件。例如可以调换全反镜6与压电陶瓷相移器7的位置,或者使用其他具有调整光强功能的器件来代替双偏振片8,等等。另外,该光路部分可以包括相移相关器件,以提高位移测量的精确度,也可以省略该功能,使用傅立叶变换等其他方法来处理条纹,计算相位。
本发明实施例所对应的计算机数据处理部分可以是通过数据线连接的本地计算机,也可以是通过局域网或广域网等网络连接的远程计算机。所有的数据处理计算,可以由计算机、硬件模块、定制软件、多个软件的组合中的一个或多个来完成。
实施例2球栅阵列封装中焊球失效的电子散斑干涉测试方法
参照图3,说明本发明实施例所对应的用于检测球栅阵列封装中焊球失效的电子散斑干涉测试方法。图3是该测试方法的流程图。首先,在步骤S0中,对已知完好的同型号球栅阵列封装进行定标测试。通过固定与加载部分固定封装器件,并在封装器件背面施加机械载荷,该载荷在整个条纹提取和相移过程中应保持不变。同时由电子散斑干涉的离面位移测试光路获取条纹图,通过计算机采集。计算机数据处理部分对该输入信息进行一系列计算,包括器件在焊接部分的整体相位分布、位移分布、位移梯度,以及焊球在横、纵截面上的位移分布,等等。可以建立数据库,记录所有计算结果,作为该型号球栅阵列封装的参照信息,而不必在每次测试之前执行该步骤。
接着,在步骤S1中,对未知是否存在缺陷的器件进行检测。在该步骤中,夹持与加载与S0中的相同。可通过自动控制的机械装置保持对检测器件的夹持相同、施加的载荷方向、大小和作用位置相同。
然后,在步骤S2中,比较S1中测得的条纹形状与定标测试的结果是否相同。如果相同,则可以判定封装完好,未发生失效,本次检测程序完成,可以对下一封装执行新的检测。如果两者的条纹形状不同,则可判定该封装器件焊球中存在失效。通过比较条纹形状出现差别的区域,可以定位发生失效的区域。这一过程可以由计算机的图形处理工具完成。
接着,在步骤S3中,由计算机数据处理部分计算该封装器件在失效相关区域中的相位分布、位移分布、位移梯度,以及该区域中各焊点在横、纵截面上的位移曲线,并与定标检测的测试结果进行比较。在所施加机械载荷为从背后对称地推顶的情况中,位移量偏离完好器件结果最大位置所在的焊点即失效焊点。并且,偏离量越大,缺陷越严重。从而可以定位失效焊点,并判断其失效程度。
得到上述相关结果后,本次检测程序完成,可对下一板级组装封装器件执行新的检测。
在本实施例中,是先定位失效区域,然后在该相关区域中进行进一步计算。这样,可以减少计算机的运算负荷,加快检测速度,提高检测效率。然而,也可以直接计算整个焊接部分中每个焊点的位移信息,这样可以更准确地定位失效焊点。或者,如果只需要判断是否发生失效,则仅执行条纹形状的比较即可。
实施例3样品检测
图2是待检测样品的示意图。样品是在长宽厚为14.60×10.68×0.92mm的PCB板上通过电镀、刻蚀等工艺,生成有焊盘、引线等基本互连,植上3×2的铅锡焊球阵列作为模拟器件,焊球的直径为0.76mm,横向间距4.00mm,纵向间距6.00mm。然后将该模拟器件通过回流焊接到长宽厚分别为100、40、0.92mm的PCB板上。形成完好的、器件右下角焊球分层、器件右下角焊球脱落的三种情况下的样品。
图4-6是用本发明所对应电子散斑干涉测试系统分别检测完好、焊球分层和焊球脱落的样品得到的离面位移条纹图。由于本实施例中的器件形状规则对称,所以采用对称夹持和对称加载。也可以采用非对称的夹持和机械载荷。如图4所示,完好器件的条纹形状规则,没有明显的不连续突变,据此可判断该试样的位移场无明显异常,焊点完好。而在图5焊球分层器件的条纹图和相位图中,中心部分上PCB板右下角的条纹出现了明显的不连续突变,可以明确判定该试样右下角处的焊球发生失效。在图6焊球脱落的器件中,中心部分上PCB板右侧的条纹出现了明显的不连续突变,可以判定该试样右侧的焊球存在缺陷,但无法分辨是右上角还是右下角。通过进一步计算,可以明确识别失效位置。
图7-9是通过进一步计算分析,得到的完好、焊球分层和焊球脱落的样品在失效区域表面的位移分布图。其中,X为试样的长度方向,Y为试样的宽度方向,原点位于试样的左上顶角。在图7中,模拟器件的离面位移分布平缓,无明显倾斜趋势。在图8和9中,均发现样品表面的相对位移值从左上角向右下角递增的现象,且增幅大于150nm,在ESPI的测量精度内。据此可判断这两个试样均在右下角焊球发生失效,并且图9的缺陷比图8更严重。
由于该示例检测所用的简易球栅阵列封装器件结构简单,焊球数少,无需进一步计算各焊球在各自所在横、纵截面的位移曲线就能对失效情况做出判定。在焊球数较多,焊点间距较小的情况小,则可能需要该计算结果。
对本领域的技术人员而言,很容易实现其他优点和修改。因此,本发明在其更广大方面并不限于本文说明的具体细节和典型实施例。相应地,可以做出诸多修改,而不背离总体发明概念的精神和范围,该总体发明概念由附加的权利要求及其等价物定义。

Claims (10)

1.用于检测板级组装球栅阵列封装器件中焊球失效的电子散斑干涉测试系统,其特征在于,该电子散斑干涉测试系统包括:检测样品固定与加载部分,电子散斑干涉的离面位移测试光路部分,以及计算机数据处理部分;
其中,检测样品的固定与加载部分对被测球栅阵列封装提供稳定夹持,以及对检测样品施加机械载荷;
离面位移测试光路部分形成检测样品在机械载荷下变形后的干涉条纹,即表面微位移信息;
计算机数据处理部分采集条纹、进行相位解包和位移计算、定位失效区域,并通过进一步计算处理,最终确定失效焊点及其损坏程度。
2.如权利要求1所述的电子散斑干涉测试系统,其特征在于,离面位移测试光路部分包括发射光线装置、分光装置、反射装置和叠加干涉装置;四者依次连接并形成特定角度,发射光线装置发出的光线穿过分光装置,一束经反射装置反射、穿过样品并投射到叠加干涉装置,另一束经过反射也投射到叠加干涉装置,两束光线通过叠加干涉装置形成电子散斑干涉条纹。
3.如权利要求2所述的电子散斑干涉测试系统,其特征在于,离面位移测试光路部分还包括调整激光束相位的装置,调整激光束相位的装置与反射装置连接。
4.如权利要求2所述的电子散斑干涉测试系统,其特征在于,离面位移测试光路部分还包括调整激光束光强的装置,调整激光束光强的装置与反射装置连接。
5.如权利要求2所述的电子散斑干涉测试系统,其特征在于,离面位移测试光路部分包括激光器、分光镜、扩束镜、全反镜和棱镜;激光器与分光镜连接,分光镜分别与扩束镜和全反镜连接,棱镜分别与扩束镜和全反镜连接;激光器发射出的激光经过分光镜分为两束,一束经过扩束镜后穿过待测样品投射到棱镜一个侧面,另一束经全反镜反射投射到棱镜的另一侧面,两束激光通过棱镜发生叠加干涉。
6.如权利要求5所述的电子散斑干涉测试系统,其特征在于,离面位移测试光路部分还包括压电陶瓷相移器和双偏振片,两者都与全反镜连接。
7.如权利要求1所述的电子散斑干涉测试系统,其特征在于,计算机数据处理部分是安装了分析电子散斑干涉条纹软件的计算机。
8.一种球栅阵列封装中焊球失效的电子散斑干涉检测方法,其特征在于,包括以下步骤:
(1)对同一型号板级组装球栅阵列封装器件的完好检测样品进行定标测试,测量并记录完好样品在一定夹持、机械加载情况下的离面位移条纹;
(2)保持相同夹持、加载条件情况下,测量并记录待测板级组装球栅阵列封装器件的离面位移条纹;
(3)对上述两组离面位移条纹进行初步比较。
9.如权利要求8所述的电子散斑干涉检测方法,其特征在于,两组离面位移条纹不一致,则确定发生失效。
10.如权利要求8所述的电子散斑干涉检测方法,其特征在于,两组离面位移条纹不一致,则通过对失效相关区域进行进一步计算处理,最终确定失效焊点及其损坏程度。
CN2010101027959A 2010-01-28 2010-01-28 检测焊球失效的电子散斑干涉系统及无损检测方法 Pending CN102141524A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN2010101027959A CN102141524A (zh) 2010-01-28 2010-01-28 检测焊球失效的电子散斑干涉系统及无损检测方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN2010101027959A CN102141524A (zh) 2010-01-28 2010-01-28 检测焊球失效的电子散斑干涉系统及无损检测方法

Publications (1)

Publication Number Publication Date
CN102141524A true CN102141524A (zh) 2011-08-03

Family

ID=44409193

Family Applications (1)

Application Number Title Priority Date Filing Date
CN2010101027959A Pending CN102141524A (zh) 2010-01-28 2010-01-28 检测焊球失效的电子散斑干涉系统及无损检测方法

Country Status (1)

Country Link
CN (1) CN102141524A (zh)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103048268A (zh) * 2013-01-10 2013-04-17 南京中迅微传感技术有限公司 基于微偏振片阵列的数字电子剪切散斑干涉仪
CN103954629A (zh) * 2014-05-12 2014-07-30 重庆大学 封装led焊点质量检测装置和方法
CN106197259A (zh) * 2016-08-22 2016-12-07 中国科学技术大学 一种高精度大量程实时单点离面位移的测量方法
CN106908453A (zh) * 2017-03-24 2017-06-30 中国科学技术大学 一种印刷线路板的检测方法及检测装置
CN108956617A (zh) * 2018-06-04 2018-12-07 温州大学 一种基于微形变智能分类器的电子器件焊点热循环失效的检测方法
CN111256606A (zh) * 2020-03-18 2020-06-09 北京航空航天大学 一种实时测量转静结构缝隙的设备及方法
CN113780900A (zh) * 2021-11-09 2021-12-10 深圳市裕展精密科技有限公司 基于边缘计算的焊接检测系统及方法

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103048268A (zh) * 2013-01-10 2013-04-17 南京中迅微传感技术有限公司 基于微偏振片阵列的数字电子剪切散斑干涉仪
CN103048268B (zh) * 2013-01-10 2015-05-27 南京中迅微传感技术有限公司 基于微偏振片阵列的数字电子剪切散斑干涉仪
CN103954629A (zh) * 2014-05-12 2014-07-30 重庆大学 封装led焊点质量检测装置和方法
CN103954629B (zh) * 2014-05-12 2017-01-18 重庆大学 封装led焊点质量检测装置和方法
CN106197259A (zh) * 2016-08-22 2016-12-07 中国科学技术大学 一种高精度大量程实时单点离面位移的测量方法
CN106197259B (zh) * 2016-08-22 2019-01-04 中国科学技术大学 一种高精度大量程实时单点离面位移的测量方法
CN106908453A (zh) * 2017-03-24 2017-06-30 中国科学技术大学 一种印刷线路板的检测方法及检测装置
CN108956617A (zh) * 2018-06-04 2018-12-07 温州大学 一种基于微形变智能分类器的电子器件焊点热循环失效的检测方法
CN111256606A (zh) * 2020-03-18 2020-06-09 北京航空航天大学 一种实时测量转静结构缝隙的设备及方法
CN111256606B (zh) * 2020-03-18 2021-01-12 北京航空航天大学 一种实时测量转静结构缝隙的设备及方法
CN113780900A (zh) * 2021-11-09 2021-12-10 深圳市裕展精密科技有限公司 基于边缘计算的焊接检测系统及方法

Similar Documents

Publication Publication Date Title
CN102141524A (zh) 检测焊球失效的电子散斑干涉系统及无损检测方法
US6094263A (en) Visual examination apparatus and visual examination method of semiconductor device
CN110017793B (zh) 一种双通道式抗振动干涉测量装置及方法
CN102072700B (zh) 一种基于投影莫尔原理的共面度测量系统
CN111721266B (zh) 一种空间天文相机导星ccd与探测ccd的拼接方法
CN111207844A (zh) 双侧多重平面倾斜波面干涉仪及其检测方法
CN114136976B (zh) 偏振同轴照明激光剪切散斑干涉测量系统及其测量方法
CN200972385Y (zh) 基于法拉第旋光效应的位移和角度同时测量的干涉系统
CN106643507B (zh) 一种基于双通道点衍射干涉的三坐标测量装置及方法
CN112013791A (zh) 三波长可变尺度干涉显微成像系统、成像方法及三相位复原方法
CN110631510B (zh) 一种基于迈克尔逊结构的高精度测角装置及测角方法
US20230012001A1 (en) Shearography and interferometry sensor with multidirectional dynamic phase shifting and method of inspection and measurement of vibration modes
CN108917909A (zh) 基于自混合干涉的高精度振幅实时测量装置和方法
CN1587896A (zh) 光学八细分双频激光干涉仪
CN110926360A (zh) 一种全视场外差移相测量自由曲面的装置
CN111624177B (zh) 一种键合板条键合面相对损耗值的获取方法
CN113446963B (zh) 一种基于相控阵的角度测量系统及其测量方法
CN115682961A (zh) 基于光学相干层析的自润滑轴承涂层厚度检测系统及方法
CN110864640A (zh) 光学系统及利用感光相机测量物体应变的方法
TWI232923B (en) Optical real-time measurement method and system with single-axis, 6 degrees of freedom
US20220268569A1 (en) Device and method for measuring height profiles on an object
CN110426397B (zh) 光学检测系统、装置及方法
TW201326737A (zh) 孔洞表面形貌量測系統及方法
JP2003098040A (ja) 光学系評価装置および方法
CN112504154A (zh) 基于光路的大尺寸支撑结构形变量测量装置及测量方法

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C02 Deemed withdrawal of patent application after publication (patent law 2001)
WD01 Invention patent application deemed withdrawn after publication

Application publication date: 20110803