CN102127219B - Method for purifying polyether ketone/polyether sulfone polymers - Google Patents

Method for purifying polyether ketone/polyether sulfone polymers Download PDF

Info

Publication number
CN102127219B
CN102127219B CN201110002853A CN201110002853A CN102127219B CN 102127219 B CN102127219 B CN 102127219B CN 201110002853 A CN201110002853 A CN 201110002853A CN 201110002853 A CN201110002853 A CN 201110002853A CN 102127219 B CN102127219 B CN 102127219B
Authority
CN
China
Prior art keywords
polymkeric substance
impurity
purification process
process according
ppm
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
CN201110002853A
Other languages
Chinese (zh)
Other versions
CN102127219A (en
Inventor
代惊奇
吴忠文
赵东辉
曾祥斌
曹民
饶先花
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kingfa Science and Technology Co Ltd
Shanghai Kingfa Science and Technology Co Ltd
Original Assignee
Kingfa Science and Technology Co Ltd
Shanghai Kingfa Science and Technology Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kingfa Science and Technology Co Ltd, Shanghai Kingfa Science and Technology Co Ltd filed Critical Kingfa Science and Technology Co Ltd
Priority to CN201110002853A priority Critical patent/CN102127219B/en
Publication of CN102127219A publication Critical patent/CN102127219A/en
Application granted granted Critical
Publication of CN102127219B publication Critical patent/CN102127219B/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Polyethers (AREA)

Abstract

The invention discloses a method for purifying polyether ketone/polyether sulfone polymers, which comprises: grinding polymers containing impurities, sieving, and filling in a container together with deionized water, treating in ultrasound at 20 to 95 DEG C for 20 to 60 minutes, filtering the material mixed liquid treated in ultrasound in a centrifuge to remove water, drying at 130 DEG C and under vacuum till constant weight, and thus obtaining the purified polymers, wherein in the ultrasonic treatment process, acid solution can be added to improve a purifying effect. The purified product contains less sodium, potassium, aluminum, calcium, iron, phosphorus, sulfur and the like. The method can quickly and efficiently purify polyether ketone/polyether sulfone polymers, adopt simple equipment, lower polymer purification temperature and pressure, greatly save energy, reduce production cost, easily apply to large-scale production line and meet requirements of industrial large-scale production. The polyether ketone/polyether sulfone polymers purified by the invention can be used for processing parts of electronic and electrical parts and manufacturing medical appliances.

Description

The purification process of a kind of polyetherketone/polyether sulfone polymkeric substance
Technical field
The present invention relates to polymer arts, be specifically related to a kind of purification process of polyetherketone/polyethersulfone.
Technical background
Polyetherketone/polyethersulfone commercialization has had the history of three more than ten years; Although its synthesis technique has been obtained significant progress and improvement; But the less report of seeing of the Status of development of the aftertreatment purification technique on the suitability for industrialized production; Yet the purity of polyetherketone/polyethersulfone is significant to the developing of its Application Areas; As at electron device industry requirement metal ion content in the ppb level, medical and health industry then requires content lower, preparing polyetherketone/polyethersulfone technology at present all needs a large amount of (10wt% at least) metal base or salt (like KOH or Na 2CO 3Deng) make catalyzer, how from superpolymer, as far as possible thoroughly to remove metals ion, more and more become the technical bottleneck in the production.Often equipment is huge for present known purification process, complex process.
The treatment process of removing inorganic salt in aryl polyethers or the aryl polythioether of Britain Victrex company alerting bulletin; Like patent EP0292211 is to form liquid form through melting superpolymer and/or be dissolved in solvent such as the sulfobenzide; In being soluble in the aqueous phase again inorganic salt are dissolved out; But its flow process is complicated, and facility investment is bigger.Patent US20050004340 discloses a kind of pressurized vessel that washs inorganic salt; Through squeezing into the high-pressure-resistant vessel that material is housed to the water of high pressure-temperature, water is slowly flowing out and is taking inorganic salinity out of at the container the other end after through material under the pressure in 50 Palestine and Israels, and this method can obtain comparatively ideal refining effect; But because of its structure complicated; The product flow velocity is restricted, and investment of industriallization zoom facility and production maintenance cost are high, and all has problems at aspects such as securities; Production efficiency and economic benefit are difficult to improve, and are difficult for being widely used on the suitability for industrialized production.
The last handling process about polyetheretherketone/polyethersulfone that China Jilin University announces is the process means that adopts the repeated multiple times poach; Each all need material being mixed is made into rarer mixture post-heating to boiling state in a large amount of water; Like Chinese patent 89100356.8; 96100940.3,00107139.4 etc., its product contains Na +Deng concentration of metal ions still greater than 1000ppm.Summing up above treatment process, mostly is the mode that adopts high temperature poach or HTHP water washing, and energy consumption is big, and production cost is high, even also can influence the thermostability of product.
CN 1241585A (open day on January 19th, 2000) discloses a kind of cold dispersive technology; Can make the product concentration of metal ions be reduced to 200ppm; Yet the poach process still must be more than 8 times, and this technology only rests on laboratory stage, very are not applicable to suitability for industrialized production.
Ultrasonic purification techniques is a kind of newer purification technique; But the ultrasonic cleaning apparatus technology maturation, from the patent of present announcement, the application of relevant UW purification material is mainly at medicine; Food and field of biology; Like the disclosed Potenlini that utilizes in the supersound extraction purifying bagasse of CN02109272.8, CN200410026912.2 is disclosed to be extracted from the Chinese medicine monkshood and the purified polysaccharide composition, CN200610126830.4 disclosed from herbal medicine extracting effective components; The disclosed method of from Philippine Violet Herb, extracting apigenin of CN200910170069.8 improves apigenin yield and purity etc. widely.
Ultrasonic equipment is applied to chemical industry purification aspect also has report, the method for the ultrasonic cleaning Manganse Dioxide of announcing like patent CN03156025.3.What but this method was handled is a kind of inorganic powder, and particle is bigger, and the physics that is combined into of impurity and powder mixes, and bonding force is little, and impurity is easy to move out.Polyetherketone/polyethersulfone is a kind of organic polymer; Wherein the combination degree of impurity and powder is tight; The combination of existing physical force also has the end group of chemical force to combine, and adopts conventional technological method to be difficult to reach the ideal purification effect; Therefore, be necessary to seek a kind of method of more effective purifying polyetherketone/polyethersulfone.
Summary of the invention
It is low to the objective of the invention is to solve present polyetherketone/polyethersulfone existing efficient of purifying, and energy consumption is big, problems such as cost height; A kind of purification process of polymer materials is provided; This method can overcome above-mentioned existing problems, and the device structure that is adopted is simple, is the working standard equipment in the suitability for industrialized production; And easy to operate, the removal of impurities ability is strong.
The purification process of a kind of polyetherketone/polyether sulfone polymkeric substance is characterized in that comprising the steps:
(1) polymkeric substance that contains impurity is pulverized and through 25 purpose screen clothes;
(2) polymkeric substance that contains impurity and the deionized water after will pulverizing put into container, 20 ℃ ~ 95 ℃ following supersound process 20 ~ 60 minutes, the mixing of materials liquid after ultrasonic with whizzer filtering and removing moisture, accomplished one time cleaning process; Repeat above-mentioned cleaning process 4 ~ 5 times;
(3) under 130 ℃ of vacuum, be dried to constant weight, obtain the polymkeric substance behind the purifying;
The said structure that contains the polymkeric substance of impurity comprises following three parts: phenyl moiety; Carbonyl and/or sulfone part; Ether and/or thioether part.
In the step (1), the said polymkeric substance that contains impurity is preferably polyetheretherketone, polyetherketone, PEKK, polyetherketoneetherketoneketone and polyether ether ketone ketone, polyethersulfone, biphenyl polyether sulfone.
When UW acted on liquid, the great shockwave of formed thousands of collapse of bubbles meeting generate energys in the liquid was equivalent to the high temperature of moment generation and up to thousands of normal atmosphere, this phenomenon is referred to as " cavitation effect ".Under action of ultrasonic waves, impurity that polymkeric substance is contained and solvent are moved to aqueous phase from polymkeric substance.Residual solvent in the polymkeric substance also can obviously precipitate into aqueous phase, the amount of residual solvent before purifying with purifying after difference be at least 10ppm, can be at least 100ppm in some cases.
The said polymkeric substance that contains impurity is the solid polymer of any physical form; Be preferably Powdered, particulate state or circle granulous polymkeric substance; Most preferably be polymkeric substance, can amass with the big as far as possible surface in contact of water formation because have the polymkeric substance of micropore with micropore.
When the said polymkeric substance that contains impurity contained water-insoluble solvent, the polymkeric substance that contains impurity after the pulverizing needed after the acetone or alcohol washing, to carry out step (2) again.
In the step (2), the ultrasonic power density>=0.3W/cm of said supersound process 2, ultrasonic frequency range is 40 ~ 1000KHz.
The contriver finds, for the foreign ion of removal required for the present invention, adopts the ultrasonic generator of upper frequency just can obtain purification effect preferably, and greater than under the 80KHz, foreign ion can be cleaned totally more fully.As a kind of preferred version, said ultrasonic frequency is preferably 80 ~ 1000KHz.
Said container is the tank body or the storage tank class container of Ultrasonic Cleaners or the stainless steel that ultrasonic generator is housed.
Described container inner bottom part and inner side-wall are fixed with ultrasonic generator.
As a kind of preferred version, described container inner bottom part is fixed with ultrasonic generator, and the inner side-wall of said container is hung with movably ultrasonic generator.Ultrasonic generator is changed into mobilizable, can not only guarantee hyperacoustic cleaning performance, and can guarantee the homogeneity that material is cleaned according to container size and any putting position of material input amount.
The content of polymkeric substance is 5 ~ 90 weight % in the mixture of said polymkeric substance that contains impurity and deionized water.
The content of deionized water is preferably the maxima solubility that can satisfy impurity component at least in the mixture of said polymkeric substance that contains impurity and deionized water.
Said impure polymkeric substance both can be the polymkeric substance of not doing any aftertreatment after the polyreaction, and this base polymer contains high amounts of solvents especially water-soluble solvent such as tetramethylene sulfone usually, also can be the polymkeric substance of having handled through preliminary purification.
In the step (2), suitably add a certain amount of acid solution and can obtain better impurity-eliminating effect.The adding acid solution can weaken the Chemical bond power of impurity and superpolymer to obtain impurity-eliminating effect more completely.
As a kind of preferred version, in the step (2),, add with respect to acid solution when time deionized water quality 0.1 ~ 5% except that last cleaning process.
Said acid solution is preferably phosphoric acid, hydrochloric acid or acetic acid.
After adding said acid solution, the pH value of mixing of materials liquid is preferably 1 ~ 4.
When said impurity was Na, the concentration of Na was lower than 100ppm for being higher than 0 in the polymkeric substance behind the purifying; When said impurity was K, the concentration of K was lower than 50ppm for being higher than 0 in the polymkeric substance behind the purifying; When said impurity was Ca, the concentration of Ca was lower than 100ppm for being higher than 0 in the polymkeric substance behind the purifying; When said impurity was Fe, the concentration of Fe was lower than 100ppm for being higher than 0 in the polymkeric substance behind the purifying; When said impurity was Al, the concentration of Al was lower than 50ppm for being higher than 0 in the polymkeric substance behind the purifying; When said impurity was P, the concentration of P was lower than 50ppm for being higher than 0 in the polymkeric substance behind the purifying; When said impurity was S, the concentration of S was lower than 50ppm for being higher than 0 in the polymkeric substance behind the purifying.
When said impurity was F, the difference of the amount of impurity F before and after the purifying was 20ppm at least, and after said purification process processing, the concentration of F is lower than 50ppm for being higher than 0 in the polymkeric substance of purifying; When said impurity was Cl, the difference of the amount of impurity Cl before and after the purifying was 20ppm at least, and after said purification process processing, the concentration of Cl is lower than 50ppm for being higher than 0 in the polymkeric substance of purifying.
Compared with prior art, the present invention has following beneficial effect:
The present invention adopts supersound process technology, utilizes ultrasonication when liquid, and the bubble shockwave that is produced that breaks makes the impurity component in the material dissolve in liquid phase in the liquid, has realized purifying polyetherketone/polyether sulfone polymkeric substance quickly and efficiently; The present invention adopts equipment simple, can evenly clean material, need not material is heated to very high-temperature, need not that also material is in and is higher than under the condition of high voltage of environmental stress, and save energy reduces production costs greatly; Polyetherketone/polyether sulfone polymkeric substance through behind the purifying of the present invention is possessed of good qualities, and can be applicable to process the electronic apparatus part, has excellent electric insulating; Be applied to prepare the medical industry device and can reach hygienic standard, even can be used for preparing artificial bone.
Description of drawings
Fig. 1 is the structural representation of said container;
Wherein, 1 is container body, and 2 is first ultrasonic generator, and 3 is well heater, and 4 is thermostat, and 5 is valve, and 6 is second ultrasonic generator.
Embodiment
Come further to explain the present invention below in conjunction with embodiment, but embodiment does not do any type of qualification to the present invention.
Used container is seen Fig. 1.
Among the embodiment below except as otherwise noted, with % be unit be the quality percentage composition, be that the impurity ion content of unit is measured through inductively coupled plasma atomic emission spectrum (ICPAES) with ppm.
Embodiment 1:With the tetramethylene sulfone is the purifying of polyetheretherketone (PEEK) resin of solvent preparation
After getting above-mentioned polyetheretherketone 700g and pulverizing, put into the Ultrasonic Cleaners that 10L has heating function with the 7kg deionized water, its hyperacoustic power density is 0.3W/cm 2, frequency is 50KHz, after under 30 ℃ of temperature condition ultrasonic 40 minutes; Mixing of materials liquid with whizzer filtering and removing most of moisture, is accomplished one time cleaning process, re-treatment 5 times; Wherein adding the phosphoric acid of 0.5% mass parts (this quality relatively) for the 3rd time; Mixing of materials liquid system pH value is 1.71, under 130 ℃ of vacuum, is dried to constant weight, measures solvent and impurity ion content in the polyetheretherketone; Wherein solvent is measured with gas chromatographicanalyzer, and polymkeric substance is as shown in table 1 according to above-mentioned steps processing its solvent of mensuration and impurity ion content.
Table 1
Residuals content Before the processing Handle 1 time Handle 2 times Handle 3 times Handle 4 times Handle 5 times
Tetramethylene sulfone 85% 20% 5% 0.12% 633 ppm 78 ppm
Na(ppm) 4% 7564 2552 756 211 88
K(ppm) 1% 1175 856 368 155 49
Al(ppm) 1431 897 523 324 118 36
Ca(ppm) 3253 1312 445 181 76 31
Fe(ppm) 4697 1367 631 314 115 68
P(ppm) 854 642 326 177 75 13
S(ppm) 996 167 91 34 19 7
Comparative Examples 1:Adopt the same materials with embodiment 1 equivalent, pulverize the back at blowing and boil under normal pressure with the deionized water of equivalent and removed solvent and inorganic salt to seething with excitement in 40 minutes.The impurity ion content test result is as shown in table 2, and visible, the impurity ion content of conventional poach is apparently higher than the impurity ion content of ultrasonication.
Table 2
Residuals content Handle 1 time Handle 2 times Handle 3 times Handle 4 times Handle 5 times
Tetramethylene sulfone 45% 25% 5.4% 0.88% 1867ppm
Na(ppm) 2% 0.13% 18791 9183 5313
K(ppm) 0.5% 0.03% 7645 2186 1876
Al(ppm) 1113 1222 933 649 477
Ca(ppm) 2346 1784 1168 781 574
Fe(ppm) 4047 3766 3272 2718 2397
P(ppm) 731 656 556 492 446
S(ppm) 811 756 533 397 288
Embodiment 2:With the sulfobenzide is the purifying of polyetheretherketone (PEEK) resin of solvent preparation
After getting above-mentioned polyetheretherketone 20kg and pulverizing; Divide boiling washing 8 times with 300L acetone; Remove the sulfobenzide in the material; To extract the material and the 200kg deionized water of acetone then and put into the stainless steel vessel that 300L has heating jacket and several ultrasonic generators of outer wall installation together, its hyperacoustic power density is 10W/cm 2, frequency 300KHz; Under 70 ℃ of temperature condition ultrasonic 40 minutes, mixing of materials liquid with the most of water of whizzer filtering and removing, is accomplished one time cleaning process; Re-treatment 4 times; Wherein at the hydrochloric acid of the 3rd adding 0.3% mass parts (this quality relatively), mixing of materials liquid system pH value is 1.08, under 130 ℃ of vacuum, is dried to constant weight; Measure the impurity ion content in the polyetheretherketone, polymkeric substance is as shown in table 3 according to above-mentioned steps processing its solvent of mensuration and impurity ion content.
Table 3
Residuals content Before ultrasonic Handle 1 time Handle 2 times Handle 3 times Handle 4 times
Na(ppm) 5.2% 4356 992 226 63
K(ppm) 2.1% 2255 722 198 28
Al(ppm) 2131 759 238 86 35
Ca(ppm) 4855 1296 469 175 42
Fe(ppm) 6756 2104 982 268 52
P(ppm) 1456 323 195 92 21
S(ppm) 1155 233 57 21 9
Comparative Examples 2:Adopt the same materials with embodiment 2 equivalent, blowing pulverize the back with normal pressure washing with acetone removal sulfobenzide after and the deionized water of equivalent boil and removed solvent and inorganic salt in 40 minutes.The impurity ion content test result is as shown in table 4, and visible, the impurity ion content of normal pressure poach is apparently higher than the impurity ion content of ultrasonication.
Table 4
Residuals content Handle 1 time Handle 2 times Handle 3 times Handle 4 times Handle 5 times
Na(ppm) 2.2% 9655 6533 4168 2867
K(ppm) 0.9% 6967 4109 2897 1813
Al(ppm) 1222 845 668 532 476
Ca(ppm) 3184 2675 2121 1776 1577
Fe(ppm) 5231 3764 2446 1735 1174
P(ppm) 956 692 487 300 223
S(ppm) 656 513 399 301 186
Embodiment 3:With the tetramethylene sulfone is the purifying of polyethersulfone (PES) resin of solvent preparation
After getting above-mentioned polyethersulfone 20kg and pulverizing and the 200kg deionized water put into the 300L stirring tank together, under 50 ℃ of temperature condition, uses ultrasonic generator to make hyperacoustic power density of generation in the still be 20W/cm 2, frequency 800KHz; Handle after 60 minutes; Mixing of materials liquid with whizzer filtering and removing most of moisture, is accomplished one time cleaning process, re-treatment 5 times; Wherein adding the phosphoric acid of 1% mass parts (this quality relatively) for the 2nd time; Mixing of materials liquid system pH value is 1.56, under 130 ℃ of vacuum, is dried to constant weight, measures solvent and impurity ion content in the polyethersulfone; Wherein solvent is measured with gas chromatographicanalyzer, and its solvent of mensuration and impurity ion content were as shown in table 5 after polymkeric substance was handled according to above-mentioned steps.Comparative example 1,2 and 3 can find that along with the increase of ultrasonic power density, its purification efficiency increases gradually.
Table 5
Residuals content Before the processing Handle 1 time Handle 2 times Handle 3 times Handle 4 times Handle 5 times
Tetramethylene sulfone 70% 9.8% 1.2% 2331 264ppm 16ppm
Na(ppm) 6.5% 3332 1412 566 152 24
Al(ppm) 2675 738 331 122 73 16
Ca(ppm) 4657 1112 387 144 25 9
Fe(ppm) 6342 2693 979 232 89 34
P(ppm) 1235 756 299 152 79 23
S(ppm) 876 287 86 48 19 3
Comparative Examples 3:The same materials of employing and embodiment 3 equivalent, the water boil with equivalent after blowing is pulverized removed solvent and inorganic salt in 60 minutes.The impurity ion content test result is as shown in table 6, and visible, the impurity ion content of normal pressure poach is apparently higher than the impurity ion content of ultrasonication.
Table 6
Residuals content Handle 1 time Handle 2 times Handle 3 times Handle 4 times Handle 5 times
Tetramethylene sulfone 37.5% 22% 6.5% 3499 817
Na(ppm) 1.3% 6319 4988 3549 2229
Al(ppm) 2110 1818 1100 831 760
Ca(ppm) 3748 3029 2319 1539 990
Fe(ppm) 4283 2419 1876 1401 929
P(ppm) 856 799 652 519 433
S(ppm) 666 588 312 277 151
Embodiment 4:With the tetramethylene sulfone is the purifying of biphenyl polyether sulfone (PPSU) resin of solvent preparation
After getting above-mentioned biphenyl polyether sulfone 20kg pulverizing; Put into the stainless steel vessel that 300L has heating jacket and several ultrasonic generators of outer wall installation together with the 200kg deionized water; Under 40 ℃ of temperature condition, use ultrasonic generator to make the hyperacoustic power density that produces in the still be 10W/cm 2, frequency 900KHz; Handle after 40 minutes; Mixing of materials liquid with whizzer filtering and removing most of moisture, is wherein added the acetic acid of 0.1% mass parts (this quality relatively) in the 4th, mixing of materials liquid system pH value is 3.76; Accomplish one time cleaning process; Re-treatment 5 times is dried to constant weight under 130 ℃ of vacuum, measure solvent and impurity ion content in the polyethersulfone; Wherein solvent is measured with gas chromatographicanalyzer, and its solvent of mensuration and impurity ion content were as shown in table 7 after polymkeric substance was handled according to above-mentioned steps.
Table 7
Residuals content Before the processing Handle 1 time Handle 2 times Handle 3 times Handle 4 times Handle 5 times
Tetramethylene sulfone 70% 12% 5.5% 0.9% 364ppm 11ppm
Na(ppm) 5.3% 5456 1222 453 153 64
K(ppm) 2.6% 3355 845 353 143 54
Al(ppm) 2654 959 375 95 43 21
Ca(ppm) 4978 1564 676 224 73 9
Fe(ppm) 6989 2467 776 244 85 22
P(ppm) 2756 1196 696 335 123 43
S(ppm) 1187 453 131 38 13 4
Comparative Examples 4:The same materials of employing and embodiment 4 equivalent, the water boil with equivalent after blowing is pulverized removed solvent and inorganic salt in 40 minutes.The impurity ion content test result is as shown in table 8, and visible, the impurity ion content of normal pressure poach is apparently higher than the impurity ion content of ultrasonication.
Table 8
Residuals content Handle 1 time Handle 2 times Handle 3 times Handle 4 times Handle 5 times
Tetramethylene sulfone 41% 27% 9.5% 2.2% 1.1%
Na(ppm) 2.7% 1.8% 8522 5849 3721
K(ppm) 1.6% 0.9% 5265 3991 2774
Al(ppm) 1976 1089 867 464 275
Ca(ppm) 3874 2999 1779 1219 987
Fe(ppm) 4865 3876 2116 1265 874
P(ppm) 2078 1754 1197 846 543
S(ppm) 987 756 417 287 157
Embodiment 5:With 1kg Na +Concentration is the powdered samples and the 8L deionized water of the polyetheretherketonepolymer polymer that has the terminal chain of fluorine of 1220ppm, puts into the 10L Ultrasonic Cleaners respectively, and its hyperacoustic power density is 15W/cm 2, frequency 50KHz; Under 60 ℃ of temperature ultrasonic 30 minutes; And add the acetic acid of 3% mass parts (this quality relatively), mixing of materials liquid system pH value is 2.53, with mixing of materials liquid with the most of water of whizzer filtering and removing; Under 130 ℃ of vacuum, be dried to constant weight, the Na in the polyetheretherketone +Concentration is reduced to 543ppm, handles its Na of back to dried polymkeric substance again twice according to above-mentioned steps +Concentration is reduced to 69ppm.Through 13The C nuclear magnetic resonance spectrometer is analyzed the end group through the polymkeric substance of supersound process, confirms that the content of the terminal chain of fluorine does not change because of supersound process.

Claims (10)

1. the purification process of polyetherketone/polyether sulfone polymkeric substance is characterized in that comprising the steps:
(1) polymkeric substance that contains impurity is pulverized and through 25 purpose screen clothes;
(2) polymkeric substance that contains impurity and the deionized water after will pulverizing put into container, 20 ℃ ~ 95 ℃ following supersound process 20 ~ 60 minutes, the mixing of materials liquid after ultrasonic with whizzer filtering and removing moisture, accomplished one time cleaning process; Repeat above-mentioned cleaning process 4 ~ 5 times;
(3) under 130 ℃ of vacuum, be dried to constant weight, obtain the polymkeric substance behind the purifying;
The said structure that contains the polymkeric substance of impurity comprises following three parts: phenyl moiety; Carbonyl and/or sulfone part; Ether and/or thioether part.
2. purification process according to claim 1 is characterized in that in the step (1), and when the said polymkeric substance that contains impurity contained water-insoluble solvent, the polymkeric substance after the pulverizing needed behind washing with acetone, to carry out step (2) again.
3. purification process according to claim 1 is characterized in that in the step (1), and the said polymkeric substance that contains impurity is polyetheretherketone, polyetherketone, PEKK, polyetherketoneetherketoneketone, polyether ether ketone ketone, polyethersulfone or the biphenyl polyether sulfone that contains impurity.
4. purification process according to claim 1 is characterized in that in the step (2) the ultrasonic power density>=0.3W/cm of said supersound process 2, ultrasonic frequency is 40 ~ 1000KHz.
5. purification process according to claim 4 is characterized in that said ultrasonic frequency is 80 ~ 1000KHz.
6. purification process according to claim 1 is characterized in that said container is a Ultrasonic Cleaners in the step (2), or the tank body or the storage tank class container of the stainless steel of ultrasonic generator are housed.
7. purification process according to claim 1 is characterized in that in the step (2), and the content that contains the polymkeric substance of impurity in the mixture of said polymkeric substance that contains impurity and deionized water is 5 ~ 90 weight %.
8. purification process according to claim 1 is characterized in that in the step (2), in removing last any cleaning process, adds with respect to the acid solution when time deionized water quality 0.1 ~ 5%.
9. purification process according to claim 8 is characterized in that said acid solution is phosphoric acid, hydrochloric acid or acetic acid.
10. purification process according to claim 8, it is characterized in that adding said acid solution after, the pH value of mixing of materials liquid is 1 ~ 4.
CN201110002853A 2011-01-07 2011-01-07 Method for purifying polyether ketone/polyether sulfone polymers Expired - Fee Related CN102127219B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201110002853A CN102127219B (en) 2011-01-07 2011-01-07 Method for purifying polyether ketone/polyether sulfone polymers

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201110002853A CN102127219B (en) 2011-01-07 2011-01-07 Method for purifying polyether ketone/polyether sulfone polymers

Publications (2)

Publication Number Publication Date
CN102127219A CN102127219A (en) 2011-07-20
CN102127219B true CN102127219B (en) 2012-08-29

Family

ID=44265516

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201110002853A Expired - Fee Related CN102127219B (en) 2011-01-07 2011-01-07 Method for purifying polyether ketone/polyether sulfone polymers

Country Status (1)

Country Link
CN (1) CN102127219B (en)

Families Citing this family (23)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102443122B (en) * 2011-09-29 2013-03-20 长春工业大学 Production method for refining polyetheretherketone
CN102585206B (en) * 2012-03-07 2013-10-30 长春工业大学 Polyether ketone refining process
CN103709406B (en) * 2013-11-29 2016-05-11 金发科技股份有限公司 A kind of method of preparing light polyether sulfone/polyether-ether-ketone resin
CN106146825A (en) * 2016-06-30 2016-11-23 山东凯盛新材料股份有限公司 Technique PEKK crude product refined with sodium gluconate
CN105885033A (en) * 2016-06-30 2016-08-24 山东凯盛新材料股份有限公司 Process for refining poly(ether-ketone-ketone) crude product
CN106046358A (en) * 2016-06-30 2016-10-26 山东凯盛新材料股份有限公司 Technique for purifying polyetherketoneketone crude product
CN105885034A (en) * 2016-06-30 2016-08-24 山东凯盛新材料股份有限公司 Method for refining poly(ether-ketone-ketone) crude product by adopting 2,3-dihydroxybutanedioic acid
CN106146826A (en) * 2016-06-30 2016-11-23 山东凯盛新材料股份有限公司 The purifying process of PEKK crude product
CN105885032A (en) * 2016-06-30 2016-08-24 山东凯盛新材料股份有限公司 Technology for purifying poly(ether-ketone-ketone) crude product by adopting ethanediamine di-ortho-phenyl acetic acid
CN106188527A (en) * 2016-06-30 2016-12-07 山东凯盛新材料股份有限公司 The process for purification of PEKK crude product
CN105884989A (en) * 2016-06-30 2016-08-24 山东凯盛新材料股份有限公司 Method for refining poly(ether-ketone-ketone) crude product by using hydrochloric acid water solution of oxalic acid
CN106046356B (en) * 2016-06-30 2018-08-28 山东凯盛新材料股份有限公司 The method for purifying polyether ketone ketone crude product
CN106188528A (en) * 2016-06-30 2016-12-07 山东凯盛新材料股份有限公司 Use the technique that PEKK crude product is refined by sodium gluconate
CN106008960B (en) * 2016-06-30 2018-08-28 山东凯盛新材料股份有限公司 Refined method carries out polyether ketone ketone crude product using sodium gluconate
CN106117543A (en) * 2016-06-30 2016-11-16 山东凯盛新材料股份有限公司 The post-processing approach of PEKK crude product
CN106046355B (en) * 2016-06-30 2018-08-28 山东凯盛新材料股份有限公司 Refined method carries out polyether ketone ketone crude product using the aqueous hydrochloric acid solution of oxalic acid
CN106008959B (en) * 2016-06-30 2018-08-28 山东凯盛新材料股份有限公司 Refined method is carried out to polyether ketone ketone crude product with sodium gluconate
CN105968341A (en) * 2016-06-30 2016-09-28 山东凯盛新材料股份有限公司 Process for refining crude polyetheretherketone using hydrochloric solution of oxalic acid
CN107955522B (en) * 2017-12-08 2020-05-19 四川理工学院 Preparation method of polyether sulfone water-based paint
CN109796762B (en) * 2019-01-21 2021-07-27 江西金海新能源科技有限公司 Sulfone polymer composition and preparation method thereof
CN112795014A (en) * 2020-12-23 2021-05-14 金发科技股份有限公司 Aromatic sulfone polymer and preparation method and application thereof
CN113388111B (en) * 2021-07-05 2023-04-07 天津师范大学 Preparation method of low-chroma polyaromatic ether
CN116478403B (en) * 2023-04-07 2024-03-26 安徽卓润新材料科技有限公司 Polysulfone resin preparation method and preparation device thereof

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB1563222A (en) * 1976-02-10 1980-03-19 Ici Ltd Aromatic polymer production
CN1034340C (en) * 1992-08-28 1997-03-26 吉林大学 Process for preparing aromatic polyeter-ether ketone-phthalide ring polyaryl ether-sulfone tactic block copolymer
GB0113053D0 (en) * 2001-05-30 2001-07-18 Victrex Mfg Ltd Polyketones
CN100374483C (en) * 2006-03-29 2008-03-12 长春吉大高科技股份有限公司 Process for preparing terpolymer of polyether ethersulfone and polyether etherketone
US7999024B2 (en) * 2007-06-22 2011-08-16 Sabic Innovative Plastics Ip B.V. Method of purifying a polymer

Also Published As

Publication number Publication date
CN102127219A (en) 2011-07-20

Similar Documents

Publication Publication Date Title
CN102127219B (en) Method for purifying polyether ketone/polyether sulfone polymers
CN102161739A (en) Method for purifying polymer
CN102786681B (en) Polymer purification device and purification method
CN101486784B (en) Method for effectively reducing metal content in polyetheretherketone
CN102766257A (en) Method for reducing metal impurities in poly(aryl ether ketone) polymer
CN103613624B (en) The process for purification of a kind of Avrmectin
CN102127218B (en) Device and method for purifying high-temperature-resistant resin
CN104650264A (en) Method for extracting inulin
CN104289495B (en) Recycling and retreating process for beryllium oxide ceramic of collector of traveling wave tube
CN103554306A (en) Process for extracting heparin sodium from greasy intestines
CN103551570B (en) The tantalum capacitor manufacture method of tantalum powder mobility is improved in a kind of preparation process
KR101170471B1 (en) manufacturing method of chlorophyll for extracting and concentrating good component from natural plant
CN102942604A (en) Method for separation and purification of tea saponin through foam
CN100363402C (en) Purification method of polyether sulphone
CN105001415B (en) A kind of method that polyarylether material is purified under utilization water and alcohols mixed solvent high temperature
CN208413866U (en) The silica of discarded package material generating apparatus again
CN115974070A (en) Alkaline-acid purification method of natural spherical graphite
CN110078839A (en) It is a kind of to utilize magnetic mesoporous SiO2@Fe3O4Extract the preparation method of polysaccharide in Rumex madaio
CN202193751U (en) Device for improving deodorization efficiency in polymer polyol production process
CN106631000A (en) Method for preparing nano copper calcium titanate from chemical copper plating effluent
CN103432205A (en) Novel method for extracting high-purity lotus leaf flavone
CN201962228U (en) High-temperature resisting resin purification device
CN101759548B (en) Preparation process for extracting emodin from rheum officinale by using supercritical CO2
CN110002994A (en) A kind of eutectic ionic liquid and its preparation method and application
CN106749340B (en) A kind of method of surfactant collaboration aqueous two-phase extraction nimbin

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C14 Grant of patent or utility model
GR01 Patent grant
CF01 Termination of patent right due to non-payment of annual fee
CF01 Termination of patent right due to non-payment of annual fee

Granted publication date: 20120829

Termination date: 20200107