CN102117483A - 不同空间分辨率的多光谱遥感图像融合方法 - Google Patents

不同空间分辨率的多光谱遥感图像融合方法 Download PDF

Info

Publication number
CN102117483A
CN102117483A CN 200910216998 CN200910216998A CN102117483A CN 102117483 A CN102117483 A CN 102117483A CN 200910216998 CN200910216998 CN 200910216998 CN 200910216998 A CN200910216998 A CN 200910216998A CN 102117483 A CN102117483 A CN 102117483A
Authority
CN
China
Prior art keywords
spatial resolution
image
pixel
spectral
kinds
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN 200910216998
Other languages
English (en)
Other versions
CN102117483B (zh
Inventor
陆冬华
赵英俊
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Beijing Research Institute of Uranium Geology
Original Assignee
Beijing Research Institute of Uranium Geology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Beijing Research Institute of Uranium Geology filed Critical Beijing Research Institute of Uranium Geology
Priority to CN200910216998.8A priority Critical patent/CN102117483B/zh
Publication of CN102117483A publication Critical patent/CN102117483A/zh
Application granted granted Critical
Publication of CN102117483B publication Critical patent/CN102117483B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Image Processing (AREA)

Abstract

本发明属于遥感图像处理领域,具体涉及一种不同空间分辨率的多光谱遥感图像融合方法。该方法首先将高空间分辨率多光谱图像分成n类地物,计算高空间分辨率多光谱图像中各类地物的光谱矢量均值,然后对高空间分辨率多光谱图像进行混合像素分解,利用高空间分辨率多光谱图像中每一个像素中各类地物所占的百分此表示低空间分辨率多光谱图像,求解低空间分辨率多光谱图像中各类地物的光谱矢量均值,最后计算融合图像的每个像素的像素值,生成融合图像。本发明能够将高空间分辨率多光谱图像和低空间分辨率的多光谱图像进行融合,使融合后的图像更加清晰。

Description

不同空间分辨率的多光谱遥感图像融合方法
技术领域
本发明属于遥感图像处理领域,具体涉及一种不同空间分辨率的多光谱遥感图像融合方法。
背景技术
目前各种融合算法一般是通过建立适当的融合模型来解决融合过程中已知条件不足所导致的方程欠定性问题,如IHS变换方法,首先将多光谱图像通过插值算法采样到与全色图像相同的分辨率,然后将图像的谱信息与强度信息相分离,用全色图像代替强度信息与谱信息反变换成融合图像。在融合过程中融合图像的谱信息(在图像中表现为图像的色彩)是通过插值算法对多光谱图像进行插值得到的,因此融合图像谱信息的准确度在一定程度上由插值算法决定。再如高通滤波或小波融合方法,它们将高空间分辨率图像的高频信息从图像中分离出来,迭加在低空间分辨率的图像上,但是事实上,不同波段图像的高频信息是不相同的,因此这种迭加方法必然会对融合结果的准确性造成一定程式度的影响。事实上这些融合的方法都同样的忽略掉了一个问题,即图像上每一个像元与其周围的临近像元有着高度的相关性,而只是单独的考虑每一个像元,因此在理论上这些算法是不完备的,也就是说这些方法即使在理论上讲也只能产生与真实图像相近似的融合图像。而混合像元分解技术能够将像元分解成主要特征地物在其中的百分含量,表达了图像各点与主要特征地物之间的关系,因此如果能将这种关系运用到图像融合中,就可以在一定程度上解决融合方程的欠定性问题。
目前IKONOS、QuickBird等高空间分辨率遥感卫星所携带的传感器可以采集较高空间分辨率的多光谱图像,但是只具有三到四个波段的多光谱信息,而TM,Aster、Hyperion的数据具有较多的光谱信息,但其分辨率却很低。因此可以利用IKONOS、QuickBird的中分辨率多光谱图像对具有更多光谱信息的低空间分辨率图像进行锐化。
发明内容
本发明的目的在于针对现有技术中存在的问题,提供一种基于混合像元分解技术的不同空间分辨率的多光谱遥感图像融合方法,从而能够将高空间分辨率多光谱图像和低空间分辨率的多光谱图像进行融合,使融合后的图像更加清晰。
为实现上述目的,本发明的技术方案如下:一种不同空间分辨率的多光谱遥感图像融合方法,包括如下步骤:
(1)对同一地区的高空间分辨率的多光谱图像以及低空间分辨率的多光谱图像进行预处理去噪、配准;
(2)对高空间分辨率多光谱图像进行非监督分类,将其分成n类地物;
(3)计算高空间分辨率多光谱图像中各类地物的光谱矢量均值;
(4)将步骤(3)中得到的高空间分辨率多光谱图像中各类地物的光谱均值作为混合像元分解的端元,对高空间分辨率多光谱图像进行混合像素分解,计算高空间分辨率多光谱图像中每一个像素中各类地物所占的百分比;
(5)利用高空间分辨率多光谱图像中每一个像素中各类地物所占的百分比表示低空间分辨率多光谱图像,求解低空间分辨率多光谱图像中各类地物的光谱矢量均值;
(6)利用步骤(4)中得到的高空间分辨率多光谱图像中每一个像素中各类地物所占的百分比,以及步骤(5)中得到的低空间分辨率多光谱图像中各类地物的光谱矢量均值,计算融合图像的每个像素的像素值,生成融合图像。
进一步,如上所述的不同空间分辨率的多光谱遥感图像融合方法,步骤(2)中所述的非监督分类采用K-means方法,地物的类数n大于200个。
进一步,如上所述的不同空间分辨率的多光谱遥感图像融合方法,步骤(3)中计算高空间分辨率多光谱图像中各类地物的光谱矢量均值ZA i的公式如下:
Z i A ‾ = 1 NUM i · Σ ( x , y ) ∈ class i AI ( x , y )
其中,i=1,2…n ,NUMi为高空间分辨率多光谱图像中第i类地物的像素总数,classi为第i类地物,AI(x,y)为高空间分辨率多光谱图像中第x行第y列处的光谱矢量。
进一步,如上所述的不同空间分辨率的多光谱遥感图像融合方法,步骤(4)中计算高空间分辨率多光谱图像中每一个像素中各类地物所占的百分比ei(x,y)的公式如下:
AI ( x , y ) = Σ i = 1 n { e i ( x , y ) · Z i A ‾ }
其中,AI(x,y)为高空间分辨率多光谱图像中第x行第y列处的光谱矢量,ZA i为高空间分辨率多光谱图像中各类地物的光谱矢量均值。
进一步,如上所述的不同空间分辨率的多光谱遥感图像融合方法,步骤(5)中利用高空间分辨率多光谱图像中每一个像素中各类地物所占的百分比表示低空间分辨率多光谱图像的公式如下:
BI ( x , y ) = 1 NUM ( x ′ , y ′ ) ∈ D · Σ i = 1 , ( x ′ , y ′ ) ∈ D n e i ( x ′ , y ′ ) · Z i B ‾
其中,BI(x,y)为低空间分辨率多光谱图像中第x行第y列处的光谱矢量,D为低空间分辨率多光谱图像中x,y像素的对应区域,x′,y′为高空间分辨率多光谱图像中的像素坐标,NUM(x′,y′)∈D为D区域中高空间分辨率多光谱图像的像素总数,ZB i为低空间分辨率多光谱图像中各类地物的光谱矢量均值。
进一步,如上所述的不同空间分辨率的多光谱遥感图像融合方法,步骤(6)中计算融合图像的每个像素的像素值CI(x,y)的公式如下:
CI ( x , y ) = Σ i = 1 n e i ( x , y ) · Z i B ‾
其中,ei(x,y)为高空间分辨率多光谱图像中每一个像素中各类地物所占的百分比,ZB i为低空间分辨率多光谱图像中各类地物的光谱矢量均值。
本发明的有益效果如下:利用本发明提出的方法可以实现不同空间分辨率多光谱(或高光谱)图像的融合,尤其是高空间分辨率多光谱图像和低空间分辨率高光谱图像,进行融合的两景影像即使空间分辨率差异巨大,也不会产生类似其它融合方法的生成的色斑现象,生成的融合图像仍然纹理清晰。
附图说明
图1为本发明具体实施例的方法流程图。
具体实施方式
下面结合附图和实施例对本发明进行详细的描述。
为了描述方便,令A代表某地区的高空间分辨率的多光谱图像,AI(x,y)为第x行第y列处的光谱矢量,则AI(x,y)={A1(x,y),A2(x,y)…Al(x,y)};B代表同一地区的低空间分辨率的多光谱图像,BI(x,y)为第x行第y列处的光谱矢量,则BI(x,y)={B1(x,y),B2(x,y)…Bp(x,y)}。
如图1所示,本发明所提供的不同空间分辨率的多光谱遥感图像融合方法,包括如下步骤:
步骤1)对同一地区的高空间分辨率的多光谱图像以及低空间分辨率的多光谱图像进行预处理去噪、配准。这一步骤使用图像处理技术中惯用的去噪、配准方法即可,此处不再过多描述。
步骤2)对高空间分辨率多光谱图像进行非监督分类。
选取参加图像融合中空间分辨率较高的一幅图像作为A图像,对其进行非监督分类。分类的方法为K-means方法,设置的分类数可以尽可能的高,一般应在200个以上。例如共分成的n类地物:class1 class2…classi…classn
步骤3)计算各类地物光谱均值。
计算A图像每一类别地物的光谱矢量均值,即:
Z i A ‾ = 1 NUM i · Σ ( x , y ) ∈ class i AI ( x , y )
其中:i=1,2…n  ,NUMi为A图中第i类地物的像素总数。
步骤4)对A图像进行混合像素分解。
以计算得到的光谱均值ZA i(i=1…n)作为混合像素分解的端元,对A图像进行混合像素分解。计算A图像中每一像素的光谱组成,即计算A图像中每一个像素中各类地物所占的百分比。则A图像中的每一像素可以表示为:
AI ( x , y ) = Σ i = 1 n { e i ( x , y ) · Z i A ‾ }
其中ei(x,y)表示在A图像x行y列处,i类别地物所占百分比。
步骤5)利用ei(x,y)表示低空间分辨率多光谱图像。
假设B图像的空间分辨率是A图像空间分辨率的m倍,则B图像某像素对应的区域D中包含m2个A图像的像素。由于B图像与A图像象素位置存在这样的对应关系,在求解出A图像每一象素中各类地物的组份后,则可以将B图像进行如下表示:
BI ( x , y ) = 1 NUM ( x ′ , y ′ ) ∈ D · Σ i = 1 , ( x ′ , y ′ ) ∈ D n e i ( x ′ , y ′ ) · Z i B ‾
式中D为B图像中x,y像素的对应区域,x′,y′为A图像中的像素坐标,NUM(x′,y′)∈D为D区域中A图像的像素总数,ZB i为B图像中各类地物的光谱矢量均值。
步骤6)迭代求解B图像中各地物的光谱矢量。
由于BI(x,y)已知,ei(x′,y′)在上面的步骤中已经求出,可以利用建立的关于ZB i的方程式对各类地物在对应B图像波段的光谱进行求解。每一个B图像的像素可建立一个方程式,因此方程数量非常庞大,且为超定方程(一般情况下,B图像素的个数远远大于地物的种类),利用迭代方法求算最佳解。
步骤7)生成融合图像。
根据获得的B图像各类地物的光谱矢量均值ZB i,将融合图像每一像素可以表示为:
CI ( x , y ) = Σ i = 1 n e i ( x , y ) · Z i B ‾
其中,ei(x,y)表示在A图像×行y列处,i类别地物所占百分比。最后计算得到的CI即为融合图像。
表1四种方法的融合结果的客观评价数据
表1中列出了本发明方法以及IKONOS多光谱法、ASTER多光谱法、HIS融合法这四种方法的融合结果的客观评价数据,从融合结果和客观评价指标进行分析,本发明方法虽在保持光谱特性方面即相关系数与HIS融合法相比略有差距,但是在信息量的融入程度方面远远超过IHS融合法,客观评价指数很高。

Claims (6)

1.一种不同空间分辨率的多光谱遥感图像融合方法,包括如下步骤:
(1)对同一地区的高空间分辨率的多光谱图像以及低空间分辨率的多光谱图像进行预处理去噪、配准;
(2)对高空间分辨率多光谱图像进行非监督分类,将其分成n类地物;
(3)计算高空间分辨率多光谱图像中各类地物的光谱矢量均值;
(4)将步骤(3)中得到的高空间分辨率多光谱图像中各类地物的光谱均值作为混合像元分解的端元,对高空间分辨率多光谱图像进行混合像素分解,计算高空间分辨率多光谱图像中每一个像素中各类地物所占的百分比;
(5)利用高空间分辨率多光谱图像中每一个像素中各类地物所占的百分比表示低空间分辨率多光谱图像,求解低空间分辨率多光谱图像中各类地物的光谱矢量均值;
(6)利用步骤(4)中得到的高空间分辨率多光谱图像中每一个像素中各类地物所占的百分比,以及步骤(5)中得到的低空间分辨率多光谱图像中各类地物的光谱矢量均值,计算融合图像的每个像素的像素值,生成融合图像。
2.如权利要求1所述的不同空间分辨率的多光谱遥感图像融合方法,其特征在于:步骤(2)中所述的非监督分类采用K-means方法,地物的类数n大于200个。
3.如权利要求1所述的不同空间分辨率的多光谱遥感图像融合方法,其特征在于:步骤(3)中计算高空间分辨率多光谱图像中各类地物的光谱矢量均值Zi A的公式如下:
Z i A ‾ = 1 NUM i · Σ ( x , y ) ∈ class i AI ( x , y )
其中,i=1,2…n,NUMi为高空间分辨率多光谱图像中第i类地物的像素总数,classi为第i类地物,AI(x,y)为高空间分辨率多光谱图像中第x行第y列处的光谱矢量。
4.如权利要求1所述的不同空间分辨率的多光谱遥感图像融合方法,其特征在于:步骤(4)中计算高空间分辨率多光谱图像中每一个像素中各类地物所占的百分比ei(x,y)的公式如下:
AI ( x , y ) = Σ i = 1 n { e i ( x , y ) · Z i A ‾ }
其中,AI(x,y)为高空间分辨率多光谱图像中第x行第y列处的光谱矢量,Zi A为高空间分辨率多光谱图像中各类地物的光谱矢量均值。
5.如权利要求1所述的不同空间分辨率的多光谱遥感图像融合方法,其特征在于:步骤(5)中利用高空间分辨率多光谱图像中每一个像素中各类地物所占的百分比表示低空间分辨率多光谱图像的公式如下:
BI ( x , y ) = 1 NUM ( x ′ , y ′ ) ∈ D · Σ i = 1 , ( x ′ , y ′ ) ∈ D n e i ( x ′ , y ′ ) · Z i B ‾
其中,BI(x,y)为低空间分辨率多光谱图像中第x行第y列处的光谱矢量,D为低空间分辨率多光谱图像中x,y像素的对应区域,x′,y′为高空间分辨率多光谱图像中的像素坐标,NUM(x′y′)∈D为D区域中高空间分辨率多光谱图像的像素总数,Zi B为低空间分辨率多光谱图像中各类地物的光谱矢量均值。
6.如权利要求1所述的不同空间分辨率的多光谱遥感图像融合方法,其特征在于:步骤(6)中计算融合图像的每个像素的像素值CI(x,y)的公式如下:
CI ( x , y ) = Σ i = 1 n e i ( x , y ) · Z i B ‾
其中,ei(x,y)为高空间分辨率多光谱图像中每一个像素中各类地物所占的百分比,Zi B为低空间分辨率多光谱图像中各类地物的光谱矢量均值。
CN200910216998.8A 2009-12-31 2009-12-31 不同空间分辨率的多光谱遥感图像融合方法 Active CN102117483B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN200910216998.8A CN102117483B (zh) 2009-12-31 2009-12-31 不同空间分辨率的多光谱遥感图像融合方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN200910216998.8A CN102117483B (zh) 2009-12-31 2009-12-31 不同空间分辨率的多光谱遥感图像融合方法

Publications (2)

Publication Number Publication Date
CN102117483A true CN102117483A (zh) 2011-07-06
CN102117483B CN102117483B (zh) 2014-11-05

Family

ID=44216236

Family Applications (1)

Application Number Title Priority Date Filing Date
CN200910216998.8A Active CN102117483B (zh) 2009-12-31 2009-12-31 不同空间分辨率的多光谱遥感图像融合方法

Country Status (1)

Country Link
CN (1) CN102117483B (zh)

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102436652A (zh) * 2011-08-31 2012-05-02 航天恒星科技有限公司 一种多源遥感图像自动配准方法
CN102636778A (zh) * 2012-02-21 2012-08-15 核工业北京地质研究院 一种适用于高光谱影像的信息提取方法
CN103471715A (zh) * 2013-09-02 2013-12-25 北京航空航天大学 一种共光路组合式光场光谱成像方法及装置
CN103488968A (zh) * 2012-06-14 2014-01-01 株式会社日立制作所 遥感图像的混合像素物质构成精细化分解装置及方法
CN103886559A (zh) * 2014-04-04 2014-06-25 北京航空航天大学 一种光谱图像处理方法
CN103902999A (zh) * 2012-12-27 2014-07-02 核工业北京地质研究院 一种用于蒙脱石信息提取的高光谱影像处理方法
CN103901497A (zh) * 2012-12-27 2014-07-02 核工业北京地质研究院 一种用于伊利石信息提取的高光谱影像处理方法
CN105046648A (zh) * 2015-06-25 2015-11-11 北京师范大学 一种构建高时空遥感数据的方法
CN106066207A (zh) * 2016-05-19 2016-11-02 北京航空航天大学 一种平行光路组合式多源信息采集处理装置及方法
CN111383203A (zh) * 2019-11-07 2020-07-07 北京航空航天大学 基于分区域拟合的全色与多光谱遥感图像融合方法

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101030299B (zh) * 2007-03-29 2010-05-19 复旦大学 一种基于数据空间正交基的遥感图像混合像元分解方法
CN100514085C (zh) * 2007-10-16 2009-07-15 哈尔滨工业大学 高光谱图像的空间-光谱信息协同提高分辨率的方法
CN101221243B (zh) * 2007-11-01 2011-12-07 复旦大学 基于非负矩阵因式分解的遥感图像混合像元分解方法
CN101504315B (zh) * 2009-02-23 2011-01-05 北京航空航天大学 扩展形态学与正交子空间投影结合的端元自动提取方法

Cited By (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102436652A (zh) * 2011-08-31 2012-05-02 航天恒星科技有限公司 一种多源遥感图像自动配准方法
CN102436652B (zh) * 2011-08-31 2014-08-27 航天恒星科技有限公司 一种多源遥感图像自动配准方法
CN102636778A (zh) * 2012-02-21 2012-08-15 核工业北京地质研究院 一种适用于高光谱影像的信息提取方法
CN103488968B (zh) * 2012-06-14 2016-12-21 株式会社日立制作所 遥感图像的混合像素物质构成精细化分解装置及方法
CN103488968A (zh) * 2012-06-14 2014-01-01 株式会社日立制作所 遥感图像的混合像素物质构成精细化分解装置及方法
CN103902999A (zh) * 2012-12-27 2014-07-02 核工业北京地质研究院 一种用于蒙脱石信息提取的高光谱影像处理方法
CN103901497A (zh) * 2012-12-27 2014-07-02 核工业北京地质研究院 一种用于伊利石信息提取的高光谱影像处理方法
CN103902999B (zh) * 2012-12-27 2017-10-27 核工业北京地质研究院 一种用于蒙脱石信息提取的高光谱影像处理方法
CN103471715A (zh) * 2013-09-02 2013-12-25 北京航空航天大学 一种共光路组合式光场光谱成像方法及装置
CN103471715B (zh) * 2013-09-02 2015-09-09 北京航空航天大学 一种共光路组合式光场光谱成像方法及装置
CN103886559A (zh) * 2014-04-04 2014-06-25 北京航空航天大学 一种光谱图像处理方法
CN103886559B (zh) * 2014-04-04 2017-05-24 北京航空航天大学 一种光谱图像处理方法
CN105046648A (zh) * 2015-06-25 2015-11-11 北京师范大学 一种构建高时空遥感数据的方法
CN105046648B (zh) * 2015-06-25 2019-01-22 北京师范大学 一种构建高时空遥感数据的方法
CN106066207A (zh) * 2016-05-19 2016-11-02 北京航空航天大学 一种平行光路组合式多源信息采集处理装置及方法
CN111383203A (zh) * 2019-11-07 2020-07-07 北京航空航天大学 基于分区域拟合的全色与多光谱遥感图像融合方法
CN111383203B (zh) * 2019-11-07 2022-05-03 北京航空航天大学 基于分区域拟合的全色与多光谱遥感图像融合方法

Also Published As

Publication number Publication date
CN102117483B (zh) 2014-11-05

Similar Documents

Publication Publication Date Title
CN102117483B (zh) 不同空间分辨率的多光谱遥感图像融合方法
Jaritz et al. Sparse and dense data with cnns: Depth completion and semantic segmentation
Pandit et al. Image fusion in remote sensing applications: A review
Mahyari et al. Panchromatic and multispectral image fusion based on maximization of both spectral and spatial similarities
Dong et al. High quality multi-spectral and panchromatic image fusion technologies based on curvelet transform
Li et al. Patch matching-based multitemporal group sparse representation for the missing information reconstruction of remote-sensing images
Zheng et al. Remote sensing image fusion using multiscale mapped LS-SVM
CN107977951B (zh) 基于耦合张量分解的多光谱与高光谱图像融合方法
CN103369209A (zh) 视频降噪装置及方法
CN113673590A (zh) 基于多尺度沙漏密集连接网络的去雨方法、系统和介质
Castrodad et al. Discriminative sparse representations in hyperspectral imagery
CN111523451A (zh) 一种构建高时空分辨率ndvi数据的方法
Wang et al. An improved spatiotemporal fusion algorithm for monitoring daily snow cover changes with high spatial resolution
Zaveri et al. Novel hybrid multispectral image fusion method using fuzzy logic
Nisia et al. Extraction of High-level and Low-level feature for classification of Image using Ridgelet and CNN based Image Classification
Duan et al. Remote Image Fusion Based on PCA and Dual Tree Compactly Supported Shearlet Transform.
Kwan et al. Stereo image and depth map generation for images with different views and resolutions
Rani et al. An efficient block based feature level image fusion technique using wavelet transform and neural network
CN109584255B (zh) 一种基于全色与高光谱图像融合的目标轮廓提取方法
CN102270337B (zh) 一种用于多光谱遥感图像的图像插值方法
Lee et al. Local stereo matching using motion cue and modified census in video disparity estimation
CN104268842A (zh) 基于Contour算法和Gabor滤波的虚实融合的方法
Jing et al. A Rigorously-Incremental Spatiotemporal Data Fusion Method for Fusing Remote Sensing Images
Bharath et al. Swarm intelligence based image fusion for thermal and visible images
Li et al. Improved classification of conservation tillage practices using hyperspectral imagery with spatial-spectral features

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C14 Grant of patent or utility model
GR01 Patent grant