CN102129023A - 一种测量半导体器件有源区薄层材料中热传导参数的方法 - Google Patents

一种测量半导体器件有源区薄层材料中热传导参数的方法 Download PDF

Info

Publication number
CN102129023A
CN102129023A CN 201110026227 CN201110026227A CN102129023A CN 102129023 A CN102129023 A CN 102129023A CN 201110026227 CN201110026227 CN 201110026227 CN 201110026227 A CN201110026227 A CN 201110026227A CN 102129023 A CN102129023 A CN 102129023A
Authority
CN
China
Prior art keywords
temperature
detecting area
temperature detecting
ohm contact
contact electrode
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN 201110026227
Other languages
English (en)
Other versions
CN102129023B (zh
Inventor
冯士维
张光沉
郭春生
乔彦彬
刘静
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Beijing University of Technology
Original Assignee
Beijing University of Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Beijing University of Technology filed Critical Beijing University of Technology
Priority to CN 201110026227 priority Critical patent/CN102129023B/zh
Publication of CN102129023A publication Critical patent/CN102129023A/zh
Application granted granted Critical
Publication of CN102129023B publication Critical patent/CN102129023B/zh
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Testing Of Individual Semiconductor Devices (AREA)

Abstract

一种测量半导体器件有源区薄层材料中热传导参数的方法涉及半导体器件测试领域。现有技术中有源区同时起到发热区和温度探测区的作用,热量在薄层中的传导速度也无法测量。采用本方法制备的测试芯片,将热源区和温敏探测区空间上分开。加热和测量过程可以同时进行,不存在时间延迟,可以测量出实际器件结构的热时间常数达到纳秒量级(依高速A/D采集卡的速度而定)。本发明可以实现测试器件实际有源区薄层热传导参数的目的,如GaN HEMT等基于肖特基栅结构的器件,也可以用于特定薄膜材料的热传导参数测定。

Description

一种测量半导体器件有源区薄层材料中热传导参数的方法
技术领域
本发明涉及半导体器件测试领域。
背景技术
半导体器件工作时,有源区产生的热量会引起芯片温度升高,将对器件的性能参数,特别是使用寿命和可靠性带来直接的影响。半导体器件有源区薄层材料既是热量的产生区,又是热量的传导区。热量在这一区域的传导速度和热时间常数是影响器件热性能的重要参数。尤其对于功率微波器件,产生的热量多、变化速度快,器件芯片瞬态温升冲击对性能的影响严重。确定有源区热传导速度和热时间常数对其性能的影响至关重要。
现有常用热测量技术是通过脉冲开关技术和器件的温敏参数测量器件的瞬态温度响应。由于从工作状态切换到测量状态存在时间延迟,加之新型半导体器件的有源区薄层材料很薄,其热时间常数通常低于测量延迟时间,很难确定该层中的瞬态热传导特性。其它采用光学方法,如拉曼法,测量器件的温升特性,也由于操作繁琐,测量精度低,受到限制。现有技术中有源区同时起到发热区和温度探测区的作用,热量在薄层中的传导速度也无法测量。
发明内容
针对现有技术的局限,本发明的目的在于提供一种用于测量半导体器件有源区薄层内热传导速度和热时间常数的测试方法。
测量方法步骤如下:
(1)测试芯片的制备:在半导体衬底材料层1上,外延生长待测材料薄层2,在薄层2上表面分别制备热源区A,第一温度探测区B和第二温度探测区C,热源区A包含第一欧姆接触电极3及第二欧姆接触电极4,电极尺寸在10微米*100微米至30微米*250微米之间,第一温度探测区包含第一肖特基接触电极5和第三欧姆接触电极6,第二温度探测区包含第二肖特基接触电极7及第四欧姆接触电极8,第一温度探测区及第二温度探测区用于探测热量传输,其面积越小,热容越小,从而有利于提高探测灵敏度,电极尺寸为0.3微米*100微米至0.5微米*250微米之间;
(2)温度系数的测定:将步骤(1)制备的测试芯片放置在可控温的恒温平台上并将平台温度设为T1摄氏度,将第一温度探测区的第一肖特基接触电极和第三欧姆接触电极之间,及第二温度探测区的第二肖特基接触电极及第四欧姆接触电极之间接入测试电流,测试电流范围为1毫安到5毫安之间,并利用AD采集卡分别采集在T1下,第一温度探测区的第一肖特基接触电极和第三欧姆接触电极之间的电位差V1(T1),及第二温度探测区的第二肖特基接触电极及第四欧姆接触电极之间的电位差V2(T1),再将平台温度设定为T2,利用AD采集卡分别采集在T2下,第一温度探测区的第一肖特基接触电极和第三欧姆接触电极之间的电位差V1(T2),及第二温度探测区的第二肖特基接触电极及第四欧姆接触电极之间的电位差V2(T2),利用肖特基结的正向温度特性可以计算出第一温度探测区温度系数k1及第二温度探测区的温度系数k2,
k1=(V1(T2)-V1(T1))/(T2-T1)                (1)
k2=(V2(T2)-V2(T1))/(T2-T1)                (2)
利用k1,k2及任意时刻t下第一温度探测区的第一肖特基接触电极和第三欧姆接触电极之间的电位差V1(t)和第二温度探测区的第二肖特基接触电极及第四欧姆接触电极之间的电位差V2(t),根据公式(3)计算出任意时刻t下第一温度探测区的温度TT1(t),根据公式(4)计算出任意时刻t下第二温度探测区的温度TT2(t);
TT1(t)=T1+(V1(t)-V1(T1))/k1                (3)
TT2(t)=T1+(V2(t)-V2(T1))/k2                (4)
(3)将热源区的第一欧姆接触电极和第三欧姆接触电极之间接入频率
可控的电压源,从而产生脉宽和频率可控的功率方波9;利用施加功率方波的上升沿触发AD采集板开始采集,利用步骤(2)中阐述的方法记录第一温度探测区的温度随时间变化曲线S1和第二温度探测区的温度随时间变化曲线S2,AD采集板的采样率为不低于50MHz;
(4)记录峰值温度的时间差Δt,可以计算出薄层的热传导速度v=//Δt,其中/为第一温度探测区和第二温度探测区之间的空间距离,记录的第一温度探测区的温度随时间变化曲线S1,从TT1(t)达到峰值作为热量扩散的初始时刻,温度下降为初始时刻1/e时的时间,即为热时间常数τ。
本发明提出一种测定半导体器件有源区薄层中,热传导速度和热时间常数的方法。可以实现测试器件实际有源区薄层热传导参数的目的,如GaNHEMT等基于肖特基栅结构的器件,也可以用于特定薄膜材料的热传导参数测定。采用本方法制备的测试芯片,将热源区和温敏探测区空间上分开。加热和测量过程可以同时进行,不存在时间延迟,可以测量出实际器件结构的热时间常数达到纳秒量级(依高速A/D采集卡的速度而定)。
附图说明
图1是本发明的测试热量传输速度的测试芯片示意图;
图2是采集的功率波形和第一温度采集区和第二温度采集区的温度测试波形图。
具体实施方式
见图1所示,使用外延的方法在400微米厚的碳化硅(SiC)衬底层1上外延1.5微米的氮化镓(GaN)有源区薄层2,由于热源区用于施加电功率产生热量,其功率负载能力越强,越有利于提高测试精度,因此要求第一欧姆接触电极及第二欧姆接触电极面积要大,采用欧姆接触工艺制备长度为10微米,宽度为100微米的第一欧姆接触电极3和第三欧姆接触电极4,形成热源区,采用肖特基结制备工艺,分别制备长度为0.5微米,宽度为100微米的第一肖特基接触电极5和第二肖特基接触电极7,采用欧姆接触工艺分别制备长度为0.5微米,宽度为100微米的第三欧姆接触电极6和第四欧姆接触电极8,其中第一肖特基接触电极和第三欧姆接触电极构成第一温度探测区;第二肖特基接触电极和第四欧姆接触电极构成第二温度探测区,其中第一温度探测区和第二温度探测区之间的距离l为10微米,
将测试芯片放置在恒温平台上并设置恒温平台温度为30摄氏度,将第一温度探测区的第一肖特基接触电极和第三欧姆接触电极之间,及第二温度探测区的第二肖特基接触电极及第四欧姆接触电极之间接入测试电流,测试电流值为1mA,利用采样率为50MHz的AD采集卡记录第一肖特基接触电极与第三欧姆接触电极之间的正向压降V1(30)及第三肖特基接触电极与第四欧姆接触电极之间的正向压降V2(30),将恒温平台温度提高至90摄氏度,记录第一肖特基接触电极与第三欧姆接触电极之间的正向压降V1(90)及第二肖特基接触电极与第四欧姆接触电极之间的正向压降V2(90),计算出第一温度探测区温度系数k1及第二温度探测区温度系数k2,
k1=(V1(90)-V1(30))/(90-30)
k2=(V2(90)-V2(30))/(90-30)
将热源区的第一欧姆接触电极和第二欧姆接触电极之间接入电压源,产生脉宽为10微秒,占空比为1∶1,功率为1W的功率方波1;利用施加功率脉冲的上升沿触发AD采集板开始采集,利用k1,k2计算出第一温度探测区的温度随时间变化曲线2和第二温度探测区的温度随时间变化曲线3,如图2所示;
可以观测到由于第一温度探测区和第二温度探测区之间存在空间距离l为10微米,记录的温度变化存在时间延迟,峰值温度的时间差为80纳秒,由此可以计算出有源区薄层的热传导速度为:
v=l/Δt=10μm/80ns=1.25×104cm/s
由于切断功率后温度随时间的变化符合e指数关系,根据第一温度探测区的温度随时间变化T(t)曲线,从T(t)达到峰值作为热量扩散的初始时刻,温度下降为初始时刻1/e时的时间,即为热时间常数τ,在本例中:τ=1820纳秒;
由以上说明可看出,采用本发明所述的方法,通过采集热源区与温度探测区之间的热延迟时间,可以测量出热量沿有源区薄层中的热传导速度,以及通过实时记录温度探测区的温度变化,测量出有源区薄层的热时间常数。

Claims (1)

1.一种测量半导体器件有源区薄层材料中热传导参数的方法,其特征在于,步骤如下:
1)测试芯片的制备:在半导体衬底材料层上,外延生长待测材料薄层,在薄层上表面分别制备热源区,第一温度探测区和第二温度探测区,热源区包含第一欧姆接触电极及第二欧姆接触电极,第一温度探测区包含第一肖特基接触电极和第三欧姆接触电极,第二温度探测区包含第二肖特基接触电极及第四欧姆接触电极;
2)温度系数的测定:将步骤1)制备的测试芯片放置在可控温的恒温平台上并将平台温度设为T1摄氏度,将第一温度探测区的第一肖特基接触电极和第三欧姆接触电极之间,及第二温度探测区的第二肖特基接触电极及第四欧姆接触电极之间接入测试电流,测试电流范围为1毫安到5毫安之间,并利用AD采集卡分别采集在T1下,第一温度探测区的第一肖特基接触电极和第三欧姆接触电极之间的电位差V1(T1),及第二温度探测区的第二肖特基接触电极及第四欧姆接触电极之间的电位差V2(T1),再将平台温度设定为T2,利用AD采集卡分别采集在T2下,第一温度探测区的第一肖特基接触电极和第三欧姆接触电极之间的电位差V1(T2),及第二温度探测区的第二肖特基接触电极及第四欧姆接触电极之间的电位差V2(T2),利用肖特基结的正向温度特性计算出第一温度探测区温度系数k1及第二温度探测区的温度系数k2,
k1=(V1(T2)-V1(T1))/(T2-T1)                (1)
k2=(V2(T2)-V2(T1))/(T2-T1)                (2)
利用k1,k2及任意时刻t下第一温度探测区的第一肖特基接触电极和第三欧姆接触电极之间的电位差V1(t)和第二温度探测区的第二肖特基接触电极及第四欧姆接触电极之间的电位差V2(t),根据公式(3)计算出任意时刻t下第一温度探测区的温度TT1(t),根据公式(4)计算出任意时刻t下第二温度探测区的温度TT2(t);
TT1(t)=T1+(V1(t)-V1(T1))/k1               (3)
TT2(t)=T1+(V2(t)-V2(T1))/k2               (4)
3)将热源区的第一欧姆接触电极和第二欧姆接触电极之间接入频率可控的电压源,从而产生脉宽和频率可控的功率方波;利用施加功率方波的上升沿触发AD采集板开始采集,利用步骤2)中阐述的方法记录第一温度探测区的温度随时间变化曲线S1和第二温度探测区的温度随时间变化曲线S2,AD采集板的采样率为不低于50MHz;
4)记录峰值温度的时间差Δt,计算出薄层的热传导速度v=l/Δt,其中l为第一温度探测区和第二温度探测区之间的空间距离,记录的第一温度探测区的温度随时间变化曲线S1,从TT1(t)达到峰值作为热量扩散的初始时刻,温度下降为初始时刻1/e时的时间,即为热时间常数τ。
CN 201110026227 2011-01-24 2011-01-24 一种测量半导体器件有源区薄层材料中热传导参数的方法 Expired - Fee Related CN102129023B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN 201110026227 CN102129023B (zh) 2011-01-24 2011-01-24 一种测量半导体器件有源区薄层材料中热传导参数的方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN 201110026227 CN102129023B (zh) 2011-01-24 2011-01-24 一种测量半导体器件有源区薄层材料中热传导参数的方法

Publications (2)

Publication Number Publication Date
CN102129023A true CN102129023A (zh) 2011-07-20
CN102129023B CN102129023B (zh) 2012-10-31

Family

ID=44267181

Family Applications (1)

Application Number Title Priority Date Filing Date
CN 201110026227 Expired - Fee Related CN102129023B (zh) 2011-01-24 2011-01-24 一种测量半导体器件有源区薄层材料中热传导参数的方法

Country Status (1)

Country Link
CN (1) CN102129023B (zh)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102721913A (zh) * 2012-06-13 2012-10-10 中国电子科技集团公司第五十五研究所 一种GaN HEMT器件可靠性在片筛选的方法
CN109564134A (zh) * 2016-08-12 2019-04-02 高通股份有限公司 热堆网格
CN111289562A (zh) * 2020-04-01 2020-06-16 北京工业大学 一种薄层热阻测试探针的结构及测试方法

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000131379A (ja) * 1998-10-28 2000-05-12 Ando Electric Co Ltd 電子部品の熱抵抗の測定方法、および測定システム
US20070061099A1 (en) * 2005-08-26 2007-03-15 Delphi Technologies, Inc. Method of determining FET junction temperature
CN101183135A (zh) * 2007-12-14 2008-05-21 北京工业大学 一种测量半导体器件内部芯片热接触面积的方法

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000131379A (ja) * 1998-10-28 2000-05-12 Ando Electric Co Ltd 電子部品の熱抵抗の測定方法、および測定システム
US20070061099A1 (en) * 2005-08-26 2007-03-15 Delphi Technologies, Inc. Method of determining FET junction temperature
CN101183135A (zh) * 2007-12-14 2008-05-21 北京工业大学 一种测量半导体器件内部芯片热接触面积的方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
《半导体学报》 19990531 冯士维等 半导体器件热特性的电学法测量与分析 358-364 1 第20卷, 第5期 *

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102721913A (zh) * 2012-06-13 2012-10-10 中国电子科技集团公司第五十五研究所 一种GaN HEMT器件可靠性在片筛选的方法
CN102721913B (zh) * 2012-06-13 2014-12-10 中国电子科技集团公司第五十五研究所 一种GaN HEMT器件可靠性在片筛选的方法
CN109564134A (zh) * 2016-08-12 2019-04-02 高通股份有限公司 热堆网格
CN111289562A (zh) * 2020-04-01 2020-06-16 北京工业大学 一种薄层热阻测试探针的结构及测试方法
CN111289562B (zh) * 2020-04-01 2023-03-14 北京工业大学 一种薄层热阻测试探针的结构及测试方法

Also Published As

Publication number Publication date
CN102129023B (zh) 2012-10-31

Similar Documents

Publication Publication Date Title
Qu et al. Ultra fast (< 1 ns) electrical characterization of self-heating effect and its impact on hot carrier injection in 14nm FinFETs
CN105510794B (zh) 高电子迁移率晶体管phemt热阻测试方法
CN103278761A (zh) 一种测量薄层异质半导体材料界面温升和热阻的方法
CN103604517B (zh) 一种实时测量耗尽型场效应晶体管瞬态温升和热阻方法
CN102129023B (zh) 一种测量半导体器件有源区薄层材料中热传导参数的方法
CN107833840B (zh) AlGaN/GaN高电子迁移率晶体管的结温测试方法
Niu et al. Sensing IGBT junction temperature using gate drive output transient properties
Pu et al. SiC MOSFET aging detection based on Miller plateau voltage sensing
Maize et al. Fast transient thermoreflectance CCD imaging of pulsed self heating in AlGaN/GaN power transistors
Herold et al. Improving the accuracy of junction temperature measurement with the square-root-t method
Schwitter et al. Transient gate resistance thermometry demonstrated on GaAs and GaN FET
Chou et al. Design and characterization of a 200 V, 45 A all-GaN HEMT-based power module
Li et al. A drain–source connection technique: Thermal resistance measurement method for GaN HEMTs using TSEP at high voltage
Romano et al. An ultrafast IR thermography system for transient temperature detection on electronic devices
Baker et al. Experimental evaluation of IGBT junction temperature measurement via peak gate current
Chen et al. New definition of critical energy for SiC MOSFET robustness under short circuit operations: The repetitive critical energy
CN109211963B (zh) 一种导热材料热阻性能检测系统及检测方法
Darwish et al. Utilizing diode characteristics for GaN HEMT channel temperature prediction
CN102564627A (zh) 半导体衬底的自热测量装置及其测试方法
Baker An electrical method for junction temperature measurement of power semiconductor switches
Feng et al. Determination of channel temperature of AlGaN/GaN HEMT by electrical method
Yazawa et al. Transient thermal characterization of HEMT devices
RU2639989C2 (ru) Способ измерения переходной тепловой характеристики полупроводниковых изделий
Turchanikov et al. Isothermal DLTS method using sampling time scanning
Baba et al. Temperature Measurement of RF Power Amplifier

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C14 Grant of patent or utility model
GR01 Patent grant
CF01 Termination of patent right due to non-payment of annual fee

Granted publication date: 20121031

CF01 Termination of patent right due to non-payment of annual fee