CN102134342B - Crosslinking polyolefin microporous membrane and preparation method thereof - Google Patents

Crosslinking polyolefin microporous membrane and preparation method thereof Download PDF

Info

Publication number
CN102134342B
CN102134342B CN2010105906832A CN201010590683A CN102134342B CN 102134342 B CN102134342 B CN 102134342B CN 2010105906832 A CN2010105906832 A CN 2010105906832A CN 201010590683 A CN201010590683 A CN 201010590683A CN 102134342 B CN102134342 B CN 102134342B
Authority
CN
China
Prior art keywords
microporous membrane
polyolefin microporous
weight
membrane
parts
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
CN2010105906832A
Other languages
Chinese (zh)
Other versions
CN102134342A (en
Inventor
顾方明
郑泓
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hangzhou Foremost Material Technology Co ltd
Original Assignee
HANGZHOU FOREMOST MATERIAL TECHNOLOGY Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by HANGZHOU FOREMOST MATERIAL TECHNOLOGY Co Ltd filed Critical HANGZHOU FOREMOST MATERIAL TECHNOLOGY Co Ltd
Priority to CN2010105906832A priority Critical patent/CN102134342B/en
Publication of CN102134342A publication Critical patent/CN102134342A/en
Application granted granted Critical
Publication of CN102134342B publication Critical patent/CN102134342B/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Manufacture Of Porous Articles, And Recovery And Treatment Of Waste Products (AREA)
  • Cell Separators (AREA)

Abstract

本发明公开一种交联型聚烯烃微孔膜及其制备方法。用于制作该膜的原料主要包括:聚烯烃,28.8~48.8重量份;潜溶剂,30~50重量份;过氧化合物,0.1~2重量份;硅烷,1~5重量份;抗氧剂,0.1重量份。此外,可进一步含有0~20重量份的超细填料。本发明的交联型聚烯烃微孔膜通过聚烯烃的交联,提高聚烯烃微孔膜的机械强度、耐热性以及对强碱和氯氧化合物等苛刻化学环境的耐受性,在实际应用过程中,如锂离子电池的隔离膜或者膜生物反应器中的过滤膜,将大大延长聚烯烃微孔膜的使用寿命。The invention discloses a cross-linked polyolefin microporous membrane and a preparation method thereof. The raw materials used to make the film mainly include: polyolefin, 28.8-48.8 parts by weight; latent solvent, 30-50 parts by weight; peroxide compound, 0.1-2 parts by weight; silane, 1-5 parts by weight; antioxidant, 0.1 parts by weight. In addition, 0 to 20 parts by weight of an ultrafine filler may be further contained. The cross-linked polyolefin microporous membrane of the present invention improves the mechanical strength, heat resistance and resistance to harsh chemical environments such as strong alkali and oxychloride compounds through the crosslinking of polyolefin. In the application process, such as the separator membrane of lithium ion battery or the filter membrane in membrane bioreactor, the service life of polyolefin microporous membrane will be greatly extended.

Description

一种交联型聚烯烃微孔膜及其制备方法A kind of cross-linked polyolefin microporous membrane and preparation method thereof

技术领域 technical field

本发明涉及一种交联型聚烯烃微孔膜及其制备方法。The invention relates to a cross-linked polyolefin microporous membrane and a preparation method thereof.

背景技术 Background technique

聚合物的微孔膜是指一种特殊的聚合物薄膜,在薄膜的厚度方向能形成贯通的微孔。随制备方法的不同,其微孔的贯通方式可以是直通的;但在大多数情况下,孔有一定的曲折度。随孔径大小的不同,聚合物微孔膜可以分为微滤膜、超滤膜和纳滤膜。微滤膜的孔径一般超过0.1um,而纳滤膜孔径一般需要在10nm以下,超滤膜的孔径处于两者之间。反渗透膜、离子交换膜和质子交换膜等分离膜在广义上也可以看成是某种聚合物的微孔膜,不过它们输运的是“看不见”的离子或质子。在一般情况下,这些膜在最高倍数的电子显微镜下,人们也无法观测到微孔。Polymer microporous membrane refers to a special polymer film that can form through micropores in the thickness direction of the film. Depending on the preparation method, the through-through of the micropores can be straight; but in most cases, the pores have a certain degree of tortuousness. According to different pore sizes, polymer microporous membranes can be divided into microfiltration membranes, ultrafiltration membranes and nanofiltration membranes. The pore size of the microfiltration membrane generally exceeds 0.1um, while the pore size of the nanofiltration membrane generally needs to be below 10nm, and the pore size of the ultrafiltration membrane is in between. Separation membranes such as reverse osmosis membranes, ion exchange membranes, and proton exchange membranes can also be regarded as microporous membranes of certain polymers in a broad sense, but they transport "invisible" ions or protons. In general, micropores cannot be observed in these films under the highest magnification electron microscope.

需要指出的是,这些微孔的孔径在厚度方向可能会有不同的变化:随厚度方向孔径可以是大致恒定不变的,也可以是发生梯度变化的(从大到小或从小到大),有时甚至形成指状孔,一些复合膜在界面上还有可能存在孔径的突变。孔径在厚度方向发生变化的膜一般被人们称为非对称膜。It should be pointed out that the pore diameter of these micropores may have different changes in the thickness direction: along with the thickness direction, the pore diameter can be roughly constant or gradient (from large to small or small to large), Sometimes even finger-shaped pores are formed, and some composite membranes may have a sudden change in pore size on the interface. Membranes whose pore size changes in the thickness direction are generally called asymmetric membranes.

特别需要指出的是,当我们讨论膜孔径的时候,需要说明观测和表征的方法。除最直观的电子显微镜外,在不同的工业领域,人们使用了各种各样的测量手段来表征微孔膜的孔径大小和分布。如利用BET吸附方程原理制作的比表面和孔径分布测定仪、压汞仪、毛细管流动孔径仪、小角光散射、截断分子量和截留率、细菌或病毒的截留率、以及测定气体通过快慢程度的Gurley值等方法。讨论上述微孔膜的孔径变化及其测量是非常有意义的。因为当任何微孔膜发挥其分离功能时,薄膜厚度方向的孔径变化及其精细结构是最重要的因素。In particular, when we discuss membrane pore size, we need to explain the methods of observation and characterization. In addition to the most intuitive electron microscope, in different industrial fields, people use a variety of measurement methods to characterize the pore size and distribution of microporous membranes. Such as the specific surface and pore size distribution measuring instrument made by the principle of BET adsorption equation, mercury porosimeter, capillary flow aperture meter, small angle light scattering, cut-off molecular weight and retention rate, retention rate of bacteria or viruses, and Gurley for measuring the speed of gas passage. value and other methods. It is very meaningful to discuss the pore size change and its measurement of the above-mentioned microporous membranes. Because when any microporous membrane performs its separation function, the pore size variation in the thickness direction of the membrane and its fine structure are the most important factors.

在Robert E.Kesting于1971年出版的著作《Synthetic PolymericMembranes》即综述了若干种制备方法。到今天看来,商业上获得成功的主要是以下几种:熔体牵引拉伸成膜(Melt Orientation Stretching,MOS)、溶致扩散相分离成膜(Diffusion Induced Phase Separation,DIPS)和热致相分离成膜(Thermal Induced Phase Separation,TIPS)。Several preparation methods were reviewed in the book "Synthetic Polymeric Membranes" published by Robert E. Kesting in 1971. As of today, the commercial successes are mainly the following: Melt Orientation Stretching (MOS), Diffusion Induced Phase Separation (DIPS) and Thermally Induced Phase Separation Separation into membrane (Thermal Induced Phase Separation, TIPS).

在熔体牵引拉伸成膜(MOS)方法中,使用常用的聚合物挤出加工设备,并加装一个钢制口膜。该口膜是T-型模头时,可以成型平板微孔膜;该口膜也可以是纺织工业常用的喷丝头,这样可以成型中空纤维膜。工业上成功的案例一般都使用半结晶聚合物,如聚丙烯(Polypropylene,PP)和聚乙烯(Polyethylene,PE)。这些半结晶聚合物在拉伸条件下从熔体冷却结晶,在微观上形成单轴取向的“羊肉串晶”结构;在宏观上,这些结构有时还具有所谓的“硬弹性”。对上述“硬弹性”母膜进一步拉伸之后,即能制备聚合物的微孔膜,如美国专利US3,801,404和日本专利特许公报昭56-52123和昭60-37201的公开。In the melt-draw stretch film forming (MOS) method, common polymer extrusion processing equipment is used, and a steel mouth film is added. When the membrane is a T-shaped die, it can form a flat microporous membrane; the membrane can also be a spinneret commonly used in the textile industry, so that a hollow fiber membrane can be formed. Successful industrial cases generally use semi-crystalline polymers, such as polypropylene (Polypropylene, PP) and polyethylene (Polyethylene, PE). These semi-crystalline polymers crystallize from the melt under stretching conditions to form uniaxially oriented "kebab crystal" structures on the microscopic scale; on the macroscopic scale, these structures sometimes also have so-called "hard elastic". After further stretching the above "hard elastic" mother film, a microporous polymer film can be prepared, as disclosed in US Pat.

在溶致扩散相分离成膜方法(即DIPS法)中,聚合物首先溶解在良溶剂中形成一定浓度的均相溶液(铸膜母液),母液在压力作用下通过一钢制口膜(可以是狭缝型口膜或中空的喷丝头,前者成型薄膜或片材,后者成型中空纤维膜),从口膜成型出来后,进入一个凝胶槽中,该凝胶槽中使用纯水或低浓度溶液。由于浓度梯度的存在,溶解有聚合物的溶剂迅速扩散到凝胶槽中,引起聚合物溶液浓度的剧烈变化并导致分相,即聚合物相从溶剂相中析出。相分离结束,把残留溶剂萃取出来或洗涤掉,在原来溶剂分子占据的地方便形成了微孔。In the lyotropic diffusion phase separation film forming method (ie DIPS method), the polymer is first dissolved in a good solvent to form a homogeneous solution of a certain concentration (membrane casting mother liquor), and the mother liquor passes through a steel mouth membrane under pressure (can be It is a slit-shaped membrane or a hollow spinneret. The former forms a film or sheet, and the latter forms a hollow fiber membrane). After forming from the membrane, it enters a gel tank, which uses pure water or low-concentration solutions. Due to the existence of the concentration gradient, the solvent in which the polymer is dissolved rapidly diffuses into the gel tank, causing a drastic change in the concentration of the polymer solution and causing phase separation, that is, the polymer phase is separated from the solvent phase. After the phase separation is completed, the residual solvent is extracted or washed away, and micropores are formed in the place occupied by the original solvent molecules.

在热致相分离成膜方法(即TIPS法)中,聚合物首先在高温下和某种选定的溶剂或增塑剂混合,为增强混合效果和连续化生产,商业上一般选用双螺杆挤出机、单螺杆挤出机、双阶式挤出机或连续密炼机。聚合物和溶剂的混合物在压力作用下通过一钢制口模,混合物离开口膜后随即迅速降温冷却。在温度梯度的诱导下,上述选定的溶剂从良溶剂变成不良溶剂从聚合物基体中析出,把残留溶剂萃取出来或洗涤掉,聚合物微孔膜就制备成功了。该法使用的溶剂在高温下和聚合物相溶而在低温下不溶,人们把它形象地称为聚合物的潜溶剂。In the thermally induced phase separation film forming method (TIPS method), the polymer is first mixed with a selected solvent or plasticizer at high temperature. In order to enhance the mixing effect and continuous production, twin-screw extrusion is generally used commercially. extruder, single-screw extruder, two-stage extruder or continuous internal mixer. The mixture of polymer and solvent passes through a steel die under pressure, and the mixture cools down rapidly after leaving the die. Under the induction of the temperature gradient, the above-mentioned selected solvent changes from a good solvent to a poor solvent and precipitates from the polymer matrix, and the residual solvent is extracted or washed away, and the polymer microporous membrane is successfully prepared. The solvent used in this method is compatible with the polymer at high temperature but insoluble at low temperature. People call it the latent solvent of the polymer.

聚合物微孔膜的应用基础在于其高效的分离功能,特别是固液分离和固气分离。近年来,膜材料在水处理行业、电子行业、医药行业和化工行业取得了巨大的成功并且还在快速发展过程中,如用作锂离子电池的隔离膜、水的超滤和反渗透、渗析、电驱动膜(离子交换膜和质子交换膜)、气体膜分离、渗透气化、蒸汽渗透、膜接触器(膜吸收、膜吸附、膜蒸馏、膜结晶、膜脱气)、膜色谱、膜催化和膜反应等等。The basis of the application of polymer microporous membranes lies in its efficient separation function, especially solid-liquid separation and solid-gas separation. In recent years, membrane materials have achieved great success in the water treatment industry, electronics industry, pharmaceutical industry and chemical industry, and are still in the process of rapid development, such as used as a separator for lithium-ion batteries, ultrafiltration and reverse osmosis of water, dialysis , Electrically driven membrane (ion exchange membrane and proton exchange membrane), gas membrane separation, pervaporation, steam permeation, membrane contactor (membrane absorption, membrane adsorption, membrane distillation, membrane crystallization, membrane degassing), membrane chromatography, membrane Catalysis and membrane reactions, etc.

举例来说,在锂离子电池隔离膜的应用领域工业已获得的成功主要集中在聚烯烃的微孔膜上,如聚乙烯或聚丙烯。这类材料来源广泛、价格便宜,聚烯烃微孔膜占据垄断性地位。此外,这类材料还具有化学惰性,和绝大多数极性电解质都不起化学反应。然而其缺点是耐热性能和机械性能有限。超过这个温度后,聚合物薄膜即会发生熔体塌缩(melt-down),导致电池内部正负极接触而造成短路,有时可能会导致灾难性的结果。随着锂离子电池工业的发展,电池体积越来越小,能量和功率密度越来越高,这就要求组成电池的材料具有更好的耐热性,而聚合物隔膜是其中非常重要的组成部分。现在看来,高密度聚乙烯的熔点约140℃,聚丙烯熔点约165℃,耐温性还是有所不够。特别是在高温下,微孔膜容易收缩甚至坍塌。For example, the industry's success in the field of lithium-ion battery separator applications has focused on microporous membranes of polyolefins, such as polyethylene or polypropylene. Such materials have a wide range of sources and are cheap, and polyolefin microporous membranes occupy a monopoly position. In addition, this type of material is also chemically inert and does not react chemically with most polar electrolytes. However, its disadvantages are limited heat resistance and mechanical properties. After exceeding this temperature, the polymer film will melt-down, causing the positive and negative electrodes inside the battery to contact and cause a short circuit, which may sometimes lead to catastrophic results. With the development of the lithium-ion battery industry, the volume of the battery is getting smaller and smaller, and the energy and power density are getting higher and higher, which requires the materials that make up the battery to have better heat resistance, and the polymer separator is a very important component of it. part. It now appears that the melting point of high-density polyethylene is about 140°C, and the melting point of polypropylene is about 165°C, and the temperature resistance is still not enough. Especially at high temperatures, microporous membranes tend to shrink or even collapse.

又举例来说,由于比表面积大的原因,在水处理领域的微滤和超滤技术中大量使用聚合物微孔中空纤维膜,典型的应用如用于污水处理的膜生物反应器技术(Membrane Bio-Reactor,MBR)中。该技术要求中空纤维膜具有足够好强度的同时,要有充分优越的耐化学性,如耐强酸、强碱、氯氧化合物,紫外线和臭氧等。聚烯烃材料对一般化学品具有较好耐受能力,但对强碱和氯氧化合物的耐受能力一般到较差。总而言之,提高聚烯烃微孔膜的机械强度、耐热性以及对强碱和氯氧化合物存在下的苛刻化学环境的耐受性是亟待解决的问题。For another example, due to the large specific surface area, polymer microporous hollow fiber membranes are widely used in microfiltration and ultrafiltration technologies in the field of water treatment. Typical applications such as membrane bioreactor technology for sewage treatment (Membrane Bio-Reactor, MBR). This technology requires that hollow fiber membranes have sufficient strength and have sufficient and superior chemical resistance, such as resistance to strong acids, strong alkalis, chlorine-oxygen compounds, ultraviolet rays and ozone. Polyolefin materials have good resistance to general chemicals, but general to poor resistance to strong alkalis and oxychlorides. All in all, improving the mechanical strength, heat resistance, and resistance to harsh chemical environments in the presence of strong alkalis and chlorine-oxygen compounds of polyolefin microporous membranes is an urgent problem to be solved.

发明内容 Contents of the invention

本发明的目的是提供一种交联型聚烯烃微孔膜及其制备方法。The purpose of the present invention is to provide a cross-linked polyolefin microporous membrane and a preparation method thereof.

为实现上述目的,本发明所采取的技术方案是:所述交联型聚烯烃微孔膜,其特征是用于制作该膜的原料包括:In order to achieve the above object, the technical solution adopted by the present invention is: the cross-linked polyolefin microporous membrane is characterized in that the raw materials used to make the membrane include:

聚烯烃        28.8~48.8重量份,Polyolefin 28.8~48.8 parts by weight,

潜溶剂        30~50重量份,Latent solvent 30~50 parts by weight,

过氧化合物    0.1~2重量份,Peroxy compound 0.1~2 parts by weight,

硅烷          1~5重量份,Silane 1~5 parts by weight,

抗氧剂        0.1重量份。Antioxidant 0.1 parts by weight.

本发明用于制作该膜的原料还包括0~20重量份的超细填料。The raw material used for making the film in the present invention also includes 0-20 parts by weight of superfine filler.

进一步地,本发明所述聚烯烃是聚乙烯树脂或聚丙烯树脂中的任一种或任几种的组合。Further, the polyolefin in the present invention is any one or a combination of polyethylene resins or polypropylene resins.

进一步地,本发明所述潜溶剂是邻苯二甲酸酯类、脂肪族二酸酯类、偏苯三酸酯类、磷酸酯、甘油酯类、多元醇类、合成油类及石蜡类、天然油类、环保增塑剂中的任一种或任几种的组合。Further, the latent solvents described in the present invention are phthalates, aliphatic diacid esters, trimellitates, phosphoric acid esters, glycerides, polyols, synthetic oils and paraffins, natural Any one or any combination of oils and environmentally friendly plasticizers.

进一步地,本发明所述硅烷是乙烯基类有机硅烷中的任一种或几种组合。Further, the silane in the present invention is any one or a combination of vinyl organosilanes.

进一步地,本发明所述超细填料是纳米碳酸钙、超细碳酸钙、滑石粉、硅灰石、高岭土、硅藻土、剥离的纳米蒙脱土、陶土、二氧化钛、沉淀法白炭黑、气相法白炭黑、石墨烯、碳纳米粉或碳纳米管等中的任一种或任几种的组合,所述超细填料的平均粒径为0.5~1微米。Further, the ultrafine filler of the present invention is nano-calcium carbonate, ultra-fine calcium carbonate, talc, wollastonite, kaolin, diatomaceous earth, exfoliated nano-montmorillonite, clay, titanium dioxide, precipitated white carbon black, Any one or combination of any of fumed white carbon black, graphene, carbon nanopowder or carbon nanotube, etc., the average particle diameter of the ultrafine filler is 0.5-1 micron.

本发明交联型聚烯烃微孔膜的制备方法包括以下步骤:The preparation method of crosslinked polyolefin microporous membrane of the present invention comprises the following steps:

(1)使用高速混合机将各原料混合均匀后再使用双螺杆挤出机或连续密炼机输送、塑化并挤出得到注膜液,所述原料为28.8~48.8重量份的聚烯烃树脂、30~50重量份的潜溶剂、0.1~2重量份的过氧化物、1~5重量份的硅烷和0.1重量份的抗氧剂,所述双螺杆挤出机、连续密炼机的加热温度设定为160~240℃;(1) Use a high-speed mixer to mix all the raw materials evenly, and then use a twin-screw extruder or a continuous internal mixer to transport, plasticize and extrude to obtain a film injection solution. The raw material is 28.8 to 48.8 parts by weight of polyolefin resin , the latent solvent of 30~50 weight parts, the peroxide of 0.1~2 weight part, the silane of 1~5 weight part and the antioxidant of 0.1 weight part, the heating of described twin-screw extruder, continuous internal mixer The temperature is set at 160-240°C;

(2)然后使注膜液通过一个T-型口膜,流延在金属辊筒上成型为平板薄膜;或者使注膜液通过金属喷丝头,经凝胶槽冷却后成型为中空纤维膜;(2) Then make the injection liquid pass through a T-shaped mouth film, cast on a metal roller to form a flat film; or make the injection liquid pass through a metal spinneret, and form a hollow fiber membrane after being cooled by a gel tank ;

(3)接着对所述平板薄膜或者中空纤维膜进行拉伸,所述拉伸倍率为1~10倍;后使用萃取液和提取液分别除去潜溶剂和超细填料,经洗涤、干燥后形成聚烯烃微孔膜;(3) Then stretch the flat film or hollow fiber membrane, the stretching ratio is 1 to 10 times; finally use the extract and the extract to remove the latent solvent and ultrafine filler respectively, and form after washing and drying Polyolefin microporous membrane;

(4)使聚烯烃微孔膜继续通过热水水槽,在硅烷水解作用下完成交联,所述热水水槽温度是50~90℃;(4) Make the polyolefin microporous membrane continue to pass through the hot water tank to complete the crosslinking under the action of silane hydrolysis, the temperature of the hot water tank is 50-90°C;

(5)接着对聚烯烃微孔膜进行干燥和退火定型,制备得到交联型聚烯烃微孔膜。(5) Then drying and annealing the polyolefin microporous membrane to prepare a cross-linked polyolefin microporous membrane.

进一步地,本发明以上步骤(1)中所述原料还包括0~20重量份的超细填料。Further, the raw materials in the above step (1) of the present invention also include 0-20 parts by weight of ultrafine fillers.

进一步地,本发明以上步骤(3)中所形成的聚烯烃微孔膜的平均孔径为0.01~1微米。Further, the average pore diameter of the polyolefin microporous membrane formed in the above step (3) of the present invention is 0.01-1 micron.

与现有技术相比,本发明的有益效果是:Compared with prior art, the beneficial effect of the present invention is:

本发明的交联型聚烯烃微孔膜通过聚烯烃的交联,提高聚烯烃微孔膜的机械强度、耐热性以及对强碱和氯氧化合物等苛刻化学环境的耐受性,在实际应用过程中,如锂离子电池的隔离膜或者膜生物反应器中的过滤膜,将大大延长聚烯烃微孔膜的使用寿命。本发明使用聚烯烃为基体材料,利用热致诱导相分离的方法来制备微孔膜;在成孔的同时或稍后,通过反应加工在聚烯烃主链上接枝乙烯基有机硅烷,聚烯烃分子链在硅烷水解之后发生交联,交联过程不影响聚合物基体成孔。由于交联,得到的交联型聚烯烃微孔膜具有突出的机械强度,耐化学性能和耐热性能。交联型聚烯烃微孔膜具有突出的力学强度,耐化学性能和耐热性能;形成的平板膜可以用作锂离子电池的隔离膜,中空纤维微孔膜可以用于污水处理,如膜生物反应器技术中的分离膜。The cross-linked polyolefin microporous membrane of the present invention improves the mechanical strength, heat resistance and resistance to harsh chemical environments such as strong alkali and oxychloride compounds through the crosslinking of polyolefin. In the application process, such as the separator membrane of lithium ion battery or the filter membrane in membrane bioreactor, the service life of polyolefin microporous membrane will be greatly extended. The present invention uses polyolefin as the base material, and utilizes the method of thermally induced phase separation to prepare microporous membranes; while forming pores or later, vinyl organosilane is grafted on the main chain of polyolefin by reaction processing, and polyolefin The molecular chains are cross-linked after silane hydrolysis, and the cross-linking process does not affect the pore formation of the polymer matrix. Due to the crosslinking, the obtained crosslinked polyolefin microporous membrane has outstanding mechanical strength, chemical resistance and heat resistance. The cross-linked polyolefin microporous membrane has outstanding mechanical strength, chemical resistance and heat resistance; the formed flat membrane can be used as a separator for lithium-ion batteries, and the hollow fiber microporous membrane can be used for sewage treatment, such as membrane biological Separation membranes in reactor technology.

具体实施方式 Detailed ways

下面的实施实例是对本发明的进一步说明,而本发明并非局限于以下实施例。The following implementation examples are further descriptions of the present invention, but the present invention is not limited to the following examples.

制备本发明交联型聚烯烃微孔膜所用原料中的聚烯烃可以是以下聚乙烯树脂或聚丙烯树脂或共聚物中的任一种或任几种的组合:高密度聚乙烯、中密度聚乙烯、低密度聚乙烯、线性低密度聚乙烯、带长支链的聚乙烯、聚乙烯的丙烯共聚物,聚乙烯的丁烯共聚物、聚乙烯的己烯共聚物、聚乙烯的辛烯共聚物、聚乙烯弹性体、乙烯-醋酸乙烯共聚物、乙烯-丙烯酸共聚物、乙烯-甲基丙烯酸共聚物、乙烯-马来酸酐共聚物、乙烯-顺丁酸酐共聚物、乙丙橡胶等。The polyolefin in the raw material used to prepare the crosslinked polyolefin microporous membrane of the present invention can be any one or any combination of several of the following polyethylene resins or polypropylene resins or copolymers: high-density polyethylene, medium-density polyethylene Ethylene, low density polyethylene, linear low density polyethylene, polyethylene with long chain branching, propylene copolymer of polyethylene, butene copolymer of polyethylene, hexene copolymer of polyethylene, octene copolymer of polyethylene Polyethylene elastomer, ethylene-vinyl acetate copolymer, ethylene-acrylic acid copolymer, ethylene-methacrylic acid copolymer, ethylene-maleic anhydride copolymer, ethylene-maleic anhydride copolymer, ethylene-propylene rubber, etc.

本发明所用的潜溶剂是邻苯二甲酸酯类、脂肪族二酸酯类、偏苯三酸酯类、磷酸酯、甘油酯类、多元醇类、合成油类及石蜡类、天然油类和环保增塑剂中的任一种或任几种的组合。其中,The latent solvent used in the present invention is phthalates, aliphatic diacid esters, trimellitic acid esters, phosphoric acid esters, glycerides, polyols, synthetic oils and paraffins, natural oils and Any one or any combination of environmentally friendly plasticizers. in,

(1)邻苯二甲酸酯类的潜溶剂可以是:邻苯二甲酸二甲酯、邻苯二甲酸二乙酯、邻苯二甲酸二丁酯、邻苯二甲酸二己酯、邻苯二甲酸二辛酯、邻苯二甲酸二异辛酯、邻苯二甲酸二异癸酯、邻苯二甲酸二(2-甲基己酯)、邻苯二甲酸二环己酯等。(1) The latent solvents of phthalates can be: dimethyl phthalate, diethyl phthalate, dibutyl phthalate, dihexyl phthalate, phthalate Dioctyl formate, diisooctyl phthalate, diisodecyl phthalate, bis(2-methylhexyl) phthalate, dicyclohexyl phthalate, etc.

(2)脂肪族二酸酯类的潜溶剂可以是:癸二酸乙酯、癸二酸丁酯、己二酸二辛酯、柠檬酸三乙酯等。(2) The latent solvent of aliphatic diacid esters may be: ethyl sebacate, butyl sebacate, dioctyl adipate, triethyl citrate, etc.

(3)偏苯三酸酯类的潜溶剂可以是:偏苯三酸二辛酯等。(3) The latent solvent of trimellitate can be: dioctyl trimellitate and the like.

(4)对苯二甲酸酯类的潜溶剂可以是:对苯二甲酸二异辛酯。(4) The latent solvent of terephthalic acid esters may be: di-isooctyl terephthalate.

(5)磷酸酯类的潜溶剂可以是:三乙基磷酸酯、三丁基磷酸酯、三辛基磷酸酯等。(5) The latent solvent of phosphate esters can be: triethyl phosphate, tributyl phosphate, trioctyl phosphate, etc.

(6)甘油酯类的潜溶剂可以是:丙二醇二癸酸酯、丙二醇二油酸酯、甘油单乙酸酯,甘油二乙酸酯、甘油三乙酸酯、N-双(2羟乙基)牛脂、脱水山梨糖醇油酸酯、脱水山梨糖醇一倍半油酸酯、脱水山梨糖醇硬脂酸酯等。(6) The latent solvent of glycerides can be: propylene glycol dicaprate, propylene glycol dioleate, glycerol monoacetate, glycerol diacetate, glycerol triacetate, N-bis(2 hydroxyethyl ) tallow, sorbitan oleate, sorbitan sesquioleate, sorbitan stearate, etc.

(7)多元醇类的潜溶剂可以是:2-十一醇、1-十二烷醇、二亚苄基山梨醇、二甘醇、三甘醇、丁二醇、聚乙二醇、聚乙二醇与甘油的混合物等。(7) The latent solvent of polyols can be: 2-undecyl alcohol, 1-dodecanol, dibenzylidene sorbitol, diethylene glycol, triethylene glycol, butylene glycol, polyethylene glycol, poly A mixture of ethylene glycol and glycerin, etc.

(8)合成油类和石蜡类的潜溶剂可以是:正烷烃、液体石蜡、石脑油、矿物油、二苯醚、十氢萘、白油等。(8) The latent solvents of synthetic oils and paraffins can be: normal alkanes, liquid paraffin, naphtha, mineral oil, diphenyl ether, decahydronaphthalene, white oil, etc.

(9)天然油类的潜溶剂可以是:豆油,亚麻籽油,向日葵油、芝麻油、油酸、亚油酸,棕榈酸、及其油的混合物等。(9) The latent solvent of natural oils can be: soybean oil, linseed oil, sunflower oil, sesame oil, oleic acid, linoleic acid, palmitic acid, and mixtures thereof.

(10)环保增塑剂类的潜溶剂可以是:环氧大豆油、环氧脂肪酸甲酯等。(10) The latent solvent of environment-friendly plasticizers can be: epoxy soybean oil, epoxy fatty acid methyl ester, etc.

本发明所用的硅烷可以是以下乙烯基类有机硅烷中的任一种或几种组合:三乙氧基乙烯基硅烷、三甲氧基乙烯基硅烷、三(2-甲氧基乙氧基)乙烯基硅烷、甲基二甲氧基乙烯基硅烷、三异丙氧基硅烷、三甲氧基甲基丙烯酸丙基硅烷、三甲氧基丙烯酸丙基硅烷等。The silane used in the present invention can be any one or several combinations of the following vinyl organosilanes: triethoxyvinylsilane, trimethoxyvinylsilane, tri(2-methoxyethoxy)ethylene methyl silane, methyl dimethoxy vinyl silane, triisopropoxy silane, trimethoxy propyl methacrylate silane, trimethoxy propyl acrylate silane, etc.

本发明所用的过氧化合物可以是:Arkema公司的Luperox 101、Luperox 130、Luperox TBEC和Luperox DI等,或者可以选择Akzo Nobel公司的Trigonox 117、Trigonox 301、Trigonox T、Trigonox B和Trigonox145等。The peroxy compound used in the present invention can be: Luperox 101, Luperox 130, Luperox TBEC and Luperox DI etc. of Arkema Company, or can select Trigonox 117, Trigonox 301, Trigonox T, Trigonox B and Trigonox 145 etc. of Akzo Nobel Company.

本发明所涉及的超细填料可以是纳米碳酸钙、超细碳酸钙、滑石粉、硅灰石、高岭土、硅藻土、剥离的纳米蒙脱土、陶土、二氧化钛、沉淀法白炭黑、气相法白炭黑、石墨烯、碳纳米粉和碳纳米管等中的任一种或任几种的组合,所述超细填料的平均粒径为0.05~1微米。The ultrafine fillers involved in the present invention can be nano calcium carbonate, ultrafine calcium carbonate, talcum powder, wollastonite, kaolin, diatomaceous earth, exfoliated nano montmorillonite, pottery clay, titanium dioxide, precipitated white carbon black, gas phase Any one or a combination of any of French silica, graphene, carbon nanopowder and carbon nanotubes, etc., and the average particle diameter of the ultrafine filler is 0.05-1 micron.

实施例1~4的配方以重量百分数计如下:The formula of embodiment 1~4 is as follows by weight percentage:

实施例1中,所用的聚烯烃是高密度聚乙烯,潜溶剂是石脑油,过氧化合物是过氧化合物Luperox 101,硅烷是三甲氧基乙烯基硅烷,超细填料是纳米碳酸钙,平均粒径为0.05微米。实施例1的原料配方如下(以重量百分含量计):In embodiment 1, the polyolefin used is high-density polyethylene, latent solvent is naphtha, peroxygen compound is peroxygen compound Luperox 101, and silane is trimethoxyvinyl silane, and superfine filler is nano-calcium carbonate, average The particle size is 0.05 microns. The raw material formula of embodiment 1 is as follows (by weight percentage):

高密度聚乙烯                        42.9%High Density Polyethylene 42.9%

石脑油                              30%Naphtha 30%

过氧化合物Luperox 101               2%Peroxide compound Luperox 101 2%

三甲氧基乙烯基硅烷                  5%Trimethoxyvinylsilane 5%

抗氧剂AO168                         0.1%Antioxidant AO168 0.1%

纳米碳酸钙                          20%Nano calcium carbonate 20%

实施例2中,所用的聚烯烃是长支链聚乙烯,潜溶剂是己二酸二辛酯,过氧化合物是过氧化合物Luperox TBEC,硅烷是三甲氧基甲基丙烯酸丙基硅烷,超细填料是超细碳酸钙,平均粒径为0.1微米。实施例2的原料配方如下(以重量百分含量计):In Example 2, the polyolefin used is long-chain branched polyethylene, the latent solvent is dioctyl adipate, the peroxide compound is peroxide compound Luperox TBEC, and the silane is trimethoxymethacrylate propylsilane, ultrafine The filler is ultrafine calcium carbonate with an average particle size of 0.1 microns. The raw material formula of embodiment 2 is as follows (by weight percentage):

长支链聚乙烯                        35.9%Long-chain branched polyethylene 35.9%

己二酸二辛酯                        40%Dioctyl adipate 40%

Luperox TBEC                        1%Luperox TBEC 1%

三甲氧基甲基丙烯酸丙基硅烷          3%Trimethoxypropyl methacrylate 3%

抗氧剂AO168                         0.1%Antioxidant AO168 0.1%

超细碳酸钙                          20%Superfine Calcium Carbonate 20%

实施例3中,所用的聚烯烃是高密度聚乙烯与超高分子量聚乙烯的组合,潜溶剂是液体石蜡,过氧化合物是过氧化合物Luperox 130,硅烷是三异丙氧基硅烷,超细填料是超细碳酸钙,平均粒径为1微米。实施例3的原料配方如下(以重量百分含量计):In embodiment 3, the polyolefin used is the combination of high density polyethylene and ultrahigh molecular weight polyethylene, latent solvent is liquid paraffin, peroxide compound is peroxide compound Luperox 130, silane is triisopropoxysilane, superfine The filler is ultrafine calcium carbonate with an average particle size of 1 micron. The raw material formula of embodiment 3 is as follows (by weight percentage):

高密度聚乙烯                        14.4%High Density Polyethylene 14.4%

超高分子量聚乙烯                    14.4%Ultra-high molecular weight polyethylene 14.4%

液体石蜡                            50%Liquid paraffin 50%

过氧化合物Luperox 130               0.1%Peroxy compound Luperox 130 0.1%

三异丙氧基硅烷                      1%Triisopropoxysilane 1%

抗氧剂AO168                         0.1%Antioxidant AO168 0.1%

超细碳酸钙                          20%Superfine Calcium Carbonate 20%

实施例4中,所用的聚烯烃是高密度聚乙烯与超高分子量聚乙烯的组合,潜溶剂是邻苯二甲酸二甲酯,过氧化合物是过氧化合物Trigonox 301,硅烷是甲基二甲氧基乙烯基硅烷。实施例4的原料配方如下(以重量百分含量计):In Example 4, the polyolefin used is a combination of high-density polyethylene and ultra-high molecular weight polyethylene, the latent solvent is dimethyl phthalate, the peroxide compound is peroxide compound Trigonox 301, and the silane is methyl dimethyl Oxyvinylsilane. The raw material formula of embodiment 4 is as follows (by weight percentage):

高密度聚乙烯                        34.4%High Density Polyethylene 34.4%

超高分子量聚乙烯                    14.4%Ultra-high molecular weight polyethylene 14.4%

邻苯二甲酸二甲酯                    50%Dimethyl phthalate 50%

Trigonox 301                        0.1%Trigonox 301 0.1%

甲基二甲氧基乙烯基硅烷              1%Methyldimethoxyvinylsilane 1%

抗氧剂AO168                         0.1%Antioxidant AO168 0.1%

实施例1中的交联型聚烯烃微孔膜按照如下步骤制备:The cross-linked polyolefin microporous membrane in Example 1 is prepared according to the following steps:

(1)使用高速混合机将实施例1中的各原料混合均匀,高速混合机转速是1000rpm。再使用双螺杆挤出机输送、塑化并挤出得到注膜液,双螺杆挤出温度设定为240℃,螺杆转速为200rpm;(1) Use a high-speed mixer to mix the raw materials in Example 1 evenly, and the speed of the high-speed mixer is 1000 rpm. Then use the twin-screw extruder to transport, plasticize and extrude to obtain the injection liquid. The twin-screw extrusion temperature is set at 240°C, and the screw speed is 200rpm;

(2)然后使注膜液通过一个T-型口膜,流延在金属辊筒上成型为平板薄膜;T-型口模温度设定为240℃;(2) Then make the injection film pass through a T-shaped mouth film, and cast it on a metal roller to form a flat film; the temperature of the T-shaped mouth mold is set to 240 ° C;

(3)接着对所述平板薄膜进行拉伸,所述拉伸倍率为5倍;接着使用萃取液无水乙醇萃取除去石脑油,使用盐酸除去纳米碳酸钙,所用盐酸的质量分数为5%。然后经去离子水洗涤以除去膜丝表面污渍、杂质等、继而经烘箱干燥后形成聚烯烃微孔膜,烘箱温度设为80℃,干燥时间为6h;(3) Stretching the flat film, the stretching ratio is 5 times; then use the extraction liquid dehydrated alcohol to extract and remove naphtha, use hydrochloric acid to remove nano-calcium carbonate, the mass fraction of hydrochloric acid used is 5% . Then wash with deionized water to remove stains and impurities on the surface of the membrane filament, and then dry in an oven to form a polyolefin microporous membrane. The oven temperature is set at 80°C, and the drying time is 6 hours;

(4)使聚烯烃微孔膜继续通过热水水槽,在硅烷水解作用下完成交联,所述热水水槽温度是50℃;(4) Make the polyolefin microporous membrane continue to pass through the hot water tank to complete the crosslinking under the action of silane hydrolysis, and the temperature of the hot water tank is 50°C;

(5)最后采用烘箱对聚烯烃微孔膜进行干燥和退火定型,制备得到交联型聚烯烃微孔膜。干燥温度为80℃,干燥时间是6h;退火温度为90℃,退火时间为12h。(5) Finally, an oven is used to dry and anneal the polyolefin microporous membrane to prepare a cross-linked polyolefin microporous membrane. The drying temperature is 80°C, and the drying time is 6h; the annealing temperature is 90°C, and the annealing time is 12h.

实施例2中的交联型聚烯烃微孔膜按照如下步骤制备:The cross-linked polyolefin microporous membrane in Example 2 is prepared according to the following steps:

(1)使用高速混合机将实施例2中的各原料混合均匀,高速混合机转速是1000rpm。再使用双螺杆挤出机输送、塑化并挤出得到注膜液,双螺杆挤出温度设定为200℃,螺杆转速为200rpm;(1) Use a high-speed mixer to mix the raw materials in Example 2 evenly, and the speed of the high-speed mixer is 1000 rpm. Then use the twin-screw extruder to transport, plasticize and extrude to obtain the injection liquid. The twin-screw extrusion temperature is set at 200°C, and the screw speed is 200rpm;

(2)然后使注膜液通过一个T-型口膜,流延在金属辊筒上成型为平板薄膜;T-型口模温度设定为200℃;(2) Then make the injection film pass through a T-shaped mouth film, cast on a metal roller to form a flat film; the temperature of the T-shaped mouth die is set to 200 ° C;

(3)接着对所述平板薄膜进行拉伸,所述拉伸倍率为10倍;接着使用萃取液无水乙醇萃取除去己二酸二辛酯,使用盐酸除去超细碳酸钙,所用盐酸的质量分数为5%。然后经去离子水洗涤以除去膜丝表面污渍、杂质等、继而经烘箱干燥后形成聚烯烃微孔膜,烘箱温度设为80℃,干燥时间为6h;(3) then stretching the flat film, the stretching ratio is 10 times; then use the extraction liquid dehydrated alcohol extraction to remove dioctyl adipate, use hydrochloric acid to remove ultrafine calcium carbonate, the quality of hydrochloric acid used The score is 5%. Then wash with deionized water to remove stains and impurities on the surface of the membrane filament, and then dry in an oven to form a polyolefin microporous membrane. The oven temperature is set at 80°C, and the drying time is 6 hours;

(4)使聚烯烃微孔膜继续通过热水水槽,在硅烷水解作用下完成交联,所述热水水槽温度是70℃;(4) Make the polyolefin microporous membrane continue to pass through the hot water tank to complete the crosslinking under the action of silane hydrolysis, the temperature of the hot water tank is 70°C;

(5)最后采用烘箱对聚烯烃微孔膜进行干燥和退火定型,制备得到交联型聚烯烃微孔膜。干燥温度为80℃,干燥时间是6h;退火温度为90℃,退火时间为12h。(5) Finally, an oven is used to dry and anneal the polyolefin microporous membrane to prepare a cross-linked polyolefin microporous membrane. The drying temperature is 80°C, and the drying time is 6h; the annealing temperature is 90°C, and the annealing time is 12h.

实施例3中的交联型聚烯烃微孔膜按照如下步骤制备:The cross-linked polyolefin microporous membrane in embodiment 3 is prepared according to the following steps:

(1)使用高速混合机将实施例3中的各原料混合均匀,高速混合机转速是1000rpm。再使用双螺杆挤出机输送、塑化并挤出得到注膜液,双螺杆挤出温度设定为160℃,螺杆转速为200rpm;(1) Use a high-speed mixer to mix the raw materials in Example 3 evenly, and the speed of the high-speed mixer is 1000 rpm. Then use the twin-screw extruder to transport, plasticize and extrude to obtain the injection liquid. The twin-screw extrusion temperature is set at 160°C, and the screw speed is 200rpm;

(2)然后使注膜液通过一个T-型口膜,流延在金属辊筒上成型为平板薄膜;T-型口模温度设定为160℃;(2) Then make the film injection solution pass through a T-shaped mouth film, and cast it on a metal roller to form a flat film; the temperature of the T-shaped mouth mold is set to 160 ° C;

(3)接着对所述平板薄膜进行拉伸,所述拉伸倍率为10倍;接着使用萃取液无水乙醇萃取除去液体石蜡,使用盐酸除去超细碳酸钙,所用盐酸的质量分数为5%。然后经去离子水洗涤以除去膜丝表面污渍、杂质等、继而经烘箱干燥后形成聚烯烃微孔膜,烘箱温度设为80℃,干燥时间为6h;(3) Stretch the flat film, and the stretching ratio is 10 times; then use the extraction solution absolute ethanol to extract and remove the liquid paraffin, and use hydrochloric acid to remove ultrafine calcium carbonate, the mass fraction of hydrochloric acid used is 5% . Then wash with deionized water to remove stains and impurities on the surface of the membrane filament, and then dry in an oven to form a polyolefin microporous membrane. The oven temperature is set at 80°C, and the drying time is 6 hours;

(4)使聚烯烃微孔膜继续通过热水水槽,在硅烷水解作用下完成交联,所述热水水槽温度是90℃;(4) Make the polyolefin microporous membrane continue to pass through the hot water tank to complete the crosslinking under the action of silane hydrolysis, and the temperature of the hot water tank is 90°C;

(5)最后采用烘箱对聚烯烃微孔膜进行干燥和退火定型,制备得到交联型聚烯烃微孔膜。干燥温度为80℃,干燥时间是6h;退火温度为90℃,退火时间为12h。(5) Finally, an oven is used to dry and anneal the polyolefin microporous membrane to prepare a cross-linked polyolefin microporous membrane. The drying temperature is 80°C, and the drying time is 6h; the annealing temperature is 90°C, and the annealing time is 12h.

实施例4中交联型聚烯烃微孔膜按照如下步骤制备:Cross-linked polyolefin microporous membrane is prepared according to the following steps in embodiment 4:

(1)使用高速混合机将实施例4中的各原料混合均匀,高速混合机转速是1000rpm。再使用连续密炼机混合、塑化并挤出得到注膜液,密炼机温度设定为200℃,螺杆转速为200rpm;(1) Use a high-speed mixer to mix the raw materials in Example 4 evenly, and the speed of the high-speed mixer is 1000 rpm. Then use a continuous internal mixer to mix, plasticize and extrude to obtain a film injection solution. The temperature of the internal mixer is set to 200 ° C, and the screw speed is 200 rpm;

(2)然后使注膜液通过一个金属喷丝头,然后进入冷却水槽(又称为凝胶槽)中冷却固化形成中空纤维状薄膜;喷丝头温度设定为200℃;(2) Then make the injection film pass through a metal spinneret, and then enter the cooling water tank (also known as the gel tank) to cool and solidify to form a hollow fiber-shaped film; the temperature of the spinneret is set to 200 ° C;

(3)接着对所述中空纤维膜进行拉伸,所述拉伸倍率为10倍;接着使用萃取液无水乙醇萃取除去邻苯二甲酸二甲酯。然后经去离子水洗涤以除去膜丝表面污渍、杂质等、继而经烘箱干燥后形成聚烯烃微孔膜,烘箱温度设为80℃,干燥时间为6h;(3) Stretching the hollow fiber membrane, the stretching ratio is 10 times; then extracting and removing the dimethyl phthalate with the extract liquid absolute ethanol. Then wash with deionized water to remove stains and impurities on the surface of the membrane filament, and then dry in an oven to form a polyolefin microporous membrane. The oven temperature is set at 80°C, and the drying time is 6 hours;

(4)使聚烯烃微孔膜继通过热水水槽,在硅烷水解作用下完成交联,所述热水水槽温度是90℃;(4) passing the polyolefin microporous membrane through a hot water tank to complete crosslinking under the action of silane hydrolysis, and the temperature of the hot water tank is 90°C;

(5)最后采用烘箱对聚烯烃微孔膜进行干燥和退火定型,制备得到交联型聚烯烃中空纤维状微孔膜。干燥温度为80℃,干燥时间是6h;退火温度为90℃,退火时间为12h。(5) Finally, an oven is used to dry and anneal the polyolefin microporous membrane to prepare a cross-linked polyolefin hollow fiber microporous membrane. The drying temperature is 80°C, and the drying time is 6h; the annealing temperature is 90°C, and the annealing time is 12h.

本发明对聚合物微孔膜的检测方法描如下:The present invention describes as follows to the detection method of polymer microporous membrane:

·厚度:按国家标准GB/T-6672-2001《塑料薄膜和薄片厚度测定机械测量法》进行测定。待测定聚合物微孔膜的厚度一般小于100um,测量精度为1um,一般使用常用千分尺即可。·Thickness: Measured according to the national standard GB/T-6672-2001 "Mechanical Measurement Method for Thickness Determination of Plastic Films and Sheets". The thickness of the polymer microporous membrane to be measured is generally less than 100um, and the measurement accuracy is 1um. Generally, a common micrometer can be used.

·Gurley值:按ASTM-D726(B)进行。在常温下,10mL空气在31.0cm高的水柱压力下通过6.45平方厘米(即1平方英寸)微孔膜所需要的时间,以秒为单位。Gurley值与微孔膜的厚度、孔径、孔隙率和孔的曲折度都有关系。Gurley值较容易测量且可以测准,它与特征值的偏离可以反映微孔膜存在的问题。Gurley值越大,气体透过性越差;在用于锂离子电池隔离膜的场合,其电阻率也越大。Handbook of nonwoven filter media(2007)p.248·Gurley value: according to ASTM-D726(B). At room temperature, the time required for 10 mL of air to pass through a 6.45 cm2 (ie 1 square inch) microporous membrane at a water column pressure of 31.0 cm is measured in seconds. The Gurley value is related to the thickness, pore diameter, porosity and tortuosity of the microporous membrane. The Gurley value is easy to measure and can be measured accurately, and its deviation from the characteristic value can reflect the problems of the microporous membrane. The larger the Gurley value, the worse the gas permeability; in the case of lithium-ion battery separators, the greater the resistivity. Handbook of nonwoven filter media(2007)p.248

·孔径、孔径分布和孔隙率:按国家标准GB/T 21650.1-2008《压汞法和气体吸附法测定固体材料孔径分布和孔隙度 第1部分:压汞法》进行测定。Pore size, pore size distribution and porosity: Measured according to the national standard GB/T 21650.1-2008 "Determination of pore size distribution and porosity of solid materials by mercury porosimetry and gas adsorption method Part 1: Mercury porosimetry".

·抗拉强度:按国家标准GB/T 1040.3-2006《塑料 拉伸性能的测定 第3部分:薄膜和薄片的试验条件》进行测定。在本次公开中,特意区分拉伸方向和垂直拉伸方向的抗张强度。Tensile strength: measured according to the national standard GB/T 1040.3-2006 "Determination of tensile properties of plastics - Part 3: Test conditions for films and sheets". In this disclosure, a distinction is deliberately made between the tensile strength in the direction of stretching and that perpendicular to the direction of stretching.

·熔化温度:使用热机械分析(Thermal Mechanical Analysis)来微孔膜样品尺寸随温度的变化,在TMA曲线发生明显塑性变化时,记录该温度为微孔膜的熔化温度。Melting temperature: use thermal mechanical analysis (Thermal Mechanical Analysis) to measure the change of microporous membrane sample size with temperature. When the TMA curve has obvious plastic changes, record this temperature as the melting temperature of the microporous membrane.

上述各实施例中形成的交联型聚乙烯微孔膜的性能见表-1。The properties of the cross-linked polyethylene microporous membranes formed in the above examples are shown in Table-1.

表-1 实施例得到的交联型聚乙烯微孔膜性能及与对比例的比较Table-1 The performance of the cross-linked polyethylene microporous membrane obtained in the embodiment and the comparison with the comparative example

Figure BSA00000387722400101
Figure BSA00000387722400101

对比例是指运用现有技术制备得到的某商品化聚丙烯微孔膜,为未交联型聚丙烯薄膜。通过各实施例与对比例的比较,表明本发明中的交联型聚乙烯微孔膜抗拉强度、耐热稳定性以及耐化学性得到了显著提高。The comparative example refers to a commercial polypropylene microporous membrane prepared by using the prior art, which is an uncrosslinked polypropylene film. Through the comparison of each example and comparative example, it is shown that the tensile strength, heat resistance stability and chemical resistance of the cross-linked polyethylene microporous membrane in the present invention are significantly improved.

Claims (6)

1.种交联型聚烯烃微孔膜,其特征是用于制作该膜的原料包括: 1. A cross-linked polyolefin microporous membrane is characterized in that the raw materials for making the membrane include: 聚烯烃                                               28.8~48.8重量份, Polyolefin 28.8~48.8 parts by weight, 潜溶剂                                               30~50重量份, Co-solvent 30~50 parts by weight, 过氧化合物                                       0.1~2重量份, Peroxygen compound 0.1~2 parts by weight, 硅烷                                                  1~5重量份, Silane 1~5 parts by weight, 抗氧剂                                               0.1重量份, Antioxidant 0.1 parts by weight, 平均粒径为0.05~1微米的超细填料         0~20重量份; 0-20 parts by weight of superfine filler with an average particle size of 0.05-1 micron; 所述交联型聚烯烃微孔膜的制备方法包括以下步骤: The preparation method of described cross-linked polyolefin microporous membrane comprises the following steps: ⑴ 使用高速混合机将各所述原料混合均匀后再使用双螺杆挤出机或连续密炼机输送、塑化并挤出得到注膜液,所述双螺杆挤出机、连续密炼机的加热温度设定为160~240℃; (1) Use a high-speed mixer to mix the above-mentioned raw materials evenly, and then use a twin-screw extruder or a continuous internal mixer to transport, plasticize and extrude to obtain a film injection solution. The twin-screw extruder and continuous internal mixer The heating temperature is set at 160-240°C; ⑵ 然后使注膜液通过一个T-型口膜,流延在金属辊筒上成型为平板薄膜;或者使注膜液通过金属喷丝头,经凝胶槽冷却后成型为中空纤维膜; (2) Then let the injection liquid pass through a T-shaped mouth film, cast on a metal roller to form a flat film; or make the injection liquid pass through a metal spinneret, cool down in a gel tank, and form a hollow fiber membrane; ⑶ 接着对所述平板薄膜或者中空纤维膜进行拉伸,所述拉伸倍率为5~10倍;后使用萃取液和提取液分别除去潜溶剂和超细填料,经洗涤、干燥后形成聚烯烃微孔膜; (3) Then stretch the flat film or hollow fiber membrane, the stretching ratio is 5 to 10 times; finally use the extract and the extract to remove the co-solvent and ultrafine filler respectively, and form polyolefin after washing and drying Microporous membrane; ⑷ 使聚烯烃微孔膜继续通过热水水槽,在硅烷水解作用下完成交联,所述热水水槽温度是50~90℃; (4) Make the polyolefin microporous membrane continue to pass through the hot water tank to complete the crosslinking under the action of silane hydrolysis, the temperature of the hot water tank is 50-90°C; ⑸ 接着对聚烯烃微孔膜进行干燥和退火定型,制备得到交联型聚烯烃微孔膜。 (5) Next, dry and anneal the polyolefin microporous membrane to prepare a cross-linked polyolefin microporous membrane. 2.根据权利要求1所述的交联型聚烯烃微孔膜,其特征在于:所述聚烯烃是聚乙烯树脂或聚丙烯树脂中的任一种或任几种的组合。 2. The cross-linked polyolefin microporous membrane according to claim 1, characterized in that: the polyolefin is any one or a combination of polyethylene resin or polypropylene resin. 3.根据权利要求1所述的交联型聚烯烃微孔膜,其特征在于:所述潜溶剂是邻苯二甲酸酯类、脂肪族二酸酯类、偏苯三酸酯类、磷酸酯类、甘油酯类、多元醇类、合成油类及石蜡类、天然油类、环保增塑剂中的任一种或任几种的组合。 3. cross-linked polyolefin microporous membrane according to claim 1, is characterized in that: described latent solvent is phthalates, aliphatic diacid esters, trimellitate, phosphoric acid ester Any one or a combination of any of polyols, glycerides, polyols, synthetic oils and paraffins, natural oils, and environmentally friendly plasticizers. 4.根据权利要求1所述的交联型聚烯烃微孔膜,其特征在于:所述硅烷是乙烯基类有机硅烷中的任一种或几种组合。 4. The cross-linked polyolefin microporous membrane according to claim 1, characterized in that: the silane is any one or a combination of vinyl organosilanes. 5.根据权利要求1所述的交联型聚烯烃微孔膜,其特征在于:所述超细填料是纳米碳酸钙、超细碳酸钙、滑石粉、硅灰石、高岭土、硅藻土、剥离的纳米蒙脱土、陶土、二氧化钛、沉淀法白炭黑、气相法白炭黑、石墨烯、碳纳米粉、碳纳米管中的任一种或任几种的组合。 5. The cross-linked polyolefin microporous membrane according to claim 1, characterized in that: the ultrafine filler is nano calcium carbonate, ultrafine calcium carbonate, talcum powder, wollastonite, kaolin, diatomaceous earth, Exfoliated nano-montmorillonite, clay, titanium dioxide, precipitated silica, fumed silica, graphene, carbon nanopowder, carbon nanotubes, or any combination of several. 6.根据权利要求1所述的交联型聚烯烃微孔膜,其特征在于:步骤(3)中所形成的聚烯烃微孔膜的平均孔径使用压汞法测试为0.01~1微米。 6 . The cross-linked polyolefin microporous membrane according to claim 1 , characterized in that: the average pore diameter of the polyolefin microporous membrane formed in step (3) is 0.01-1 micron by mercury porosimetry.
CN2010105906832A 2010-12-07 2010-12-07 Crosslinking polyolefin microporous membrane and preparation method thereof Expired - Fee Related CN102134342B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN2010105906832A CN102134342B (en) 2010-12-07 2010-12-07 Crosslinking polyolefin microporous membrane and preparation method thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN2010105906832A CN102134342B (en) 2010-12-07 2010-12-07 Crosslinking polyolefin microporous membrane and preparation method thereof

Publications (2)

Publication Number Publication Date
CN102134342A CN102134342A (en) 2011-07-27
CN102134342B true CN102134342B (en) 2013-01-02

Family

ID=44294284

Family Applications (1)

Application Number Title Priority Date Filing Date
CN2010105906832A Expired - Fee Related CN102134342B (en) 2010-12-07 2010-12-07 Crosslinking polyolefin microporous membrane and preparation method thereof

Country Status (1)

Country Link
CN (1) CN102134342B (en)

Families Citing this family (34)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102751460B (en) * 2012-05-23 2014-08-13 杭州福膜新材料科技有限公司 High-temperature-resisting composite isolation film and preparation method thereof
CN102751461B (en) * 2012-07-05 2015-04-29 中国科学院化学研究所 Composite porous diaphragm, and preparation method and application thereof
CN102760851B (en) * 2012-07-05 2015-06-10 中国科学院化学研究所 Composite membrane as well as preparation method and application of composite membrane
CN102779966B (en) * 2012-08-10 2015-03-04 龙能科技(苏州)有限公司 Method for preparing battery diaphragm through in-situ reaction
CN102796314B (en) * 2012-09-03 2014-03-05 上海清远管业科技有限公司 Masterbatch special for buried polyethylene drainage pipeline
CN102824859B (en) * 2012-09-06 2014-07-02 浙江大学 Method for preparing hollow fiber nanofiltration membrane by using thermally induced phase separation/interface cross linking synchronization method
CN102911421B (en) * 2012-10-31 2015-04-01 营口东盛实业有限公司 Preparation method of modified diatomite/polyethylene composite plastic
CN104812817A (en) * 2013-10-15 2015-07-29 株式会社伏见制药所 Production method for porous body,three-dimensional mesh-like porous body,liquid filter,and liquid-absorbing sponge
CN103647036B (en) * 2013-12-10 2016-01-06 深圳市星源材质科技股份有限公司 A kind of preparation method of high strength microporous lithium ion battery separator and battery diaphragm
CN103980593B (en) * 2014-04-30 2015-07-08 中国科学院化学研究所 A modified high-density polyethylene 3D printing molding material and its preparation method
CN105576172B (en) * 2014-10-31 2018-06-22 Lg化学株式会社 cross-linked polyolefin diaphragm and preparation method thereof
TWI531407B (en) * 2014-11-20 2016-05-01 中原大學 Graphene filtering membrane and method of fabricating the same
CN104868083B (en) * 2015-04-18 2017-08-25 湖南润沅新材料有限公司 A kind of barrier film of lithium battery and preparation method thereof
CN104953071A (en) * 2015-07-24 2015-09-30 中南大学 Preparation method of lithium ion battery diaphragm
CN105199202A (en) * 2015-10-14 2015-12-30 裴秀琴 Polyethylene composite material and preparation method thereof
US10844210B2 (en) * 2016-03-31 2020-11-24 Dow Global Technologies Llc Modified polyethylene resins and method for making the same
CN106025156B (en) * 2016-05-19 2019-05-14 河南师范大学 A kind of lithium ion battery nanometer plasticizing porous polyethylene dry-stretched membrane and preparation method thereof
CN106601962B (en) * 2016-11-22 2019-07-26 佛山市顺德区博普丰塑料制品有限公司 A kind of preparation method of composite type high temperature resistant lithium battery diaphragm material
CN106486632A (en) * 2016-11-25 2017-03-08 上海恩捷新材料科技股份有限公司 A kind of battery isolating film and preparation method thereof
CN106450112A (en) * 2016-11-25 2017-02-22 上海恩捷新材料科技股份有限公司 Battery isolating membrane preparation method
CN107955093B (en) * 2017-12-13 2020-05-08 万华化学集团股份有限公司 Preparation method of high-specific-surface-area high-molecular adsorbent
CN108198986A (en) * 2017-12-29 2018-06-22 上海恩捷新材料科技股份有限公司 A kind of crosslinked with silicane polymeric barrier films and preparation method thereof
EP3675225A4 (en) * 2018-06-12 2021-01-27 Lg Chem, Ltd. Cross-linked polyolefin separator and manufacturing method for same
WO2020010514A1 (en) * 2018-07-10 2020-01-16 深圳市摩码科技有限公司 Crosslinked film and preparation method therefor
KR102024321B1 (en) 2018-09-03 2019-09-23 주식회사 엘지화학 Crosslinked polyolefin separator and manufacturing method thereof
CN111169059A (en) * 2018-11-09 2020-05-19 万喜人家(北京)健康科技有限公司 Preparation method and preparation equipment of mesh-hole high-polymer film forming material
CN109638208B (en) * 2018-12-25 2021-09-24 合肥国轩精密涂布材料有限责任公司 Preparation method of organic nano composite diaphragm
CN110148720B (en) * 2019-05-13 2021-07-06 中南民族大学 Schiff base polymer/carbon nano tube composite electrode material with string crystal structure and preparation method thereof
CN110429231B (en) * 2019-08-12 2022-04-19 福建拓烯新材料科技有限公司 Crosslinked graphene oxide/polypropylene composite diaphragm, preparation method and application
JP2023025509A (en) * 2021-08-10 2023-02-22 帝人株式会社 laminated film
CN113648852A (en) * 2021-09-23 2021-11-16 天津科技大学 A kind of high ductility oxidation-resistant microporous hydrophobic membrane and its preparation method and application
CN114134951A (en) * 2021-12-16 2022-03-04 广东正方圆工程咨询有限公司 Mobile river sludge dredging device and using method thereof
CN115312971A (en) * 2022-08-18 2022-11-08 江阴纳力新材料科技有限公司 Polymer film, preparation method thereof and composite current collector
CN116207440A (en) * 2023-05-06 2023-06-02 四川卓勤新材料科技有限公司 Cross-linked lithium ion battery diaphragm and preparation method thereof

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6127438A (en) * 1995-03-03 2000-10-03 Asahi Kasei Kogyo Kabushiki Kaisha Polyethylene microporous film and process for producing the same
CN1578806A (en) * 2002-08-28 2005-02-09 旭化成化学株式会社 Polyolefin microporous membrane and method of evaluating the same
CN101203554A (en) * 2005-06-20 2008-06-18 西门子水技术公司 Cross-linking of polymer films
CN101448881A (en) * 2006-05-15 2009-06-03 东燃化学株式会社 Microporous polyolefin membrane, its production method, battery separator and battery

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01167344A (en) * 1987-12-23 1989-07-03 Idemitsu Petrochem Co Ltd Production of porous polyolefin crosslinked article
JPH0416964A (en) * 1990-05-07 1992-01-21 Nippon Kentek Kaisha Ltd Corona charger
JP3250870B2 (en) * 1993-05-26 2002-01-28 東燃化学株式会社 Polyolefin microporous membrane, battery separator and filter using the same
JPH0977900A (en) * 1995-09-13 1997-03-25 Tonen Chem Corp Production of hydrophilic polyethylene finely porous film
JP3735150B2 (en) * 1996-02-09 2006-01-18 日東電工株式会社 Battery separator and battery using the same

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6127438A (en) * 1995-03-03 2000-10-03 Asahi Kasei Kogyo Kabushiki Kaisha Polyethylene microporous film and process for producing the same
CN1578806A (en) * 2002-08-28 2005-02-09 旭化成化学株式会社 Polyolefin microporous membrane and method of evaluating the same
CN101203554A (en) * 2005-06-20 2008-06-18 西门子水技术公司 Cross-linking of polymer films
CN101448881A (en) * 2006-05-15 2009-06-03 东燃化学株式会社 Microporous polyolefin membrane, its production method, battery separator and battery

Also Published As

Publication number Publication date
CN102134342A (en) 2011-07-27

Similar Documents

Publication Publication Date Title
CN102134342B (en) Crosslinking polyolefin microporous membrane and preparation method thereof
JP6567595B2 (en) Method for producing a porous membrane
CN101500696B (en) Porous membrane made of vinylidene fluoride resin and its manufacturing method
JP5128488B2 (en) Polyolefin microporous membrane having excellent melt fracture characteristics and method for producing the same
KR101657307B1 (en) Fluorinated hollow fiber membrane and method for preparing the same
JP5351454B2 (en) Method for producing porous resin film, porous resin film and battery separator
CN104084061B (en) A kind of preparation method of nanometer BN modified ultrafiltration membrane
WO2010114672A1 (en) Microporous membranes, methods for making such membranes, and the use of such membranes as battery separator film
CN103861480B (en) The preparation method of a kind of hydrophilic polyvinylidene fluoride flat sheet membrane and hollow-fibre membrane
TWI826560B (en) Method for manufacturing porous membrane and porous membrane
CN103223309A (en) Carbon nanotube filling composite membrane with alcohol penetration priority and preparation method thereof
Wang et al. A novel approach to fabricate interconnected sponge-like and highly permeable polyvinylidene fluoride hollow fiber membranes for direct contact membrane distillation
KR20240042046A (en) UPE porous film with high specific surface area and its manufacturing method and use
CN104524988A (en) Polyvinylidene fluoride hollow fiber membrane of in-situ pore-forming agent and preparation method of polyvinylidene fluoride hollow fiber membrane
WO2017052230A1 (en) Porous separation membrane of zinc-bromine redox flow battery, method for manufacturing porous separation membrane of zinc-bromine redox flow battery, and zinc-bromine redox flow battery
CN105144429A (en) Method for manufacturing separation film and the separation film, and battery using same
Dai et al. Crosslinked PVA-based hybrid membranes containing di-sulfonic acid groups for alkali recovery
CN113351033A (en) Preparation process of UPE filter membrane
CN110917894B (en) Preparation method of polyvinylidene fluoride hollow fiber porous membrane
CN103537206A (en) Preparation and application of polyimide-imidazole micro-capsule hybrid membrane
JP2016173979A (en) Process for producing ion exchange thin films with field induced and preferentially oriented textures
WO2016104791A1 (en) Polyolefin resin composition and manufacturing method for polyolefin microporous membrane
KR102560826B1 (en) Polymer membrane with pores made by gas pressure
KR102191140B1 (en) An ion-exchange membrane and a method for manufacturing the same
JP2018090744A (en) Polyolefin resin, film, microporous film and battery separator

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C14 Grant of patent or utility model
GR01 Patent grant
C56 Change in the name or address of the patentee
CP01 Change in the name or title of a patent holder

Address after: 310018 Hangzhou economic and Technological Development Zone, Zhejiang, No. 12 Avenue, No. 289, No.

Patentee after: HANGZHOU FOREMOST MATERIAL TECHNOLOGY CO.,LTD.

Address before: 310018 Hangzhou economic and Technological Development Zone, Zhejiang, No. 12 Avenue, No. 289, No.

Patentee before: Hangzhou Fumo New Material Technology Co.,Ltd.

CF01 Termination of patent right due to non-payment of annual fee
CF01 Termination of patent right due to non-payment of annual fee

Granted publication date: 20130102