CN102135593B - 大电机绝缘状态在线诊断评估方法 - Google Patents

大电机绝缘状态在线诊断评估方法 Download PDF

Info

Publication number
CN102135593B
CN102135593B CN201010609194.7A CN201010609194A CN102135593B CN 102135593 B CN102135593 B CN 102135593B CN 201010609194 A CN201010609194 A CN 201010609194A CN 102135593 B CN102135593 B CN 102135593B
Authority
CN
China
Prior art keywords
discharge
data
insulation
shelf depreciation
neural network
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201010609194.7A
Other languages
English (en)
Other versions
CN102135593A (zh
Inventor
宋建成
穆靖宇
吝伶艳
郑丽君
许春雨
田慕琴
温敏敏
刘杰
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Taiyuan University of Technology
Original Assignee
Taiyuan University of Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Taiyuan University of Technology filed Critical Taiyuan University of Technology
Priority to CN201010609194.7A priority Critical patent/CN102135593B/zh
Publication of CN102135593A publication Critical patent/CN102135593A/zh
Application granted granted Critical
Publication of CN102135593B publication Critical patent/CN102135593B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Abstract

一种大电机绝缘状态在线诊断评估方法,目的是综合考虑振动、温度、湿度等电机工作环境因素对局部放电的影响,准确诊断评估绝缘状态;本发明方法先建立用于识别放电模式的神经网络,在MATLAB2007中搭建神经网络框架,从样本库中抽取样本训练神经网络;根据各环境因素对不同放电模式的作用关系,分别建立各种放电模式与对其影响的工作环境因素的关系模型;在大电机上安装各种传感器,采集数据;建立数据库;计算特征值;修正得到标准工作环境下的<i>Qm</i>值;从数据库中读取修正的<i>Qm</i>历史数据与当前的<i>Qm</i>修正值纵向比较,在同一设备三相之间和所有电机之间横向比较<i>Qm</i>,依据相应的规则,得出绝缘状况,提出绝缘故障诊断和评估结论。

Description

大电机绝缘状态在线诊断评估方法
技术领域
本发明涉及一种大电机在线监测和故障诊断评估方法。
背景技术
大型电机在运行时,受到工作环境和电、热、机械的应力的长期作用,其绝缘性能逐渐老化、受损,最终导致绝缘事故,这类事故约占大电机故障的40%。因此,对大电机绝缘状态在线诊断评估,对提高大电机运行可靠性具有十分重要的现实意义。专利号为CN1402015A的发明专利《基于小波变换的电机绝缘老化诊断方法及其装置》,利用冲击源敲击大型发电机定子线棒的主绝缘表面,由声传感器接收所辐射的声波。对接收到的声信号进行小波变换,求取其在尺度1下的模极大值,通过该模极大值确定大型发电机主绝缘的老化状态。这种方法从绝缘老化过程中材料和结构发生本征变化的角度监测,有效地避免现场测试中的电磁干扰,但该方法需要敲击线棒绝缘,只适用于电机停机检修,不能实现在线监测。长期以来,国内外学者对大型电机绝缘的在线监测和诊断,特别是对局部放电的监测和分析作了大量的研究,目前已在实际应用中取得了很大的经济效益。西安交通大学的乐波于2002年9月在《中国电力》发表的“基于虚拟仪器技术的大型发电机局部放电在线监测系统”,介绍了一种局部放电在线监测系统,该系统可以有效地监测大型发电机运行过程中定子绝缘的局部放电,直观显示放电信息,但不能得出绝缘分析和诊断结论。上海交通大学的张毅刚于2004年9月在《高电压技术》发表的“发电机绝缘诊断专家系统的研究”,介绍了一种绝缘诊断专家系统,该系统以局部放电在线监测为基础,采用从分析到综合的分析思路,实现了发电机的绝缘诊断,该系统虽在综合评估中融合温度和振动传感器的数据,但未考虑工作环境数据对局部放电和主绝缘的影响,得到的局部放电数据不真实,不能准确评估绝缘状态。
综上所述,现有的大电机绝缘在线诊断评估方法仅对局部放电参数进行分析,没有考虑电机工作环境因素(振动、温度、湿度)对局部放电的影响。而局部放电易受工作环境的影响,在不同的工作环境下,相同绝缘的局部放电特征也会有明显的差异,对于不同的放电模式,工作环境因素对其作用又各不相同。因此,忽视工作环境因素的局部放电分析方法可靠性低,不能准确诊断评估绝缘状态。
发明内容
本发明目的是为克服上述已有技术的不足,提供一种综合考虑振动、温度、湿度等电机工作环境因素对局部放电的影响,准确诊断评估绝缘状态的大电机绝缘状态在线诊断评估方法。
本发明的技术方案是:提供一种大电机绝缘状态在线诊断评估方法,建立工作环境对各种局部放电模式的关系模型,采集电机局部放电和工作环境数据,识别电机局部放电模式,再依据对应的关系模型,得到标准工作环境下的局部放电最大放电量Q m ,通过纵向、横向比较Q m 判断绝缘老化状态,结合模式识别结果,得出绝缘诊断评估结论。具体分为以下步骤:
(1)建立用于识别放电模式的神经网络;制作内部放电、槽部放电、端部放电和完好的线棒模型,在6kV、8kV、10kV、12kV、15kV下测量四种线棒模型的局部放电,根据IEEEStd1434-2000标准,计算正半周放电速率、负半周放电速率、正半周最大放电量、负半周最大放电量、正半周放电起始相位、负半周放电起始相位这六个放电极性参数,对以上数据归一化,得到局部放电模式识别的样本库;
对数据归一化处理所使用公式为:;公式中,x为待处理数据、x max 为数据的最大值、x min 为数据的最小值、为归一化的数据;
在MATLAB2007中搭建神经网络框架,从样本库中抽取样本训练神经网络;以剩余样本作为测试样本,测试神经网络;若对各种放电模式的识别率都很高,记录神经网络的阈值和权值,完成本步骤;否则,重新训练直至很高的识别率。
(2)建立局部放电与对其影响的工作环境因素的关系模型;先准备多个不同老化程度的某一缺陷的线棒,在标准环境下测试局部放电,根据IEEEStd1434-2000标准,计算最大放电量Q m ,记录下标准环境下的Q m ;然后,分级改变与这一局部放电模式相关的环境因素,得到局部放电Q m 和对应的环境数值,再用局部放电Q m 和对应的环境数值作为数据样本,以标准环境下的Q m 作为目标,建立神经网络,对其进行训练,得到这一放电模式与对其影响的工作环境因素的神经网络关系模型;
根据各环境因素对不同放电模式的作用关系,分别建立各种放电模式与对其影响的工作环境因素的关系模型。对于内部放电,建立温度对其的关系模型;对于端部放电,建立湿度对其关系模型;对于槽部放电,建立振动对其关系模型。
(3)数据采集;在大电机上安装局部放电传感器、温度传感器、湿度传感器、振动传感器,采集局部放电、定子温度、空气湿度、定子振动数据;局部放电传感器与大电机高压母线相连,其他各传感器均安装在电机绕组上。
局部放电传感器采用80pF耦合电容器,温度传感器采用定子温度PT100传感器,湿度传感器采用HIH-3610型湿度传感器,振动传感器采用振动位移传感器,温度传感器采用定子PT100传感器;大部分电机出厂时已配有温度传感器,不重复安装;
(4)建立数据库;数据库建有4个表,分别为电动机静态数据表、在线监测数据表、Q m 修正数据表和诊断评估结论表。电机静态数据表,保存有电动机的型号、容量、额定电压、额定电流、绝缘等级、生产厂家、启用时间、所在区域、负责人信息等信息;在线监测数据表,用于保存局部放电各特征参数、振动幅度、定子温度、空气湿度等数据;Q m 修正数据表用于保存Q m 的修正值;诊断评估结论表用于保存诊断评估结论。
(5)计算特征值;对于局部放电信号,根据IEEEStd1434-2000标准,计算正半周放电速率、负半周放电速率、正半周最大放电量、负半周最大放电量、正半周放电起始相位、负半周放电起始相位这六个放电极性参数,供识别放电模式用;根据IEEEStd1434-2000标准,计算局部放电最大放电量Q m 。对于定子温度信号和空气湿度信号,简单计算各自数值。对于定子振动信号,计算其振动幅值。把所有特征值存入步骤(4)建立的在线监测数据表中。
(6)修正得到标准工作环境下的Q m 值;对局部放电模式进行识别,以步骤(5)中计算的局放电六个极性特征值,作为神经网络的输入,使用步骤(1)建立的神经网络,识别放电模式。
如果没有发生放电,直接得出结论“绝缘状态良好”,退出程序;否则,按下面步骤执行。根据放电模式,选择与其相关的工作环境因素及其与局部放电Q m 的关系模型,以步骤(5)得到的Q m 和工作环境因素数值为输入,使用步骤(2)得出关系模型,得到Q m 的修正值。把修正后的Q m 值存入步骤(4)建立的Q m 修正数据表中。
(7)诊断评估;从数据库中读取修正的Q m 历史数据与当前的Q m 修正值纵向比较,在同一设备三相之间和所有电机之间横向比较Q m ,依据相应的规则,得出绝缘状况,结合步骤(6)的局部放电模式识别结论,提出绝缘故障诊断和评估结论。把最终评估结论值存入步骤(4)建立的诊断评估结论表中。
本发明应用于大电机绝缘状态的在线诊断。建立了工作环境对各种局部放电模式的关系模型,消除了工作环境因素对Q m 的影响,得到准确的绝缘诊断评估参数;通过纵向、横向比较Q m 得出绝缘老化状态,避免了直接使用Q m 阈值评估绝缘不客观、不准确的问题;本方法实现了大电机绝缘的在线诊断,能够准确、客观地对大电机绝缘作出诊断评估。
附图说明
图1为大电机绝缘在线评估诊断方法的流程图;
图2为修正得到标准工作环境下的Q m 值的流程图。
具体实施方式
本发明建立工作环境对各种局部放电模式的关系模型,采集电机局部放电和工作环境数据,识别电机局部放电模式,再依据对应的关系模型,得到标准工作环境下的局部放电最大放电量Q m ,通过纵向、横向比较Q m 评估绝缘老化状态,结合模式识别结果,得出绝缘诊断评估结论。
(1)建立用于识别放电模式的神经网络:首先,制作内部放电、槽部放电、端部放电和完好无缺陷的线棒模型。利用与实际线棒相同的材料和制作工艺,制作了电机内部放电、槽部放电、端部放电三种典型的放电模型和完好线棒模型,每种模型制作2个。完好线棒模型导体使用含银铜母线,其尺寸为:1000mm×28mm×5mm;主绝缘层由环氧玻璃云母带多层包绕而成,云母带的宽度和厚度分别为25mm和0.14mm;防晕层长450mm,由防晕带在绝缘层上包绕形成,防晕带为半导体材料,低阻带和高阻带的长度分别为300mm和95mm,搭接部分长20mm。经过机包主绝缘、手绕防晕层、热压(170℃,1h)和烘烤(170℃,10h)后成型。在内部放电模型的绝缘层中预埋四氟乙烯,制造有人工气隙;端部放电模型没有防晕层;将完好线棒放置在接地钢板上,其间留有0.3mm的缝隙,构成槽部放电模型。然后,测量四种线棒模型的局部放电,计算特征值,建立模式识别样本。局部放电测量在屏蔽实验室进行,在6kV-15kV的5级电压下测试4种模型的局部放电,使用DEWE-2012数据采集仪进行采集,每个电压等级下采集2个样本,每个样本采集100个工频周期的数据。采集完成后,进入到计算机分析,根据IEEEStd1434-2000标准,计算正半周放电速率、负半周放电速率、正半周最大放电量、负半周最大放电量、正半周放电起始相位、负半周放电起始相位这六个放电极性参数,作为模式识别的一组特征量,数据经归一化处理后,构成80组局部放电模式识别样本。
最后,建立神经网络。使用MATLAB2007训练神经网络,用newff函数创建BP神经网络,网络参数设置如下:神经网络模型为3层,输入层6个节点,中间层5个节点,输出层4个节点,神经元传递函数选用tansig函数,输出层传递函数为logsig函数,训练方法选用trainglm函数,训练10000次,精度为0.01。从样本库里抽取64组样本(每种模型16组),将样本数据转化成4×32的矩阵作为train函数的输入参数,运行train函数进行训练,当达到精度或训练步数时,训练结束。训练结束后,系统自动生成一个神经网络模型,得到各层权值、阈值。以剩余16组样本作为测试样本,将样本数据转化成4×8的矩阵,使用sim函数测试神经网络,经过sim函数计算后,得到识别结果。若对各种放电模型的识别率都很高,记录神经网络的阈值和权值,完成本步骤;否则,重新训练直至很高的识别率。
(2)建立工作环境因素与局部放电Q m 的关系模型:电机工作环境的变化会导致局部放电Q m 的变化,只有得到标准工作环境下的局部放电Q m 对绝缘评估才有意义。而对于不同的放电模式,工作环境因素(温度、湿度、振动)对其的影响各不相同。对于内部放电,温度对其有着很大的影响,随着温度的升高,定子绝缘发生冷缩热胀效应,气隙体积出现数量级的减小,导致局部放电水平的降低;而空气湿度、定子振动对其相关性不大。对于端部放电,湿度的降低会导致表面防晕层电阻的增大,更容易聚集更多的电荷,形成放电;温度和定子振动对其关系不大。对于槽部放电,振动幅度越大,槽放电局部放电放电量越大。当线棒与定子槽有气隙时,温度的升高将导致局部放电放电量的增大;由此可见,在建立工作环境与局部放电关系模型时,一定要根据不同放电模式,分别建立其与工作环境各因素的关系。此外,建立多个工作环境因素与某种模式的局部放电的关系需要大量人力、物力,而有些工作环境因素对某种模式的局部放电的作用不大,因此,只需建立某一放电模式及与其相关性较大的某一工作环境因素的关系模型即可。对于内部放电,湿度、振动对其相关性不大,而温度对其有很大的影响,需要建立内部放电与温度的关系模型;对于端部放电,建立湿度与其关系模型;对于槽部放电,建立振动与其关系模型。下面叙述建立内部放电与温度的关系模型的方法。
建立内部放电与温度的关系模型的方法为:
准备多个不同老化程度的端部缺陷的线棒,也可对步骤(1)制作的端部缺陷的线棒在实验室加速老化,加速线棒老化实验方法参见本发明人发表的1999年西安交通大学博士学位论文《大电机主绝缘多因子老化特征参量的研究》。设标准工作环境为温度10℃、湿度50%、振动幅值1000μm,在标准工作环境下,测量线棒的局部放电,根据IEEEStd1434-2000标准,计算局部放电最大放电量Q m 。保持其他条件不变,分级改变温度,从10℃-100℃,测试各温度下的局部放电,记录Q m 和对应的温度。建立温度与内部放电关系的神经网络模型,神经网络模型为3层,输入层2个节点,中间层2个节点,输出层1个节点,神经元传递函数选用tansig函数,输出层传递函数为logsig函数,训练方法选用trainglm函数,训练1000次,精度为0.01。以局部放电Q m 和对应的温度作为神经网络的输入,标准工作环境下的局部放电Q m 作为教师目标,对神经网络进行训练,训练方法同步骤(1)。如此,得到温度与内部放电的神经网络模型。如果知道某一温度下的局部放电Q m ,把温度和Q m 输入该神经网络,神经网络就能输出标准工作环境下的局部放电Q m
端部放电与湿度的关系模型、槽部放电与振动的关系模型的建立方法与以上基本相同。步骤(1)、(2)是在大电机绝缘在线诊断评估前的准备工作,下面步骤为在线诊断评估部分。
(3)数据采集:在大电机上安装局部放电传感器、温度传感器、湿度传感器、振动传感器,采集局部放电、定子温度、空气湿度、定子振动信号;使用80pF耦合电容传感器与大电机高压母线相连,拾取局部放电信号;使用定子温度PT100传感器,测量定子温度,大部分电机出厂时已配有温度定子PT100传感器;使用HIH-3610型湿度传感器,测量空气湿度;使用振动位移传感器,测量定子振幅。
(4)建立数据库:数据库建有4个表,分别为电动机静态数据表、在线监测数据表、Q m 修正数据表和诊断评估结论表。电机静态数据表,保存有电动机的型号、容量、额定电压、额定电流、绝缘等级、生产厂家、启用时间、所在区域、负责人信息等信息;在线监测数据表,用于保存局部放电各特征参数、振动幅度、定子温度、空气湿度等数据;Q m 修正数据表用于保存Q m 的修正值;诊断评估结论表用于保存诊断评估结论。
(5)计算特征值:对于局部放电信号,根据IEEEStd1434-2000标准,计算正半周放电速率、负半周放电速率、正半周最大放电量、负半周最大放电量、正半周放电起始相位、负半周放电起始相位这六个放电极性参数,供步骤(6)识别放电模式;根据IEEEStd1434-2000标准,计算局部放电最大放电量Q m 。对于定子温度信号,空气湿度信号,简单计算各自数值。对于定子振动信号,计算其振动幅值。把所有特征值存入步骤(4)建立的在线监测数据表中。
(6)修正得到标准工作环境下的Q m 值:首先,识别局部放电模式,以步骤(5)中计算的局放电六个极性特征值,作为神经网络的输入,使用步骤(1)建立的神经网络,识别放电模式。如果没有发生放电,直接得出结论“绝缘状态良好”,退出程序;否则,按下面步骤执行。然后,根据放电模式,选择与其相关的工作环境因素及其与局部放电Q m 的关系模型,以步骤(5)得到的Q m 和工作环境因素数值为输入,使用步骤(2)得出关系模型,得到Q m 的修正值。把修正后的Q m 值存入步骤(4)建立的Q m 修正数据表中。
(7)诊断评估:由于使用不同的局部放电传感器和信号线长度,同样绝缘测得的Q m 值也会不同,直接使用Q m 值不能保证绝缘状态评估的客观性、准确性,采用趋势分析和横向比较的方法能够有效得出绝缘状况。
从数据库中读取修正的Q m 历史数据,与当前的Q m 修正值相比较,得到局部放电的发展趋势,判断绝缘状况。部分规则如下:如果本次局部放电量比较低且发展平稳,则绝缘良好;如果半年内小于25%的增长,则认为绝缘一般;如果比一年前数据大一倍以上,则认为绝缘恶化。如果Q m 在短时内迅速增大,可能是偶然原因造成的绝缘劣化,如大气过电压、电弧放电等。在同一设备三相检测的局部放电Q m 之间进行比较,若有一相高于其它相达一倍以上时,则认为该相很可能存在缺陷;与其他电动机作比较,若差别悬殊就可能存在问题。
结合步骤(6)的局部放电模式识别结论,提出绝缘故障诊断和评估结论。如:局部放电模式识别结果为“W相存在内部放电”、诊断评估结论为“W相绝缘一般”,那么,最终的结论为“W相绝缘状态一般,绝缘发生内部放电,发展稳定,有可能进一步侵蚀绝缘材料,形成绝缘分层、剥离。”

Claims (2)

1.一种大电机绝缘状态在线诊断评估方法,其特征是:
(1)建立用于识别放电模式的神经网络:制作内部放电、槽部放电、端部放电和完好的线棒模型,在6kV、8kV、10kV、12kV、15kV下测量四种线棒模型的局部放电,根据IEEEStd1434-2000标准,计算正半周放电速率、负半周放电速率、正半周最大放电量、负半周最大放电量、正半周放电起始相位、负半周放电起始相位这六个放电极性参数,对以上数据归一化,得到局部放电模式识别的样本库;
对数据归一化所使用的公式:
(Ⅰ)
式中,x为待处理数据、xmax为数据的最大值、xmin为数据的最小值、 ----为归一化的数据;
在MATLAB2007中搭建神经网络框架,从样本库中抽取样本训练神经网络;以剩余样本作为测试样本,测试神经网络,若对各种放电模式的识别率达到要求值时,记录阀值或权值,否则重新训练直至识别率达到要求值;
(2)建立局部放电与对其影响的工作环境因素的关系模型:先准备多个不同老化程度的某一缺陷的线棒,在标准环境下测试局部放电,根据IEEEStd1434-2000标准,计算最大放电量Qm,记录下标准环境下的Qm;然后,分级改变与这一局部放电模式相关的环境因素,得到局部放电Qm和对应的环境数值,再用局部放电Qm和对应的环境数值作为数据样本,以标准环境下的Qm作为目标,建立神经网络,对其进行训练,得到这一放电模式与对其影响的工作环境因素的神经网络关系模型;
根据各环境因素对不同放电模式的作用关系,分别建立各种放电模式与对其影响的工作环境因素的关系模型;对于内部放电,建立温度对其的关系模型;对于端部放电,建立湿度对其关系模型;对于槽部放电,建立振动对其关系模型;
(3)数据采集;在大电机上安装局部放电传感器、温度传感器、湿度传感器、振动传感器,采集局部放电、定子温度、空气湿度、定子振动数据;局部放电传感器与大电机高压母线相连,其他各传感器均安装在电机绕组上;
(4)建立数据库:数据库建有4个表,分别为电机静态数据表、在线监测数据表、Qm修正数据表和诊断评估结论表;电机静态数据表上保存有电机的型号、容量、额定电压、额定电流、绝缘等级、生产厂家、启用时间、所在区域、负责人信息的信息;在线监测数据表上保存局部放电各特征参数、振动幅度、定子温度、空气湿度的数据;Qm修正数据表上保存Qm的修正值;诊断评估结论表上保存诊断评估结论;
(5)计算特征值:对于局部放电信号,根据IEEEStd1434-2000标准,计算正半周放电速率、负半周放电速率、正半周最大放电量、负半周最大放电量、正半周放电起始相位、负半周放电起始相位这六个放电极性参数,供识别放电模式;根据IEEEStd1434-2000标准,计算局部放电最大放电量Qm;对于定子温度信号和空气湿度信号,简单计算各自数值;对于定子振动信号,计算其振动幅值;把所有特征值存入步骤(4)建立的在线监测数据表中;
(6)修正得到标准工作环境下的Qm值:对局部放电模式进行识别,以步骤(5)中计算的局放电六个极性特征值,作为神经网络的输入,使用步骤(1)建立的神经网络,识别放电模式;如果没有发生放电,直接得出结论“绝缘状态良好”,退出程序;否则,按下面步骤执行:根据放电模式,选择与其相关的工作环境因素及其与局部放电Qm的关系模型,以步骤(5)得到的Qm和工作环境因素数值为输入,使用步骤(2)得出关系模型,得到Qm的修正值;把修正后的Qm值存入步骤(4)建立的Qm修正数据表中;
(7)诊断评估:从数据库中读取修正的Qm历史数据与当前的Qm修正值纵向比较,在同一设备三相之间和所有电机之间横向比较Q---m,依据相应的规则,得出绝缘状况,结合步骤(6)的局部放电模式识别结论,提出绝缘故障诊断和评估结论;把最终评估结论值存入步骤(4)建立的诊断评估结论表中。
2.如权利要求1所述的大电机绝缘状态在线诊断评估方法,其特征是局部放电传感器采用80pF耦合电容器,温度传感器采用定子温度PT100传感器,湿度传感器采用HIH-3610型湿度传感器,振动传感器采用振动位移传感器,温度传感器采用定子PT100传感器。
CN201010609194.7A 2010-12-28 2010-12-28 大电机绝缘状态在线诊断评估方法 Active CN102135593B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201010609194.7A CN102135593B (zh) 2010-12-28 2010-12-28 大电机绝缘状态在线诊断评估方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201010609194.7A CN102135593B (zh) 2010-12-28 2010-12-28 大电机绝缘状态在线诊断评估方法

Publications (2)

Publication Number Publication Date
CN102135593A CN102135593A (zh) 2011-07-27
CN102135593B true CN102135593B (zh) 2016-01-20

Family

ID=44295433

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201010609194.7A Active CN102135593B (zh) 2010-12-28 2010-12-28 大电机绝缘状态在线诊断评估方法

Country Status (1)

Country Link
CN (1) CN102135593B (zh)

Families Citing this family (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102520286B (zh) * 2011-12-15 2014-07-09 国网电力科学研究院 基于高光谱的复合绝缘子运行状态分类方法
CN102540028A (zh) * 2012-01-13 2012-07-04 广东电网公司电力科学研究院 发电机定子绝缘局部放电缺陷的自动模式识别方法
CN102809718B (zh) * 2012-07-25 2015-07-01 华南理工大学 一种gis超高频局部放电信号识别方法
CN103116100A (zh) * 2013-01-30 2013-05-22 中国海洋石油总公司 一种海上石油平台智能变电站设备状态监测系统
CN104316846B (zh) * 2014-08-28 2017-07-18 国家电网公司 一种电力设备局部放电模式识别方法、装置及系统
CN105203928A (zh) * 2015-08-07 2015-12-30 北重阿尔斯通(北京)电气装备有限公司 电机定子线棒绝缘整体性检测设备及方法
US9976989B2 (en) * 2015-12-15 2018-05-22 General Electric Company Monitoring systems and methods for electrical machines
CN105699865A (zh) * 2016-01-29 2016-06-22 张波 一种绝缘特性检测方法及其系统
CN106772044A (zh) * 2016-12-29 2017-05-31 国网辽宁省电力有限公司电力科学研究院 一种发电机绕组线圈劣化点诊断系统
CN106872894B (zh) * 2017-03-03 2020-01-17 南方科技大学 一种三相电机的故障检测方法及装置
CN107271829A (zh) * 2017-05-09 2017-10-20 安徽继远软件有限公司 一种配电设备运行状态分析方法及装置
CN109239550B (zh) * 2018-09-04 2020-11-27 国网山东省电力公司青岛供电公司 一种线路绝缘状况判断方法
CN110188916B (zh) * 2019-04-16 2023-06-06 浙江超荣力电器有限公司 一种高压电气设备的绝缘性能的预估系统及方法
CN111289144A (zh) * 2020-03-27 2020-06-16 杭州电力设备制造有限公司 一种高压设备的母线故障监测系统及方法
CN111553432B (zh) * 2020-04-30 2022-02-22 西安交通大学 一种基于图像特征支持向量机的定子线棒绝缘老化程度预测方法
CN112288147B (zh) * 2020-10-19 2023-06-30 西安交通大学 一种BP-Adaboost强预测器预测发电机定子绝缘状态的方法
CN116500411A (zh) * 2022-01-18 2023-07-28 华为技术有限公司 一种电机故障检测方法及装置
CN115015757B (zh) * 2022-08-09 2022-10-21 天津九信科技有限公司 一种电机运行状态的风险评估方法及系统

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002063562A (ja) * 2000-08-21 2002-02-28 Nec Soft Ltd ニューラルネットワークの学習方法
CN1611955A (zh) * 2003-05-17 2005-05-04 杜玉晓 分布式智能电机监测系统
CN101408580A (zh) * 2008-11-21 2009-04-15 重庆大学 基于局部放电特征参量的油纸绝缘老化状态评估方法

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002063562A (ja) * 2000-08-21 2002-02-28 Nec Soft Ltd ニューラルネットワークの学習方法
CN1611955A (zh) * 2003-05-17 2005-05-04 杜玉晓 分布式智能电机监测系统
CN101408580A (zh) * 2008-11-21 2009-04-15 重庆大学 基于局部放电特征参量的油纸绝缘老化状态评估方法

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
人工神经网络在汽轮发电机局部放电模式识别中的应用;蒋雄伟;《西安交通大学学报》;19971130;第31卷(第11期);第60-65页 *
基于人工智能的矿井主通风机建模研究;杜欣慧等;《煤炭工程》;20081231(第12期);第80-83页 *

Also Published As

Publication number Publication date
CN102135593A (zh) 2011-07-27

Similar Documents

Publication Publication Date Title
CN102135593B (zh) 大电机绝缘状态在线诊断评估方法
CN106053955B (zh) 一种低频正弦激励下油纸绝缘系统相对介电常数的测试方法
CN101556302B (zh) 超声局放诊断仪及方法
CN108120907B (zh) 一种基于工频至低频电压下特征提取的局部放电诊断方法
CN108646152B (zh) 一种极化/去极化电流法检测评估定子线棒绝缘老化状态的方法
CN111650501B (zh) 一种无损在线评估继电器老化状态的试验装置
CN105527537A (zh) 发电机转子绕组匝间绝缘故障诊断装置及方法
CN104931796B (zh) 一种非接触式测量复合材料频域介电谱的方法
CN107576884A (zh) 基于经验模态分解和神经网络的变压器绕组变形在线故障定位方法
Chen et al. Fault anomaly detection of synchronous machine winding based on isolation forest and impulse frequency response analysis
CN102809727A (zh) 一种基于频响分析的发电机转子匝间短路故障检测方法
CN103454526A (zh) 一种基于电力变压器绕组故障类型判定方法
CN114814501B (zh) 一种电容式电压互感器电容击穿故障在线诊断方法
CN111157864A (zh) 一种局部放电超声波信号及图谱识别系统及其方法
JP2011253885A (ja) 変圧器の健全性診断方法、健全性診断装置及び健全性診断プログラム
CN106815437B (zh) 变压器稳态工况下油箱振动敏感区域确定方法及装置
CN111999614A (zh) 一种面向高压开关柜的局部放电多源融合检测预警方法
CN113589166B (zh) 一种基于数据驱动的变频电机端部绝缘状态在线监测方法
JP2011202956A (ja) 避雷装置の故障判定方法
CN201628754U (zh) 电力设备宽频局部放电检测装置
Lewin et al. Locating partial discharge sources in high voltage transformer windings
CN202066935U (zh) 基于双传感器定向耦合抗干扰的电缆局部放电检测装置
CN1402015A (zh) 基于小波变换的电机绝缘老化诊断方法及其装置
CN111352365B (zh) 一种防尘通风型电力电气设备机柜及控制方法
CN105182116B (zh) 一种基于加权梯度结构相似度的变压器绕组工作状态检测方法

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C14 Grant of patent or utility model
GR01 Patent grant