CN102136143B - Focal length calibration method for single optical centre reflection and refraction camera based on spatial collinear point - Google Patents
Focal length calibration method for single optical centre reflection and refraction camera based on spatial collinear point Download PDFInfo
- Publication number
- CN102136143B CN102136143B CN201110064472XA CN201110064472A CN102136143B CN 102136143 B CN102136143 B CN 102136143B CN 201110064472X A CN201110064472X A CN 201110064472XA CN 201110064472 A CN201110064472 A CN 201110064472A CN 102136143 B CN102136143 B CN 102136143B
- Authority
- CN
- China
- Prior art keywords
- focal length
- point
- image
- constraint
- equation
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Fee Related
Links
- 238000000034 method Methods 0.000 title claims abstract description 36
- 230000003287 optical effect Effects 0.000 title abstract description 28
- 238000005070 sampling Methods 0.000 claims abstract description 13
- 238000003384 imaging method Methods 0.000 claims description 18
- 238000010586 diagram Methods 0.000 claims description 4
- 230000009466 transformation Effects 0.000 claims description 3
- 230000000747 cardiac effect Effects 0.000 claims 5
- 230000011514 reflex Effects 0.000 claims 5
- 239000012141 concentrate Substances 0.000 claims 1
- 238000007781 pre-processing Methods 0.000 description 5
- 238000000605 extraction Methods 0.000 description 3
- 230000000007 visual effect Effects 0.000 description 2
- 241000208140 Acer Species 0.000 description 1
- 230000007547 defect Effects 0.000 description 1
- 230000007812 deficiency Effects 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 238000011156 evaluation Methods 0.000 description 1
- 239000011159 matrix material Substances 0.000 description 1
Images
Landscapes
- Measurement Of The Respiration, Hearing Ability, Form, And Blood Characteristics Of Living Organisms (AREA)
- Image Processing (AREA)
Abstract
Description
技术领域 technical field
本发明涉及一种摄像机焦距标定方法,尤其是涉及一种基于空间共线点的单光心反射折射摄像机焦距标定方法。The invention relates to a method for calibrating the focal length of a camera, in particular to a method for calibrating the focal length of a single optical center catadioptric camera based on spatial collinear points.
背景技术 Background technique
许多计算机视觉应用都希望有一个大视角的成像系统,如机器人导航、视觉监控、虚拟现实等。普通摄像机的视角非常有限。单光心反射折射摄像机由一个普通摄像机和一个旋转镜面组成,空间景物先投影到旋转镜面上,然后经过镜面的反射投影到普通摄像机进行成像,因而单光心反射折射摄像机有非常大的视角。摄像机标定就是要估计从三维景物到二维图像的物理成像参数,是许多视觉应用的前提与基础。焦距是最重要的成像参数,其它成像参数可以比较容易地从系统配置或场景的先验信息中获取,而焦距估计是摄像机标定中必不可少的内容。A large field of view imaging system is desirable for many computer vision applications, such as robot navigation, visual surveillance, virtual reality, etc. Ordinary cameras have a very limited field of view. The single optical center catadioptric camera is composed of an ordinary camera and a rotating mirror. The space scene is first projected onto the rotating mirror, and then reflected by the mirror and projected to the ordinary camera for imaging. Therefore, the single optical center catadioptric camera has a very large viewing angle. Camera calibration is to estimate the physical imaging parameters from three-dimensional scenes to two-dimensional images, which is the premise and basis of many vision applications. The focal length is the most important imaging parameter, and other imaging parameters can be obtained relatively easily from the prior information of the system configuration or the scene, and the focal length estimation is an essential content in camera calibration.
单光心反射折射摄像机的标定一般可以分为三类:一类是利用标定物进行标定,如利用一维标定杆、标定球、三维标定块等,由于已知三维到二维的精确对应,这类方法标定精度较高,但是需要制作精密的标定物,因而灵活性较差,适用范围较小;第二类是不需要任何场景信息,利用多幅图像中的点对应进行自标定,这类方法适用范围广,但是,由于反射折射图像有很大的畸变,寻找点对应本身就是一个非常困难的任务,因而标定精度较差;第三类是基于直线的反射折射投影,直线是人造场景中普遍存在的几何元素,一条空间直线的单光心反射折射图像是一个二次曲线段,这类方法一般都需要对直线的像进行二次曲线拟合,标定的精度严重依赖于曲线拟合的精度。然而,由于镜面遮挡,一条空间直线的像仅仅占整个二次曲线的一小段,这使得曲线拟合的效果非常差,从而标定精度较差。The calibration of a single optical center catadioptric camera can generally be divided into three categories: one is to use calibration objects for calibration, such as using one-dimensional calibration rods, calibration balls, three-dimensional calibration blocks, etc. This type of method has high calibration accuracy, but needs to make precise calibration objects, so the flexibility is poor and the scope of application is small; the second type does not require any scene information, and uses the point correspondence in multiple images to perform self-calibration. However, due to the large distortion of the catadioptric image, finding the point correspondence itself is a very difficult task, so the calibration accuracy is poor; the third category is based on the catadioptric projection of the straight line, and the straight line is an artificial scene. The ubiquitous geometric elements in , the catadioptric image of a single optical center of a straight line in space is a quadratic curve segment. This kind of method generally needs to fit the quadratic curve to the image of the straight line, and the calibration accuracy depends heavily on the curve fitting. accuracy. However, due to the occlusion of the specular surface, the image of a straight line in space only occupies a small section of the entire quadratic curve, which makes the curve fitting effect very poor, resulting in poor calibration accuracy.
申请号为CN201010222347.2的发明专利申请就公开了一种从图像序列中计算摄像机焦距的实时方法,包括以下步骤:从图像序列中选取相邻两张图像;对所述的两张图像进行特征点匹配以得到匹配点对;对所述匹配点对中任意七组匹配点对求解以得到焦距的多个可能解;评估所述每个可能解的准确性且把评估值作为所述每个可能解的权重;依据所述权重对所述每个可能解计算加权求和以评估得到焦距的概率密度函数;在所述焦距的概率密度函数曲面上多次采样以得到多个采样点;运用高斯函数拟合所述采样点,并以所述函数峰值作为最终焦距值。具备上述步骤的从图像序列中计算摄像机焦距的实时方法,存在灵活性较差,适用范围较小的严重缺陷。The invention patent application with the application number CN201010222347.2 discloses a real-time method for calculating the focal length of a camera from an image sequence, which includes the following steps: selecting two adjacent images from the image sequence; characterizing the two images point matching to obtain matching point pairs; solving any seven groups of matching point pairs in the matching point pairs to obtain a plurality of possible solutions of the focal length; evaluating the accuracy of each possible solution and using the evaluation value as each The weight of the possible solution; calculate the weighted summation for each possible solution according to the weight to evaluate the probability density function of the focal distance; multiple sampling on the probability density function surface of the focal distance to obtain a plurality of sampling points; use A Gaussian function is used to fit the sampling points, and the peak value of the function is used as the final focal length value. The real-time method of calculating the camera focal length from the image sequence with the above steps has serious defects of poor flexibility and small scope of application.
发明内容 Contents of the invention
本发明的目的就是克服现有技术中的不足,提供一种灵活性好、适用范围广、标定精度较高的基于空间共线点的单光心反射折射摄像机焦距标定方法。The purpose of the present invention is to overcome the deficiencies in the prior art and provide a method for calibrating the focal length of a single optical center catadioptric camera based on spatial collinear points with good flexibility, wide application range and high calibration accuracy.
为解决现有技术中的问题,本发明基于空间共线点的单光心反射折射摄像机焦距标定方法,包括以下步骤:In order to solve the problems in the prior art, the method for calibrating the focal length of a single optical center catadioptric camera based on spatially collinear points in the present invention includes the following steps:
1)获取图像点集:提取反射折射图像的边缘,从图像的边缘得到属于一条空间直线的图像点集;1) Obtain image point set: extract the edge of the catadioptric image, and obtain an image point set belonging to a spatial straight line from the edge of the image;
2)随机采样:从步骤1)获取的图像点集中随机采样M组图像点,每组图像点由三个不同的图像点组成,其中M≥1;2) Random sampling: randomly sample M groups of image points from the image point set obtained in step 1), each group of image points is composed of three different image points, wherein M≥1;
3)约束方程的建立与求解:确定步骤2)中采样的每组图像点关于焦距的多项式约束方程,并求解得到M个焦距估计值;3) Establishment and solution of the constraint equation: determine the polynomial constraint equation of each group of image points sampled in step 2) about the focal length, and solve to obtain M focal length estimates;
4)焦距的确定:对步骤3)中得到的M个焦距估计值进行预处理,利用单位视球成像模型中空间点的射影性质,根据预处理后的每个焦距估计值,分别确定与步骤1获取的图像点集对应的空间点在单位视球上的投影点集,利用该投影点集,拟合一个通过单位视球球心的平面,计算该投影点集到该平面的平均距离,对应最小平均距离的焦距估计值即为所确定的单光心反射折射摄像机的焦距。4) Determination of the focal length: preprocess the M estimated focal lengths obtained in step 3), use the projective properties of the spatial points in the unit visual sphere imaging model, and determine and step respectively according to each focal length estimated value after preprocessing 1 The projection point set of the spatial point corresponding to the acquired image point set on the unit viewing sphere, using the projection point set to fit a plane passing through the center of the unit viewing sphere, and calculating the average distance from the projection point set to the plane, The focal length estimate corresponding to the minimum average distance is the determined focal length of the single optical center catadioptric camera.
上述方法中,步骤1)中所述提取反射折射图像的边缘是通过基于Canny算子的边缘提取方法。In the above method, the edge extraction of the catadioptric image described in step 1) is through the edge extraction method based on Canny operator.
上述方法中,步骤1)中所述从图像边缘得到属于一条空间直线的图像点集是使用聚类方法或手工方式。In the above method, the image point set belonging to a spatial straight line is obtained from the edge of the image in step 1) using a clustering method or a manual method.
上述方法中,步骤2)中所述采样M组图像点是按照RANSAC方法中的准则进行确定。In the above method, the sampled M groups of image points in step 2) are determined according to the criteria in the RANSAC method.
上述方法中,步骤3)中所述约束方程的建立包括如下分步骤:In the above method, the establishment of the constraint equation described in step 3) includes the following sub-steps:
3.1)预处理:令m=(u v 1)T表示任意一个图像点,则是将图像原点移至图像主点p=(u0 v0 1)T的平移变换,令{mi:i=1,2,3}表示步骤2)中采样的任意一组图像点,则i=1,2,3;3.1) Preprocessing: Let m=(u v 1) T represent any image point, but is the translation transformation that moves the origin of the image to the principal point of the image p=(u 0 v 0 1) T , let {m i :i=1, 2, 3} represent any set of image points sampled in step 2), but i=1,2,3;
3.2)多项式约束方程的建立:一组图像点{mi:i=1,2,3}关于焦距f的多项式约束方程表示如下:3.2) Establishment of polynomial constraint equation: the polynomial constraint equation of a group of image points {m i : i=1, 2, 3} with respect to focal length f is expressed as follows:
其中:in:
τ=(1-ξ2)/ξ2 τ=(1-ξ 2 )/ξ 2
r为图像纵横比,s为倾斜因子,ξ为镜面参数;r is the aspect ratio of the image, s is the tilt factor, and ξ is the mirror parameter;
当ξ=1,即反射镜面为旋转抛物面时,多项式约束方程(1)整理成一个关于焦距f的4次多项式约束方程;When ξ=1, that is, when the mirror surface is a paraboloid of revolution, the polynomial constraint equation (1) is sorted into a 4th degree polynomial constraint equation about the focal length f;
当ξ≠1,即反射镜面为其它类型时,多项式约束方程(1)则整理成一个关于焦距f的8次多项式约束方程。When ξ≠1, that is, when the mirror surface is of other types, the polynomial constraint equation (1) is sorted into an 8th degree polynomial constraint equation about the focal length f.
上述方法中,步骤4)中所述对步骤3)中得到的M个焦距估计值进行预处理是对步骤3)中得到的M个焦距估计值进行排序,丢弃前后各N个极端的焦距估计值,其中N<M/2。In the above method, preprocessing the M focal length estimates obtained in step 3) as described in step 4) is to sort the M focal length estimates obtained in step 3), and discarding the N extreme focal length estimates before and after Value, where N<M/2.
本发明基于空间共线点的单光心反射折射摄像机焦距标定方法,利用空间任意三个共线点的反射折射投影给出了一个关于焦距的多项式约束方程,基于该约束方程来标定焦距,无需对直线的像进行二次曲线拟合,无需场景的任何信息,具有较大的灵活性,标定精度较高,在3个像素的噪声水平下,能达到99.6%的平均精度。The present invention is based on the single optical center catadioptric camera focal length calibration method based on space collinear points, and uses the catadioptric projection of any three collinear points in space to give a polynomial constraint equation about the focal length, and calibrates the focal length based on the constraint equation without The quadratic curve fitting of the straight line image does not require any information of the scene, it has greater flexibility, and the calibration accuracy is higher. Under the noise level of 3 pixels, the average accuracy can reach 99.6%.
附图说明 Description of drawings
图1为本发明基于空间共线点的单光心反射折射摄像机焦距标定方法的总体流程图;Fig. 1 is the overall flowchart of the focal length calibration method of the single optical center catadioptric camera based on the space collinear point of the present invention;
图2为单光心反射折射摄像机的单位视球成像模型的示意图。Fig. 2 is a schematic diagram of a unit viewing sphere imaging model of a single optical center catadioptric camera.
具体实施方式 Detailed ways
下面结合附图对本发明作进一步详细的说明。The present invention will be described in further detail below in conjunction with the accompanying drawings.
图1为本发明基于空间共线点的单光心反射折射摄像机焦距标定方法的总体流程图。FIG. 1 is an overall flowchart of the method for calibrating the focal length of a single optical center catadioptric camera based on spatially collinear points in the present invention.
下面通过图1将本发明基于空间共线点的单光心反射折射摄像机焦距标定方法进行详尽的描述。The method for calibrating the focal length of a single optical center catadioptric camera based on the spatial collinear points of the present invention will be described in detail below with reference to FIG. 1 .
步骤S101,获取图像点集。Step S101, acquiring an image point set.
一条空间直线的单光心反射折射图像是一个二次曲线段,一般来说,直线的像都是图像的边缘,因此首先通过基于Canny(坎尼)算子的边缘提取方法提取反射折射图像的边缘,再使用聚类方法或利用一些图像处理软件进行手工标点的方式从反射折射图像的边缘得到属于一条空间直线的图像点集。The catadioptric image of a single optical center of a straight line in space is a quadratic curve segment. Generally speaking, the image of a straight line is the edge of the image. Therefore, the edge extraction method based on the Canny operator is firstly used to extract the catadioptric image. The edge, and then use the clustering method or use some image processing software for manual punctuation to obtain the image point set belonging to a spatial straight line from the edge of the catadioptric image.
步骤S102,随机采样。Step S102, random sampling.
从步骤S101获取的图像点集中随机采样M组图像点,每组图像点由三个不同的图像点组成,其中M≥1。图像点的采样可以按照随机抽样一致性RANSAC(RANdom SAmple Consensus)方法中的准则进行确定,每次采样的一组图像点之间具有一定的距离。M groups of image points are randomly sampled from the image point set obtained in step S101, each group of image points is composed of three different image points, where M≥1. The sampling of image points can be determined according to the criteria in the random sampling consistency RANSAC (RANdom SAmple Consensus) method, and there is a certain distance between a group of image points sampled each time.
步骤S103,约束方程的建立与求解。Step S103, establishing and solving constraint equations.
确定步骤S102中采样的每组图像点关于焦距的多项式约束方程,并求解得到M个焦距估计值。Determine the polynomial constraint equation of each group of image points sampled in step S102 with respect to the focal length, and solve to obtain M focal length estimation values.
对本步骤约束方程的建立与求解过程详细介绍如下:The establishment and solution process of the constraint equation in this step is introduced in detail as follows:
1)预处理:令m=(u v 1)T表示任意一个图像点,则是将图像原点移至图像主点p=(u0 v0 1)T的平移变换,令{mi:i=1,2,3}表示步骤S102中采样的任意一组图像点,则i=1,2,3。1) Preprocessing: Let m=(u v 1) T represent any image point, but is the translation transformation that moves the origin of the image to the principal point of the image p=(u 0 v 0 1) T , let {m i : i=1, 2, 3} represent any set of image points sampled in step S102, then i=1,2,3.
2)约束方程的建立:一组图像点{mi:i=1,2,3}关于焦距f的多项式约束方程表示如下:2) Establishment of the constraint equation: the polynomial constraint equation of a group of image points {m i : i=1, 2, 3} with respect to the focal length f is expressed as follows:
其中:in:
τ=(1-ξ2)/ξ2 τ=(1-ξ 2 )/ξ 2
r为图像纵横比,s为倾斜因子,ξ为镜面参数;r is the aspect ratio of the image, s is the tilt factor, and ξ is the mirror parameter;
当ξ=1,即反射镜面为旋转抛物面时,多项式约束方程(1)整理成一个关于焦距f的4次多项式约束方程;When ξ=1, that is, when the mirror surface is a paraboloid of revolution, the polynomial constraint equation (1) is sorted into a 4th degree polynomial constraint equation about the focal length f;
当ξ≠1,即反射镜面为其它类型时,多项式约束方程(1)则整理成一个关于焦距f的8次多项式约束方程。When ξ≠1, that is, when the mirror surface is of other types, the polynomial constraint equation (1) is sorted into an 8th degree polynomial constraint equation about the focal length f.
3)多项式约束方程求解。3) Polynomial constraint equation solution.
采用Maple的符号计算功能求解焦距f的解析表达式,对于8次多项式方程有8个解,由于摄像机焦距的存在性与唯一性,这8个解中只有一个合法,其它均为虚数或接近零,因此,对于步骤S102中采集的M组图像点,可以取得M个焦距估计值。Using the symbolic calculation function of Maple to solve the analytical expression of the focal length f, there are 8 solutions to the polynomial equation of degree 8. Due to the existence and uniqueness of the focal length of the camera, only one of the 8 solutions is legal, and the others are imaginary numbers or close to zero. , therefore, for the M groups of image points collected in step S102, M focal length estimation values can be obtained.
步骤S104,焦距的确定。Step S104, determining the focal length.
在对本步骤进行详细介绍之前,首先对本步骤涉及的单光心反射折射摄像机的单位视球成像模型和成像模型中空间点的射影性质进行详尽的介绍。Before this step is introduced in detail, firstly a detailed introduction is given to the imaging model of the single optical center catadioptric camera involved in this step and the projective properties of the spatial points in the imaging model.
图2为单光心反射折射摄像机的单位视球成像模型的示意图。Fig. 2 is a schematic diagram of a unit viewing sphere imaging model of a single optical center catadioptric camera.
如图2所示,单光心反射折射摄像机的单位视球成像模型的成像过程如下:As shown in Figure 2, the imaging process of the unit viewing sphere imaging model of a single optical center catadioptric camera is as follows:
首先,在单位视球1的坐标系O-xyz下,以球心O为透视中心,三维空间点X被投影到单位视球1上的点Xs;First, under the coordinate system O-xyz of the
然后,以空间点Oc为中心,点Xs被一个虚拟针孔摄像机透视投影到垂直于直线OcO的图像平面2上形成图像点m,点Oc称为虚拟摄像机光心,平面2称为反射折射图像平面。Then, with the spatial point O c as the center, the point X s is projected by a virtual pinhole camera perspective onto the
在图2所示的单光心反射折射摄像机的单位视球成像模型中,直线OcO是虚拟摄像机的光轴,它与图像平面2的交点p=(u0v01)T是图像主点,Oc到O的距离ξ=||O-OC||称为镜面参数。不同的镜面参数对应不同类型的反射镜面:当ξ=1时,反射镜面是旋转抛物面;当0<ξ<1时,反射镜面是旋转双曲面或旋转椭球面。设K为虚拟针孔摄像机的内参数矩阵,表示如下:In the unit viewing sphere imaging model of the single optical center catadioptric camera shown in Fig. 2, the straight line O c O is the optical axis of the virtual camera, and the intersection point p=(u 0 v 0 1) T between it and the
其中,f是焦距,r是纵横比,p=[u0,v0,1]T是主点,s是畸变因子,[f,r,s,u0,v0,ξ]是单光心反射折射摄像机的内参数。任意一条空间直线L首先被投影到单位视球1上的一个大圆上,而单位视球1上的大圆在虚拟针孔摄像机下的图像为一条二次曲线C,因此,空间直线L的反射折射图像为二次曲线C上的一个二次曲线段,当且仅当空间直线L与虚拟摄像机光轴OcO共面时,该二次曲线段退化为一直线段。where, f is the focal length, r is the aspect ratio, p=[u 0 , v 0 , 1] T is the principal point, s is the distortion factor, [f, r, s, u 0 , v 0 , ξ] is the single light Intrinsic parameters of the catadioptric camera. Any spatial straight line L is first projected onto a great circle on the
单光心反射折射摄像机的单位视球成像模型中任意空间点的射影性质如下:The projective properties of any spatial point in the unit viewing sphere imaging model of a single optical center catadioptric camera are as follows:
设m=(u v 1)T是空间点X的反射折射图像点,在虚拟针孔摄像机坐标系Oc-xcyczc下,空间点X在单位视球1上的投影点Xs表示如下:Suppose m=(u v 1) T is the catadioptric image point of space point X, under the virtual pinhole camera coordinate system O c -x c y c z c , the projection point X s of space point X on the
如果反射镜面是旋转抛物面,即ξ=1,则If the mirror surface is a paraboloid of revolution, that is, ξ=1, then
其中,τ=(1-ξ2)/ξ2,η=mTωm,ω=K-TK-1是虚拟针孔摄像机中绝对二次曲线的像。Wherein, τ=(1-ξ 2 )/ξ 2 , η=m T ωm, ω=K -T K -1 is the image of the absolute conic curve in the virtual pinhole camera.
在基于上述单光心反射折射摄像机的单位视球成像模型和成像模型中空间点的射影性质详尽描述的基础上,对本步骤焦距的确定进行详细介绍如下:On the basis of the detailed description of the unit viewing sphere imaging model based on the above-mentioned single optical center catadioptric camera and the projective properties of the spatial points in the imaging model, the determination of the focal length in this step is introduced in detail as follows:
1)预处理,对步骤S103中得到的M个焦距估计值进行排序,丢弃前后各N个极端的焦距估计值,其中N<M/2;1) Preprocessing, sorting the M estimated focal length values obtained in step S103, and discarding the N extreme focal length estimated values before and after, wherein N<M/2;
2)利用单位视球成像模型中空间点的射影性质,根据预处理后的每个焦距估计值,分别确定与步骤S101获取的图像点集对应的空间点在单位视球上的投影点集,利用该投影点集,拟合一个通过单位视球球心的平面,计算该投影点集到该平面的平均距离,对应最小平均距离的焦距估计值即为所确定的单光心反射折射摄像机的焦距。2) Utilizing the projective properties of the spatial points in the unit viewing sphere imaging model, according to each preprocessed focal length estimation value, respectively determine the projection point sets of the spatial points corresponding to the image point sets obtained in step S101 on the unit viewing sphere, Using the projected point set, fit a plane passing through the center of the unit viewing sphere, calculate the average distance from the projected point set to the plane, and the estimated value of the focal length corresponding to the minimum average distance is the determined single optical center catadioptric camera focal length.
总之,本发明的实施例公布的是其较佳的实施方式,但并不限于此。本领域的普通技术人员极易根据上述实施例,领会本发明的精神,并做出不同的引申和变化,但只要不脱离本发明的精神,都在本发明的保护范围之内。In conclusion, the embodiments of the present invention disclose the preferred implementation thereof, but are not limited thereto. Those skilled in the art can easily comprehend the spirit of the present invention based on the above-mentioned embodiments, and make different extensions and changes, but as long as they do not deviate from the spirit of the present invention, they all fall within the protection scope of the present invention.
Claims (4)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201110064472XA CN102136143B (en) | 2011-03-17 | 2011-03-17 | Focal length calibration method for single optical centre reflection and refraction camera based on spatial collinear point |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201110064472XA CN102136143B (en) | 2011-03-17 | 2011-03-17 | Focal length calibration method for single optical centre reflection and refraction camera based on spatial collinear point |
Publications (2)
Publication Number | Publication Date |
---|---|
CN102136143A CN102136143A (en) | 2011-07-27 |
CN102136143B true CN102136143B (en) | 2012-07-18 |
Family
ID=44295917
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN201110064472XA Expired - Fee Related CN102136143B (en) | 2011-03-17 | 2011-03-17 | Focal length calibration method for single optical centre reflection and refraction camera based on spatial collinear point |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN102136143B (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US9888187B2 (en) | 2015-04-02 | 2018-02-06 | Axis Ab | Method for determination of focal length for a zoom lens |
Families Citing this family (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN102737371B (en) * | 2011-08-29 | 2017-02-01 | 新奥特(北京)视频技术有限公司 | Calibration method and device of zooming curve of video camera |
CN103002206B (en) * | 2011-09-14 | 2017-03-01 | 新奥特(北京)视频技术有限公司 | Process the method and system of zoom sampling pulse |
CN103106661B (en) * | 2013-02-01 | 2016-06-29 | 云南大学 | Two, space intersecting straight lines linear solution parabolic catadioptric camera intrinsic parameter |
CN103106662B (en) * | 2013-02-01 | 2016-03-30 | 云南大学 | Space straight line linear solution parabolic catadioptric camera intrinsic parameter |
CN112991459B (en) * | 2021-03-09 | 2023-12-12 | 阿波罗智联(北京)科技有限公司 | Camera calibration method, device, equipment and storage medium |
CN113284195B (en) * | 2021-07-08 | 2021-12-28 | 上海海栎创科技股份有限公司 | On-line compensation method and system for binocular stereoscopic vision imaging |
-
2011
- 2011-03-17 CN CN201110064472XA patent/CN102136143B/en not_active Expired - Fee Related
Non-Patent Citations (5)
Title |
---|
DENG Xiao-Ming,et al..An Easy Calibration Method for Central Catadioptric Cameras.《ACTA AUTOMATICA SINICA》.2007,第33卷(第8期),801-808. * |
Fuchao Wu,et al..A new linear algorithm for calibrating central catadioptric cameras.《Pattern Recognition》.2008,第41卷(第10期),3166-3172. * |
Yihong Wu,et al..Easy Calibration for Para-catadioptric-like Camera.《Proceedings of the 2006 IEEE/RSJ International Conference on Intelligent Robots and Systems》.2006,5719-5724. * |
邓小明,等..基于一维标定物的反射折射摄像机标定方法.《计算机学报》.2007,第30卷(第5期),737-747. * |
邓小明,等。.基于一维标定物的反射折射摄像机标定方法.《计算机学报》.2007,第30卷(第5期),737-747. |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US9888187B2 (en) | 2015-04-02 | 2018-02-06 | Axis Ab | Method for determination of focal length for a zoom lens |
US10091437B2 (en) | 2015-04-02 | 2018-10-02 | Axis Ab | Method for determination of focal length for a zoom lens |
Also Published As
Publication number | Publication date |
---|---|
CN102136143A (en) | 2011-07-27 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN102136143B (en) | Focal length calibration method for single optical centre reflection and refraction camera based on spatial collinear point | |
Micusik et al. | Structure from motion with wide circular field of view cameras | |
Koch et al. | Evaluation of cnn-based single-image depth estimation methods | |
CN102507592B (en) | Fly-simulation visual online detection device and method for surface defects | |
Grammatikopoulos et al. | An automatic approach for camera calibration from vanishing points | |
CN101216304A (en) | System and method for object size estimation | |
CN110390696A (en) | A visual detection method of circular hole pose based on image super-resolution reconstruction | |
Ying et al. | Fisheye lenses calibration using straight-line spherical perspective projection constraint | |
CN112489099B (en) | Point cloud registration method and device, storage medium and electronic equipment | |
CN103295239A (en) | Laser-point cloud data automatic registration method based on plane base images | |
CN114998448B (en) | A method for multi-constrained binocular fisheye camera calibration and spatial point positioning | |
Ying et al. | Geometric interpretations of the relation between the image of the absolute conic and sphere images | |
Andaló et al. | Efficient height measurements in single images based on the detection of vanishing points | |
Aguilera et al. | A new method for vanishing points detection in 3D reconstruction from a single view | |
CN107025647A (en) | Image tampering evidence collection method and device | |
Ying et al. | Identical projective geometric properties of central catadioptric line images and sphere images with applications to calibration | |
Nieto et al. | Real-time robust estimation of vanishing points through nonlinear optimization | |
CN113808019A (en) | A non-contact measurement system and method | |
Liu et al. | Camera self-calibration with lens distortion from a single image | |
CN103606146B (en) | A kind of angular-point detection method based on circular target | |
Ying et al. | Linear approaches to camera calibration from sphere images or active intrinsic calibration using vanishing points | |
CN112785651A (en) | Method and apparatus for determining relative pose parameters | |
Ying et al. | Geometric properties of multiple reflections in catadioptric camera with two planar mirrors | |
Sharp et al. | Maximum-likelihood registration of range images with missing data | |
Gonzalez‐Aguilera et al. | From 2D to 3D through modelling based on a single image |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
C06 | Publication | ||
PB01 | Publication | ||
C10 | Entry into substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
C14 | Grant of patent or utility model | ||
GR01 | Patent grant | ||
CF01 | Termination of patent right due to non-payment of annual fee |
Granted publication date: 20120718 Termination date: 20180317 |
|
CF01 | Termination of patent right due to non-payment of annual fee |