CN102133083A - 具有双视场的体内成像设备及使用方法 - Google Patents

具有双视场的体内成像设备及使用方法 Download PDF

Info

Publication number
CN102133083A
CN102133083A CN2011100200803A CN201110020080A CN102133083A CN 102133083 A CN102133083 A CN 102133083A CN 2011100200803 A CN2011100200803 A CN 2011100200803A CN 201110020080 A CN201110020080 A CN 201110020080A CN 102133083 A CN102133083 A CN 102133083A
Authority
CN
China
Prior art keywords
image
detector array
amplification
array
lens
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN2011100200803A
Other languages
English (en)
Other versions
CN102133083B (zh
Inventor
艾米特·帕斯卡
哈伊姆·贝斯丁
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Given Imaging Ltd
Original Assignee
Given Imaging Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Given Imaging Ltd filed Critical Given Imaging Ltd
Publication of CN102133083A publication Critical patent/CN102133083A/zh
Application granted granted Critical
Publication of CN102133083B publication Critical patent/CN102133083B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B23/00Telescopes, e.g. binoculars; Periscopes; Instruments for viewing the inside of hollow bodies; Viewfinders; Optical aiming or sighting devices
    • G02B23/24Instruments or systems for viewing the inside of hollow bodies, e.g. fibrescopes
    • G02B23/2407Optical details
    • G02B23/2423Optical details of the distal end
    • G02B23/243Objectives for endoscopes
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B1/00Instruments for performing medical examinations of the interior of cavities or tubes of the body by visual or photographical inspection, e.g. endoscopes; Illuminating arrangements therefor
    • A61B1/00002Operational features of endoscopes
    • A61B1/00011Operational features of endoscopes characterised by signal transmission
    • A61B1/00016Operational features of endoscopes characterised by signal transmission using wireless means
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B1/00Instruments for performing medical examinations of the interior of cavities or tubes of the body by visual or photographical inspection, e.g. endoscopes; Illuminating arrangements therefor
    • A61B1/04Instruments for performing medical examinations of the interior of cavities or tubes of the body by visual or photographical inspection, e.g. endoscopes; Illuminating arrangements therefor combined with photographic or television appliances
    • A61B1/041Capsule endoscopes for imaging

Landscapes

  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Surgery (AREA)
  • Engineering & Computer Science (AREA)
  • Optics & Photonics (AREA)
  • Biomedical Technology (AREA)
  • General Health & Medical Sciences (AREA)
  • Pathology (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Biophysics (AREA)
  • Heart & Thoracic Surgery (AREA)
  • Medical Informatics (AREA)
  • Molecular Biology (AREA)
  • Animal Behavior & Ethology (AREA)
  • Radiology & Medical Imaging (AREA)
  • Public Health (AREA)
  • Veterinary Medicine (AREA)
  • Astronomy & Astrophysics (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Lenses (AREA)
  • Endoscopes (AREA)

Abstract

一种具有双视场的体内成像设备及使用方法,其中该体内成像设备具有有适度的放大率的宽视场,以及有显著更高的放大率的窄视场,其轴向地重叠于宽视场上。单个成像阵列用于两个视场。光学元件中的至少一些在两个不同的视场成像系统之间共享。具有显著小于低放大率系统的直径的高放大率系统的成像元件,与低放大率系统的成像元件同轴布置,从而可以使用相同的成像阵列而无需偏转镜、合束组合器或运动系统。它们定位在低放大率系统的轴上意味着环绕其中心轴的小部分成像平面被高放大率组件所遮挡。

Description

具有双视场的体内成像设备及使用方法
在先申请资料
本申请要求2010年1月12日提交的名称为“具有双视场的体内成像设备(IN VIVO IMAGING DEVICE WITH DOUBLE FIELD OFVIEW)”的在先美国临时申请NO.60/294,232的权益,其全部内容以参引的方式并入于此。
技术领域
本发明涉及能够在静态配置中以多种放大率生成图像的成像系统的领域,特别是用于需要以一个或多个数量级大不相同的放大率的系统中。
背景技术
存在许多申请,其中成像系统是用来生成监视区域的全视图,但是当在全视图中检测感兴趣的区域时,希望得到具有实际上更高放大率的“显微镜视图(microscope view)”。在胃肠道内部的内窥镜成像或基于胶囊成像中存在这种要求的实例。
存在可以自己口服的胶囊。在这些申请中,为了在容许的时间内覆盖足够的区域,可能成像系统能够以低放大率并通过大视场来查看胃肠(GI)道的连续部分。当以该放大率检测感兴趣的区域时,或许希望以实际上更高的放大率来查看该区域。
对于内窥镜系统,例如,0.1mm级的细节必须以较低的放大率等级检测,但或许希望以高放大率等级将细节成像小到例如1至2微米。
对于通常可用的系统而言这通常是不可行的。为了得到希望的放大率,高分辨率成像阵列与宽视场的一同使用,在经济上是行不通的。
以下组合:(i)非常高的分辨率,具有(ii)大视场,以及(iii)以当前使用的检测阵列成像,通常不可能在当前可用的静态、单孔(single bore)、光学成像系统中实现。
存在包含(incorporating)变焦功能的成像系统。然而,在设备中不可能总是包含为构成这样的变焦透镜成像系统所必需的运动机构。此外,在这样的变焦系统中在最低放大率与最高放大率之间的比率通常限制在大约10的因数,以得到较高的放大率比率,两个元件必需独立变焦,这种方案复杂且成本高。
发明内容
在一个实施例中,可以在单个光学系统中得到大范围的放大率。可以使用具有在中心区域非常高的像素密度的成像阵列。用适当设计的光学器件,这种高像素密度可以使高放大率图像的细节被分辨。在现有技术的系统中,由于除非大量使用,否则生产具有在高放大率图像下降处的中心区域中较小像素尺寸的专用阵列成本上是不划算的,因此整个成像阵列通常具有与高放大率图像分辨率相称的像素尺寸。这些申请当前使用的探测器阵列,不论是CMOS还是CCD,通常具有用于小型设备的高达400×400的像素。为了在图像的中心处得到希望的高分辨率,像素总数必须是大约几万乘以几万。
如果使用根据当前技术状况的成像系统来实现上述目标,那么非常高的分辨率、具有大视场、以及以当前使用的检测阵列成像这三条标准之一必须放宽。
本发明的一个实施例包括用于检查或成像管腔内壁的可以自己口服的设备(例如胶囊),其包括双视场成像系统,同时具有适度放大率的宽视场,以及具有显著更高放大率的窄视场。这样的光学系统也可以用于成为内窥镜的一部分。一些实施例不同于现有技术的系统,因为它们使用用于双视场(FOV)的单个成像阵列。一些实施例也不同于现有技术的系统,因为它们通常具有静态光学元件配置,其中至少一些元件在两种不同的FOV成像系统的两者之间共享。高放大率系统的成像元件,具有更小的视场,并具有显著小于低放大率系统的直径,其可以与低放大率系统的成像元件同轴布置,从而可以使用相同的成像阵列而无需偏转镜、光束组合器或运动系统。它们定位在低放大率系统的轴上意味着环绕其中心轴的低放大率系统的成像平面的小部分被高放大率组件所遮挡。然而,两套透镜的精细设计可以将该遮挡区域限制到介于5°和10°之间。在不同的放大率处的不同的有用孔径可以与不同的焦距比数(F-numbers)相关联,其可以根据设计需要进行选择。
通常要求这种双视场/双分辨率系统可以是高达100的放大率范围(也可以使用其它范围)。提高的分辨率可能要求更大的数值孔径和用于透镜组的增大的有效焦距,几乎以与提高的分辨率相同的比率。因而,高放大率光学系统可以具有比低放大率系统长100数量级的焦距。在设计靠近轴的光学系统的处理高放大率场的部分时,可以考虑如上性能。可以通过使用具有不同的中心形式和周围形式的透镜,或者通过将用于高放大率的单独的透镜植入低放大率透镜的中心区域来生成该轴向部分。
使用这样的系统可以使传统成像阵列得以使用,而不必使用过度小的像素尺寸,由于成像阵列中心区域中的像素比周围中的像素接收放大更高的图像,使得同样均匀的、适度的像素密度可以分辨高放大率区域中物体更细微的细节。
一个示例性实施方式包括用于检查管腔内壁的设备,该设备包括:
用于通下管腔的细长外壳,
用于照明管腔内部的源,以及
用于成像内壁的光学成像系统,所述光学成像系统包括二维探测器阵列,用于在探测器阵列上提供物体的第一图像的宽视场成像系统,所述第一图像具有相对于物体的第一放大率,以及用于在探测器阵列上提供物体的一部分的第二图像的窄视场成像系统,所述物体的一部分的第二图像具有大于或显著大于第一放大率的第二放大率。窄视场成像系统可以包括同轴置于宽视场成像系统内的透镜。两个成像系统都可以使用至少一个共用的透镜来将图像投射到探测器阵列上。
在这样的设备中,探测器阵列可以具有均匀的像素阵列,并且由于在较宽的区域上成像(根据在每个图像中成像的相关区域),第一图像能够提供显著比第二图像更多数量的信息细节。相反,通过使用窄视场系统,第二图像能够提供显著更高的放大率。探测器阵列可以提供具有占用其中心区域的第二图像和占用其周围的第一图像的复合图像。在这种情况下,复合图像的每一部分都可以通过相对于物体移动系统来达到聚焦。作为另一种情况,所述系统可以包括用于调整宽视场成像系统或窄视场系统的元件位置的聚焦机构。复合图像的每个部分应该能够聚焦而不必相对于物体移动系统。
在上述设备的另一个实施方式中,至少一个共用的透镜可以包括置于探测器阵列前面用于将第一和第二图像两者聚焦到阵列上的透镜。探测器阵列可以是CCD阵列、CMOS阵列或红外线(IR)成像阵列,或者其它适合的阵列。
在任一上述设备中,第二图像可以具有大于或显著大于第一图像的放大率。此外,不需要变焦机构就可以得到放大率的范围。
附图说明
结合附图从以下详细的描述中将更加充分的认识和理解当前要求的发明,其中:
图1示意性地示出根据本发明的一个实施例的包含双视场成像光学器件的口服胶囊;
图2示意性地示出根据本发明的一个实施例的用于以低放大率等级提供物体的宽视场图像的示例性成像系统;
图3示意性地示出根据本发明的一个实施例的用于以高放大率等级提供物体的一部分的窄视场图像的示例性成像系统;
图4示意性地示出根据本发明的一个实施例的通过将图2和图3中所示的系统组合成一个具有双视场功能的合成系统而得到的示例性成像系统;
图5示出根据本发明的一个实施例的当系统与物体置于使高放大率图像散焦的距离时,在图4的系统的显示器上看到的图像的实例;
图6示出根据本发明的一个实施例的当系统与物体置于使放大率图像最优化/聚焦的距离时,在图4的系统的显示器上看到图像的实例;
图7是示出根据本发明的一个实施例方法的流程图。
具体实施方式
在以下说明中,将描述本发明的各种实施例。出于说明的目的,为了提供对本发明的至少一个实施例的透彻理解而提出具体实例。然而,本领域的技术人员可以明白,本发明的其它实施例不限于此处描述的实例。此外,为了不混淆此处描述的本发明的实施例,众所周知的特征可以省略或简化。
可以与本发明的实施例一起使用的设备和系统的实例例如可以是,在名称为“用于编辑体内捕获的图像流的系统和方法(System andMethod for Editing an Image Stream Captured In-Vivo)”的2006/0074275号美国专利申请公开,授予Iddan等、名称为“体内视频照相机系统(In-vivo Video Camera System)”的美国专利No.5,604,531,和/或授予lddan等、名称为“用于体内成像的设备(Devicefor In-Vivo Imaging)”的美国专利No.7,009,634中描述的那些,所有这些的全部均以参引的方式并入于此。这种胶囊可以包括或关联于适于胶囊使用的成像、接收、处理、存储和/或显示单元。也可以使用其它系统。
现在参考图1,其示意性的示出包含双视场成像光学器件的口服胶囊140。胶囊140具有细长的或椭圆形的外壳160,其包括例如,传感器例如成像器或照相机146、光学系统150、一个或多个照明源(例如发光二极管)142、电源145、处理器147、以及具有天线148的发送器和/或收发器141、以及附加传感器143。在一些实施例中,可以使用口服胶囊来实现设备140,但也可以使用其它种类的设备或适合的实施方式。可以通过诸如在设备端部的圆盖(dome)或窗口(例如图2-4中的圆盖11)来传送照明和接收图像。照相机146可以是二维探测器阵列。照相机146具有统一的像素阵列,但不是必需的。其它外壳形状也可以使用。不必使用除成像器或照相机146之外的传感器。
接收器/记录器112可以包括用来与设备140通信的接收器或收发器,例如,向设备140发送控制数据以及从设备140周期的接收图像数据、遥测数据和设备参数数据。接收器/记录器112可以包括用来存储图像或其它数据的存储器。在一些实施例中,例如在使用单向通信的情况下,设备140可以包括发送器并且接收器/记录器112可以包括接收器。在一些实施例中接收器/记录器112可以是戴在患者身上或由患者携带的便携式设备,但在其它实施例中例如可以与工作站117相结合。工作站117(例如计算机或计算平台)可以包括存储单元119(例如其可以是或包括存储器、数据库、或其它计算机可读存储介质中的一个或多个)、处理器114、以及显示器或监视器118。
现在参考图2,其示意性的示出示例性成像系统或成像系统的一部分,其可以用于例如胶囊140中,用于以低放大率等级提供物体10的宽视场图像。对于医学应用,物体距离物镜可以例如从几毫米至50mm,并且由于相对小的焦距和易于选择的宽场光学器件的焦距比数,可以易于在宽视场处实现大的聚焦深度,其可以由光学器件设计者进行选择,使得焦距比数越高聚焦深度就越大,并且反之亦然。图2的成像系统可以在图1的照相机或探测器阵列上提供物体的第一图像,并且与图3的系统相比可以具有或提供相对于物体的不同放大率。
视场可以覆盖至少100°甚至高达180°的角度。图2仅示出仅在光轴一侧上的半个视场。在一个实施例中光学系统包括四个具有足以采集宽视场的光学孔径的透镜。也可以使用其它数量的透镜和元件。为了使其免受外部环境的影响,系统具有外部透明窗口或圆盖11(例如,位于细长外壳160的一个端部)。在图2的设计中所示的圆盖的光学器件功率可以忽略,尽管在其它的实施例中其可能具有一些重大等级。图2中所示的实施方式是具有物镜、中间透镜或中继镜组、以及场透镜的传统配置。物镜12可以减小来自物场的光的场角(fieldangle)范围,并且将光传输到采集透镜组合13、14,在这个示例性实施方式中其示作双透镜,其功能是将光采集到孔径光阑15上,并且同时根据其设计来修正大部分光学像差。应注意,如此处将要说明的,透镜12和13可以具有在其体内生成的轴向孔,使得系统的高放大率部分的元件可以植入其内。宽场孔径光阑15位于场透镜16的前面,其作用是修平由急剧弯曲的物体波阵面产生的像场弯曲。最后聚焦图像落在探测器阵列17上(其可以例如相当于成像器或照相机146),其可以是通常具有从200×200像素至1000×1000像素的CMOS或CCD像素化阵列。其它尺寸、形状、直径、以及像素数量也可以用于成像器或阵列。如果设计构造为用于IR查看,则探测器可以是红外线成像器,例如测辐射热的阵列或碲镉汞(MCT)阵列。
现在参考图3,其示意性的示出示例性成像系统或成像系统的一部分,其用于以高放大率等级提供物体的一部分20的窄视场图像。图3的成像系统可以在图1的照相机或探测器阵列上提供物体的第二图像,并且与图2的系统相比可以具有或提供相对于物体的不同的放大率。图3的系统提供的放大率可以具有大于或显著大于图2的系统提供的放大率。与图3的系统提供的图像相比,图2的系统产生的图像可以提供显著更多数量的物体的全部细节,因为其可以在更宽的区域上成像(在不同的实施例中系统成像的相关区域可以有所不同)。相反,具有更高放大率和窄视场的图3的系统可以产生更多的分辨率(例如,每个成像区域更多的细节),而在更小的区域上成像。
根据光学设计,物体20成像的那部分的尺寸可以例如是从100×100微米至2×2mm(也可以使用其它范围),并且焦距可以在从圆盖顶点开始直至其一边上的某点的范围内变化。窄场光学器件的重要特征是一些实施例中其元件可以具有尽可能小的直径,以最小化对宽场光学器件有效孔径的阻碍,并且还要保证高放大率所需的相对高的窄场物体数值孔径。窄场光学器件可以包括任意数目、任意种类的透镜,其中的部分透镜与宽场光学器件共用。图3中所示的示例性光学系统包含6个有效元件;也可以使用其它数量的透镜和元件。物镜或采集透镜21负责提供高放大率所需的数值孔径,并且将从物体采集的光通过窄场孔径光阑24投射到一对透镜22、23中,其有两重作用:(i)校正物镜产生的像差,以及(ii)为了投射中间图像以补偿光学系统的长度而起到中继镜的作用,与物镜有效焦距相比,光学系统的长度要长得多。透镜25有三重作用:(i)与系统中的其它透镜一起提供希望的焦距,(ii)将中间图像投射到探测器阵列上,以及(iii)当光束通过图2的低放大率系统的光阑15时,限制光束的直径以防止渐晕(vignetting)。也可以有其它作用或不同作用。最后,场透镜16可以修平由急剧弯曲的物体波阵面产生的像场弯曲,并且聚焦图像落到探测器阵列17上。
现在参考图4,其示意性示出了通过将图2和图3中所示的系统组合成一个具有双视场功能的合成系统而得到的示例性成像系统。组合的系统可以用于图1所示的设备中。窄视场成像系统可以包括轴向上布置在宽视场成像系统内的透镜,并且两个成像系统都可以使用至少一个共同的透镜来将图像投射到探测器阵列上。
组合系统包含多个专用于其特定成像系统(不论是低放大率或高放大率)的透镜,以及两个共享或共用的透镜14和16,两个组合光学系统都可以使用该透镜。共用透镜14和16位于探测器阵列17的前面,即透镜14和16位于探测器阵列17与要成像的物体之间,和/或透镜14和16位于探测器阵列17的视野方向。透镜按照图2和图3中其功能进行标记。也可以使用其它数量的共用透镜。透镜23和12既可以由单个模制元件构成,或者透镜23也可以是插入到透镜12的孔中的单独元件。透镜25可以是插入到透镜13的孔中且到达正确位置的单独透镜。当使用低放大率系统时,应注意,由于在沿着系统的轴线上放置高放大率组件,可能得不到整个视场的图像。中心区域被这些组件所遮挡。可以通过低放大率系统在探测器上成像的大部分轴向光线30绕过标记为34的点处的透镜25的最内侧边缘。由物体产生的比光线30更加轴向的方向上的光可能不成像,并且这被称为低放大率系统的死区。图4仅示出了仅仅在光轴一侧的半个视场,使得仅示出半个死区32。死区通常可以在光轴任何一侧的5°至20°范围(也可以是其它范围)。另一方面高放大率系统是无阻挡的,因而可以看到图像整体。
在使用中,系统与物体的距离通常可以用作确定高放大率图像是否聚焦在成像阵列上的参数。低放大率图像可以总是聚焦,因为其焦点可以不依赖(或者不同样多的依赖)系统与物体的距离。可以通过简单地将系统与物体移动更近(聚焦的高放大率)或更远(散焦的高放大率)来完成高放大率图像的变焦。为了不必移动整个系统而在兴趣点处使系统保持聚焦,聚焦驱动器可以耦合到透镜之一。对于高放大率视场而言,由于成像质量相对焦距的高灵敏性,可以使用这种调整。仅仅0.1mm的误调整都可能足以破坏图像的聚焦和清晰度。通过使用观察器目视观察图像以及对其调整可以得到正确的聚焦,或者可以使用具有对调整的透镜进行驱动的马达的自动聚焦机构。这种自动聚焦机构可以基于例如处理图像的边缘清晰度的信号。
可以生成具有占用复合图像的中心区域的高放大率图像和占用复合图像的周围的低放大率图像的复合图像。现在参考图5和图6,其示出当系统与物体置于使高放大率图像被优化的距离时,在这种系统的显示器上看到的图像的实例(图6)。如看到的,显示器的中心区域以高放大率显示了物体的聚焦图像,显示器的周围区域显示了宽视场、较低放大率的图像(图6)。如图5所示,当远离物体移动系统时,中心高放大率图像散焦。在其它实施例中不必使用这种移动来聚焦图像。
实例
现在参考表I,其提供了如本申请图2中描述的光学系统的低放大率、宽视场区域的一个示例性实施方式的详细说明和规格数据。也可以有其它实施方式。来自无舍入的程序输出给出了设计迭代的结果。这个示例性透镜装置包含4个透镜和3个没有光源的元件,已经使用
Figure BSA00000421270900101
优化程序优化了其光学参数。这个示例性系统已经设计来提供130°的总视场。有效焦距是1.24823mm,并且到成像器平面的后焦距是0.53858mm。光轨总长是10.699mm,并且近轴工作f/number是5.51225。全部尺寸单位都是mm。
表I
Figure BSA00000421270900111
OBJ是物体前表面,STOP是孔径光阑,以及IMA是成像阵列平面,并且给出了使用550nm波长并且在30℃时介质的折射率为:
水-1.334333,聚碳酸酯-1.588515,以及N-BK7-1.518551
使用标准非球面垂度(sag)方程:
Z = ch 2 1 + ( 1 - ( 1 + k ) c 2 h 2 ) + a 4 h 4 + a 6 h 6 + a 8 h 8 + a 10 h 10 + a 12 h 12 + . . . . . . . .
这里,Z是任意点处表面的垂度(sag),
h是距光轴的高度,
c=1/R,这里R是表面顶点处的等效球面曲率半径,
k是二次曲线系数(对于球面而言等于0),以及
a4,a6,a8,......是第4(4th)阶,第6(6th)阶,第8(8th)阶,......球面系数,
得到以下14个表面的规格数据:
Figure BSA00000421270900113
Figure BSA00000421270900121
现在参考表II,其提供了如本申请图3中描述的光学系统的高放大率、窄视场区域的一个示例性实施方式的详细说明和规格数据。这个示例性透镜装置包含6个透镜和4个没有光源的元件,且已经使用
Figure BSA00000421270900122
优化程序优化了全部光学参数。这个实例已经设计来提供2微米的分辨率和0.2mm×0.2mm的视场。有效焦距是0.64173mm。光轨总长是10.699mm,有意与低放大率实例的光轨总长保持相同,并且近轴工作f/number是7.2675。
表II
Figure BSA00000421270900123
Figure BSA00000421270900131
OBJ是物体前表面,STOP是孔径光阑,以及IMA是成像阵列平面,并且给出了使用550nm波长并且在30℃时介质的折射率为:
水-1.334333,聚碳酸酯-1.588515,以及N-BK7-1.518551
使用上述标准非球面垂度(sag)方程,得到以下20个表面的规格数据:
Figure BSA00000421270900132
Figure BSA00000421270900141
图7是示出根据本发明的一个实施例方法的流程图。
在操作200中,患者可以口服或用其它方法摄取包括照相机或二维探测器阵列的体内成像设备(例如胶囊)。
在操作210中,可以在阵列上捕获物体的图像(例如,部分体腔、可疑病状等)。图像可以具有相对于物体的某一放大率。
在操作220中,可以在阵列上捕获物体的第二图像(例如,部分体腔、可疑病状等)。图像可以具有相对于物体的某一放大率,所述放大率大于或显著大于操作210中捕获的图像。
根据设备的操作,可以并行或同时进行操作210和操作220。
在操作230中,图像可以传送到例如外部数据记录器或接收器。图像可以作为组合图像或复合图像来传送,例如在一个图像帧中。
也可以使用其它操作或一系列操作。
本领域技术人员可以理解,本发明不受上文已经具体示出和描述的限制。相反,本发明的范围包括上文描述的各种特征的组合和部分组合,以及当本领域技术人员阅读以上描述时想到的且不属于现有技术的各种变化和修改。

Claims (17)

1.一种体内成像设备,包括:
照明源;以及
光学成像系统,其包括:
二维探测器阵列;
用于在所述探测器阵列上提供物体的第一图像的宽视场成像系统,所述第一图像具有相对于所述物体的第一放大率;以及
用于在所述探测器阵列上提供所述物体的一部分的第二图像的窄视场成像系统,所述物体的一部分的所述第二图像具有显著大于所述第一放大率的第二放大率,
其中,所述窄视场成像系统包括轴向地置于所述宽视场成像系统内的透镜,并且其中两个所述成像系统都使用至少一个共用透镜来将图像投射到所述探测器阵列上。
2.根据权利要求1的设备,其中所述探测器阵列具有均匀的像素阵列,并且所述第二图像能够凭借所述窄视场系统的显著更高的放大率来提供显著高于所述第一图像的分辨率。
3.根据任一前述权利要求的设备,其中所述探测器阵列提供复合图像,其具有占据所述复合图像的中心区域的所述第二图像和占据所述复合图像的周围的所述第一图像。
4.根据权利要求3的设备,其中可以通过相对所述物体移动所述系统而对所述复合图像的每个部分进行聚焦。
5.根据权利要求3的设备,其中可以不必相对于所述物体移动所述系统而对所述复合图像的每个部分进行聚焦。
6.根据权利要求1的设备,其中所述至少一个共用透镜包括置于所述探测器阵列之前的透镜,所述探测器阵列用于将所述第一图像和所述第二图像两者都聚焦到所述阵列上。
7.根据任一前述权利要求的设备,其中所述探测器阵列是CCD阵列和CMOS阵列中的任何一种。
8.根据权利要求1至6中任一项的设备,其中所述探测器阵列是IR成像阵列。
9.根据任一前述权利要求的设备,其中所述第二图像具有显著大于所述第一图像的放大率。
10.根据权利要求9的设备,其中在没有变焦机构的情况下得到所述放大率的范围。
11.一种用于体内成像的方法,包括:
使用包括二维探测器阵列的设备,
在所述探测器阵列上捕获物体的第一图像,所述第一图像具有相对于所述物体的第一放大率;以及
在所述探测器阵列上捕获所述物体的一部分的第二图像,所述第二图像具有显著大于所述第一放大率的第二放大率。
12.根据权利要求11的方法,包括传送所述第一图像和所述第二图像。
13.根据权利要求11的方法,其中所述设备包括宽视场成像系统和窄视场成像系统,并且其中通过所述宽视场成像系统捕获所述第一图像以及使用所述窄视场成像系统捕获所述第二图像。
14.根据权利要求11的方法,其中所述窄视场成像系统包括轴向地置于所述宽视场成像系统内的透镜,并且其中两个所述成像系统都使用至少一个共用透镜来将图像投射到所述探测器阵列上。
15.根据权利要求11的方法,其中所述第二图像具有高于所述第一图像的分辨率。
16.根据权利要求11的方法,包括创建复合图像,其具有占据所述复合图像的中心区域的所述第二图像和占据所述复合图像的周围的所述第一图像。
17.据权利要求11的方法,其中所述至少一个共用透镜包括置于所述探测器阵列之前的透镜,所述探测器阵列用于将所述第一图像和所述第二图像两者都聚焦到所述阵列上。
CN201110020080.3A 2010-01-12 2011-01-12 具有双视场的体内成像设备及使用方法 Active CN102133083B (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US29423210P 2010-01-12 2010-01-12
US61/294,232 2010-01-12

Publications (2)

Publication Number Publication Date
CN102133083A true CN102133083A (zh) 2011-07-27
CN102133083B CN102133083B (zh) 2016-12-14

Family

ID=

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106725297A (zh) * 2016-12-21 2017-05-31 中国科学院苏州生物医学工程技术研究所 用于眼科装置的双层光路高精度快速对准光学系统
CN109155123A (zh) * 2016-05-17 2019-01-04 哈伊姆·希娜 用于遵循和实施实验室程序的系统和方法
CN110062727A (zh) * 2016-10-20 2019-07-26 铁路视像有限公司 用于铁路应用的避碰中物体和障碍物检测与分类的系统及方法

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4755029A (en) * 1986-05-22 1988-07-05 Olympus Optical Co., Ltd. Objective for an endoscope
US5161051A (en) * 1990-12-13 1992-11-03 Hughes Aircraft Company Simultaneous dual field of view sensor
US6734911B1 (en) * 1999-09-30 2004-05-11 Koninklijke Philips Electronics N.V. Tracking camera using a lens that generates both wide-angle and narrow-angle views
CN1882275A (zh) * 2003-11-18 2006-12-20 奥林巴斯株式会社 胶囊式医疗系统
CN1905830A (zh) * 2003-12-04 2007-01-31 视觉范围技术有限公司 用于内窥镜的光学装置
CN1946334A (zh) * 2004-04-27 2007-04-11 奥林巴斯株式会社 内窥镜及内窥镜系统
WO2009087527A1 (en) * 2008-01-04 2009-07-16 Koninklijke Philips Electronics N.V. An optical probe

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4755029A (en) * 1986-05-22 1988-07-05 Olympus Optical Co., Ltd. Objective for an endoscope
US5161051A (en) * 1990-12-13 1992-11-03 Hughes Aircraft Company Simultaneous dual field of view sensor
US6734911B1 (en) * 1999-09-30 2004-05-11 Koninklijke Philips Electronics N.V. Tracking camera using a lens that generates both wide-angle and narrow-angle views
CN1882275A (zh) * 2003-11-18 2006-12-20 奥林巴斯株式会社 胶囊式医疗系统
CN100435712C (zh) * 2003-11-18 2008-11-26 奥林巴斯株式会社 胶囊式医疗系统
CN1905830A (zh) * 2003-12-04 2007-01-31 视觉范围技术有限公司 用于内窥镜的光学装置
CN1946334A (zh) * 2004-04-27 2007-04-11 奥林巴斯株式会社 内窥镜及内窥镜系统
WO2009087527A1 (en) * 2008-01-04 2009-07-16 Koninklijke Philips Electronics N.V. An optical probe

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109155123A (zh) * 2016-05-17 2019-01-04 哈伊姆·希娜 用于遵循和实施实验室程序的系统和方法
CN109155123B (zh) * 2016-05-17 2022-08-02 哈伊姆·希娜 用于遵循和实施实验室程序的系统和方法
CN110062727A (zh) * 2016-10-20 2019-07-26 铁路视像有限公司 用于铁路应用的避碰中物体和障碍物检测与分类的系统及方法
US11648968B2 (en) 2016-10-20 2023-05-16 Rail Vision Ltd System and method for object and obstacle detection and classification in collision avoidance of railway applications
CN106725297A (zh) * 2016-12-21 2017-05-31 中国科学院苏州生物医学工程技术研究所 用于眼科装置的双层光路高精度快速对准光学系统

Also Published As

Publication number Publication date
DE102011008212A1 (de) 2011-07-14
US20110169931A1 (en) 2011-07-14

Similar Documents

Publication Publication Date Title
US20110169931A1 (en) In-vivo imaging device with double field of view and method for use
US10061130B2 (en) Wide-field of view (FOV) imaging devices with active foveation capability
US20190183323A1 (en) Radial scanner imaging system
US7649690B2 (en) Integrated panoramic and forward optical device, system and method for omnidirectional signal processing
US6304285B1 (en) Method and apparatus for omnidirectional imaging
US7842921B2 (en) Clip-on infrared imager
US6744569B2 (en) Method and apparatus for omnidirectional three dimensional imaging
US7896805B2 (en) In-vivo imaging device and optical system thereof
US9480392B2 (en) Ultra-wide range observation endoscope apparatus
US9503638B1 (en) High-resolution single-viewpoint panoramic camera and method of obtaining high-resolution panoramic images with a single viewpoint
TWI587001B (zh) 紅外線成像系統
US10359618B2 (en) Multispectral stereoscopic endoscope system and use of same
JP5484453B2 (ja) 複数の動作モードの光学機器
US6320703B1 (en) Ultra-wide field of view concentric sensor system
Lu et al. A single ball lens-based hybrid biomimetic fish eye/compound eye imaging system
CN102133083B (zh) 具有双视场的体内成像设备及使用方法
CN108663778A (zh) 一种混合仿生鱼眼-复眼结构的广角高清成像系统
US20220291047A1 (en) Warm filter configuration for reducing effects of reflected infrared radiation systems and methods
KR101957357B1 (ko) 단일 미러를 사용한 멀티스케일 이미징 시스템
KR101957353B1 (ko) 미러의 회전이 가능한 멀티스케일 이미징 시스템
Ganesh et al. Compact high resolution multi-aperture LWIR imaging system
KR101756328B1 (ko) 양방향 멀티스케일 이미징 시스템
Booker et al. Performance trade-offs in second-generation UK long-linear-array sensor technology
US20060203117A1 (en) Video monitoring system using variable focal length lens

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C14 Grant of patent or utility model
GR01 Patent grant