CN102116989B - 电驱动液晶透镜及使用该透镜的立体显示器件 - Google Patents

电驱动液晶透镜及使用该透镜的立体显示器件 Download PDF

Info

Publication number
CN102116989B
CN102116989B CN201010273970.0A CN201010273970A CN102116989B CN 102116989 B CN102116989 B CN 102116989B CN 201010273970 A CN201010273970 A CN 201010273970A CN 102116989 B CN102116989 B CN 102116989B
Authority
CN
China
Prior art keywords
liquid crystal
lens
electrode
substrate
electrically
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201010273970.0A
Other languages
English (en)
Other versions
CN102116989A (zh
Inventor
金成佑
李秉州
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
LG Display Co Ltd
Original Assignee
LG Display Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by LG Display Co Ltd filed Critical LG Display Co Ltd
Publication of CN102116989A publication Critical patent/CN102116989A/zh
Application granted granted Critical
Publication of CN102116989B publication Critical patent/CN102116989B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1335Structural association of cells with optical devices, e.g. polarisers or reflectors
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N13/00Stereoscopic video systems; Multi-view video systems; Details thereof
    • H04N13/30Image reproducers
    • H04N13/302Image reproducers for viewing without the aid of special glasses, i.e. using autostereoscopic displays
    • H04N13/305Image reproducers for viewing without the aid of special glasses, i.e. using autostereoscopic displays using lenticular lenses, e.g. arrangements of cylindrical lenses
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B26/00Optical devices or arrangements for the control of light using movable or deformable optical elements
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B3/00Simple or compound lenses
    • G02B3/12Fluid-filled or evacuated lenses
    • G02B3/14Fluid-filled or evacuated lenses of variable focal length
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B30/00Optical systems or apparatus for producing three-dimensional [3D] effects, e.g. stereoscopic images
    • G02B30/20Optical systems or apparatus for producing three-dimensional [3D] effects, e.g. stereoscopic images by providing first and second parallax images to an observer's left and right eyes
    • G02B30/26Optical systems or apparatus for producing three-dimensional [3D] effects, e.g. stereoscopic images by providing first and second parallax images to an observer's left and right eyes of the autostereoscopic type
    • G02B30/27Optical systems or apparatus for producing three-dimensional [3D] effects, e.g. stereoscopic images by providing first and second parallax images to an observer's left and right eyes of the autostereoscopic type involving lenticular arrays
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B30/00Optical systems or apparatus for producing three-dimensional [3D] effects, e.g. stereoscopic images
    • G02B30/20Optical systems or apparatus for producing three-dimensional [3D] effects, e.g. stereoscopic images by providing first and second parallax images to an observer's left and right eyes
    • G02B30/26Optical systems or apparatus for producing three-dimensional [3D] effects, e.g. stereoscopic images by providing first and second parallax images to an observer's left and right eyes of the autostereoscopic type
    • G02B30/27Optical systems or apparatus for producing three-dimensional [3D] effects, e.g. stereoscopic images by providing first and second parallax images to an observer's left and right eyes of the autostereoscopic type involving lenticular arrays
    • G02B30/28Optical systems or apparatus for producing three-dimensional [3D] effects, e.g. stereoscopic images by providing first and second parallax images to an observer's left and right eyes of the autostereoscopic type involving lenticular arrays involving active lenticular arrays
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1337Surface-induced orientation of the liquid crystal molecules, e.g. by alignment layers
    • G02F1/13378Surface-induced orientation of the liquid crystal molecules, e.g. by alignment layers by treatment of the surface, e.g. embossing, rubbing or light irradiation
    • G02F1/133784Surface-induced orientation of the liquid crystal molecules, e.g. by alignment layers by treatment of the surface, e.g. embossing, rubbing or light irradiation by rubbing
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/29Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the position or the direction of light beams, i.e. deflection
    • G02F1/294Variable focal length devices
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F2203/00Function characteristic
    • G02F2203/28Function characteristic focussing or defocussing

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Nonlinear Science (AREA)
  • Mathematical Physics (AREA)
  • Chemical & Material Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Engineering & Computer Science (AREA)
  • Multimedia (AREA)
  • Signal Processing (AREA)
  • Liquid Crystal (AREA)

Abstract

本发明公开一种电驱动液晶透镜及使用该透镜的立体显示器件。该电驱动液晶透镜包括:第一基板和第二基板,彼此相对布置并且分别包括多个透镜区域;多个第一电极,其形成在第一基板上并且在每个透镜区域中,并且在确定的方向上彼此分开,其中从每个透镜区域的中心到边缘逐渐增加的电压被施加到各第一电极;第二电极,形成在该第二基板的整个表面上;第一取向膜,形成在包括第一电极的第一基板的整个表面上,其中第一取向膜在相对于所述第一电极的纵向呈30~90度角的条件下经受摩擦,并被取向为具有预倾角;以及液晶层,填充在所述第一基板和第二基板之间。由此可获得改进的透镜轮廓和透镜对称性。

Description

电驱动液晶透镜及使用该透镜的立体显示器件
本申请要求2009年12月31日提交的韩国专利申请No.10-2009-0135686的优先权,在此通过参考将其并入本文,就如在此完全阐述一样。
技术领域
本发明涉及一种电驱动液晶透镜,更具体地,涉及一种将摩擦方向限定在相对于电极纵向为30~90度范围内以获得改进的透镜轮廓和透镜对称性的电驱动液晶透镜以及使用该透镜的立体显示器件。
背景技术
目前,基于高速信息通信网络构造的用于快速传播信息的服务已经从简单的“听说”服务诸如载波电话发展成基于用于高速处理字符、语音和图像的数字终端的“视听”多媒体型服务,并且期望最终将其开发成多维空间3维立体信息通信服务,其能够实现不受时间和空间限制的虚拟现实和立体观看。
一般而言,基于通过观看者眼睛得到的立体视觉的原理实现表现3维的立体图像。但是由于观看者的眼睛相互间隔约65mm,即具有双眼视差,因此由于两只眼睛之间的位置差异,左眼和右眼会感知稍微不同的图像。由于两眼之间的位置差异导致的这种图像差异被称作双眼像差。基于双眼像差设计3维立体图像显示器件,以允许左眼仅观看左眼图像并且右眼仅观看右眼图像。
特别是,左眼和右眼分别观看不同的2维图像。如果两个不同图像通过视网膜被传送到大脑,则大脑精确组合图像,再现深度感知和真实的原始3维(3D)图像。这种能力通常被称作立体摄影(立体视法),且应用了立体视法的显示器件被称作立体显示器件。
同时,可基于实现3维图像的透镜的构成元件对立体显示器件进行分类。在一个实例中,使用液晶层的透镜被称作电驱动液晶透镜。
通常,液晶显示器件包括两个相对的电极,和插入到两个电极之间的液晶层。通过将电压施加到两个电极时产生的电场驱动液晶层的液晶分子。液晶分子具有极化和光学各向异性特性。在此,极化是指分子排列方向根据电场的变化,该变化是随着当液晶分子处在电场影响下时液晶分子中的电子聚集到液晶分子的相对侧引起的。而且,光学各向异性是指根据入射光的入射方向或极化发射的光的路径或极化的变化,该变化是由液晶分子的伸长形状以及上述分子排列方向引起。
因此,由于施加到两个电极上的电压导致液晶层具有透射率差异,且液晶层能通过基于每个像素改变透射率差异来显示图像。
近来,已经提出了一种基于上述液晶分子特性的电驱动液晶透镜,其中液晶层用作透镜。
具体地,透镜被设计成利用透镜组成材料的折射率和空气的折射率之间的差值基于每一位置来控制入射光学路径径。在电驱动液晶透镜中,如果将不同电压施加到位于液晶层不同位置的电极上,以便产生驱动液晶层所需的电场,则被引入到液晶层的入射光基于每一位置经历不同的相位变化,结果,液晶层能以与实际透镜相同的方式控制入射光学路径径光学路径光学路径。
以下,将参照附图描述现有技术的电驱动液晶透镜。
图1是示出现有技术的电驱动液晶透镜的截面图,图2是示出在将电压施加到电驱动液晶透镜之后图1的电驱动液晶透镜的电势分布的示意图。
如图1中所示,现有技术的电驱动液晶透镜包括相互面对的第一和第二基板10和20,和形成在第一基板10和第二基板20之间的液晶层30。
第一电极11设置在第一基板10上并相互间隔第一距离。在两个相邻的第一电极11中,自一个第一电极11的中心到另一个第一电极11的中心的距离被称作“节距”。对于各第一电极重复相同节距可形成图形。
第二电极21形成在与第一基板10相对的第二基板20的整个表面上。
第一和第二电极11和21由透明金属制成。液晶层30形成在第一电极11和第二电极21之间的间隙中。由于基于电场的强度和分布而反应的特性,液晶层30的液晶分子具有抛物线状电势表面,且由此具有与图2中所示电驱动液晶透镜相似的相位分布。
在将高电压施加到第一电极11和将第二电极21接地的条件下实现上述电驱动液晶透镜。通过这种电压条件,垂直电场在第一电极11的中心最强,垂直电场的强度随着远离第一电极11而降低。因此,如果液晶层30的液晶分子具有正向介电常数各向异性,则液晶分子基于电场以下列方式排列:液晶分子在第一电极11的中心是直立的且随着远离第一电极11而逐渐接近水平地倾斜。结果,在光传输方面,在第一电极11的中心缩短了光学路径,并且随着距第一电极11距离的增加而延长了光学路径,如图2中所示。通过使用相位平面来表现光学路径的长度变化,电驱动液晶透镜具有与具有抛物线状表面的透镜相似的光传输效果。
在此,第二电极21引发由液晶分子所产生的电场的运行,使得光折射率在空间上采取抛物线函数的形式。第一电极11对应于透镜边缘区域。
这种情况下,与第二电极21相比,第一电极11被施加相对较高的电压。因此,如图2中所示,在第一电极11和第二电极21之间产生电势差。特别是,在第一电极11附近产生急剧升降的横向电场。因此,液晶具有稍微失真的分布而不是平缓的分布,从而光折射率不能展现抛物线空间分布,或者液晶移动对电压变化过于敏感。
在不具有抛物线状表面的透镜的情况下,可通过将电极设置在其间插入有液晶的两个基板上并将电压施加到电极来实现上述现有技术的电驱动液晶透镜。
上述电驱动液晶透镜具有以下问题。
首先,由于形成在下基板上的电极仅位于一部分透镜区域上,在对应于电极的透镜边缘区域和远离透镜边缘区域的透镜中心区域之间产生急剧升降的横向电场而非平缓电场,导致电驱动液晶透镜稍微失真的相位。特别是,在通过液晶场驱动的电驱动液晶透镜中,由于透镜区域的节距越大,被施加高电压的电极的数目越小,因此在高电压电极和与这些电极相对的基板之间产生不充分的电场。因此,难以形成与实际透镜具有相同效果的具有平缓抛物线状透镜表面的电驱动液晶透镜。
第二,当应用于大面积显示器件时,远离被施加了高电压的电极所处的透镜边缘区域的透镜中心区域,基本上不受电场影响,难以通过电场对液晶进行取向控制。如果根据实际情况,很难或不可能在透镜中心区域进行取向控制,则最终的电驱动液晶透镜具有不连续的透镜轮廓,并且不能起到透镜的作用。
第三,在现有技术的电驱动液晶透镜中,为了解决上述问题,试图采取在一个基板的透镜区域设置多个细微分裂电极并向各电极施加不同电压的方法。然而,这种方法可在相邻的电极之间产生水平电场,而水平电场可能破坏由垂直电场驱动以形成液晶透镜的液晶层的液晶分子的取向。由于这种破坏产生透镜误差并且导致液晶透镜的不对称,已经提议致力解决这一问题。
发明内容
因此,本发明旨在提供一种电驱动液晶透镜以及使用该透镜的立体显示器件,其基本上消除了由于现有技术的限制和缺陷导致的一个或多个问题。
本发明的一个目标是提供一种电驱动液晶透镜以及使用该透镜的立体显示器件,其中将摩擦方向限定在相对于电极的纵向为30~90度的范围内,以获得改进的透镜轮廓和透镜对称性。
在下面的描述中将部分地列出本发明的其它的优点、目的和特点,这些优点、目的和特点的一部分对于所属领域普通技术人员来说通过研究下文将是显而易见的,或者可从本发明的实践中领会到。通过书面说明书、权利要求书以及附图中具体指出的结构可实现和获得本发明的这些目的和其他优点。
为了实现这些目的和其他优点,根据本发明的用途,如这里具体化和广义描述的,一种电驱动液晶透镜包括:第一基板和第二基板,所述第一基板和第二基板彼此相对布置并且分别包括多个透镜区域;多个第一电极,其形成在该第一基板上并且在每个透镜区域中,并且在确定的方向上彼此分开,其中从每个透镜区域的中心到边缘逐渐增加的电压被施加到各所述第一电极;第二电极,其形成在该第二基板的整个表面上;第一取向膜,其形成在包括所述第一电极的第一基板的整个表面上,其中该第一取向膜在相对于所述第一电极的纵向呈30~90度角的条件下经受摩擦,并被取向为具有预倾角;以及液晶层,其填充在所述第一基板和第二基板之间。
第一取向膜的预倾角可以在4~45度的范围内。
第一取向膜的预倾角可以在0~0.5度的范围内。
形成液晶层的液晶可以具有正介电各向异性。
上述电驱动液晶透镜还可以包括第二电极上的第二取向膜。第二取向膜可以具有与第一取向膜的摩擦方向反平行的摩擦方向。
根据本发明的另一方面,一种立体的显示器件包括上述的电驱动液晶透镜和发射2维(2D)图像信号的显示面板。
在极化光从显示面板传输到电驱动液晶透镜时,极化光的传输轴可以与包含在电驱动液晶透镜中的第一取向膜的摩擦方向一致。
应当理解,本发明前面的概括性描述和下面的详细描述都是示例性的和解释性的,意在对要求保护的本发明提供进一步的解释。
附图说明
附图包含在本申请中构成本申请的一部分,用于给本发明提供进一步理解。附图图解了本发明的实施方式并与说明书一起用于解释本发明的原理。在附图中:
图1是示出现有技术的电驱动液晶透镜的截面图;
图2是示出将电压施加到图1的电驱动液晶透镜之后的电势分布图;
图3A和3B分别是示出假定在平行于电极的方向上进行摩擦,当没有电压施加到电极时以及当将电压施加到电极时的液晶取向图。
图4是示出在垂直于电极的方向上进行摩擦期间预倾角是1度的条件下的等势面和液晶取向图;
图5是示出在垂直于电极的方向上进行摩擦期间预倾角是4度的条件下的等势面和液晶取向图;
图6是示出基于摩擦和预倾角的透镜形状图;
图7是示出根据本发明的电驱动液晶透镜的截面图;
图8A和8B分别是示出当没有电压施加到图7的相邻电极时以及当将电压施加到电极时的液晶取向图;
图9是示出基于预倾角变化的透镜形状图;以及
图10是示出根据本发明的立体显示器件的截面图。
具体实施方式
现在将详细参照本发明的优选实施方式进行描述,附图中示出了这些实施方式的一些例子。尽可能地在整个附图中使用相同的参考标记表示相同或相似的部件。
本发明提出一种电驱动液晶透镜的构造,其中每个透镜区域设置有多个细微分裂电极并且将不同的电压施加到各电极,因为在每个透镜区域中具有单一电极的电驱动液晶透镜难以控制细微的透镜轮廓。
在提出的构造中,下基板设置有第一细微分裂电极,上基板在其整个表面上设置有第二电极,通过第一电极和第二电极之间产生的垂直电场来驱动电驱动液晶透镜。
另外,本发明提出以平行于电极纵向的方向来摩擦设置有第一细微分裂电极的下基板。
下文将描述在上述的构造中出现的液晶的取向特性。
图3A和3B分别是示出假定在平行于电极纵向的方向上进行摩擦,当没有电压施加到电极时以及当将电压施加到电极时的液晶取向图。
在细微分裂电极构造中,如果以平行于图3A所示的第一细微分裂电极101a和101b的纵向的方向进行摩擦,在未施加电压的初始始状态中液晶分子110以平行于第一细微分裂电极101a和101b的摩擦方向取向。
然后,当将电压施加到电驱动液晶透镜第一细微分裂电极和第二电极时,在第一电极和第二电极之间产生垂直电场,因此,通过在不同的相位表面取向的液晶的折射率差异来产生驱动液晶的电场。
同时,当将电压施加到图3B所示的第一细微分裂电极101a和101b时,由于在第一细微分裂电极101a和101b之间的电压差,通过第一细微分裂电极101a和101b产生水平电场。当除了驱动透镜的垂直电场之外,下基板会受到水平电场的强烈影响时,会引起液晶分子的水平变形,使得得到的透镜不能起到正常作用。
尤其是,施加到在下基板上形成的第一细微分裂电极101a和101b的电压可能是适于减小液晶层单元间隙的高电压。例如,如果假定分别向相邻的第一细微分裂电极101a和101b施加5V和1V的电压,在两个相邻的电极之间产生水平电场。因此,在没有电压施加到电极的状态下以电极的纵向排列的液晶分子110可能随水平电场的方向变形,并且从而可能以电极101a和101b的交叉方向取向。这个现象在靠近设置有第一细微分裂电极101a和101b的下基板的液晶分子110中出现的更明显。
这个问题是缘于当施加电压时产生的水平电场对液晶分子110具有比液晶分子110的初始预倾角呈现的力更大的影响,因此导致液晶分子110在水平方向变形。
因此,试图通过使在未施加电压的初始状态下的液晶取向与施加电压时的液晶取向相同来减少下基板上的第一细微分裂电极之间的水平电场的影响。为此,进行了一些试验以观察在以垂直于电极纵向的方向进行摩擦由此改变液晶分子的预倾角的条件下的液晶取向。
图4是示出在垂直于电极的纵向的方向进行摩擦时预倾角是1度的条件下的等势面和液晶取向图,图5是示出在垂直于电极的纵向的方向进行摩擦时预倾角是4度的条件下的等势面和液晶取向图。
当在垂直于电极纵向的方向上进行摩擦时,液晶基于其预倾角呈现不同的取向特性。尤其是,如图4所示,如果预倾角为比如1度的较小值,电场的影响比预倾角的影响大,因此,液晶分子大致以被施加了高电压的电极为中心,在其两侧具有对称取向。然而,在液晶分子以不同于预倾角方向的方向取向的区域中(图的左侧区域),在被施加了最高电压的电极的中心与相邻的电极之间产生强大的水平电场,引起液晶水平倾斜。
具体来说,当电压以预倾角方向施加到电极时,液晶通常以与电势表面平行的的方向取向,但是也可能以垂直于在预倾角相反方向上的电势表面的方向取向。尤其是,在电极的中心处的液晶保持为由水平电场驱动,因此,破坏了电驱动液晶透镜的对称性。
另一方面,如图5所示,如果预倾角具有比如大约4度的较大值,预倾角的影响比电场的影响大。因此,当施加电压时,液晶以基本上垂直于电势表面的方向取向,并且基于液晶的初始预倾角保持液晶的取向。结果,液晶分子以大致与预倾角相同的方向取向,而不是基于电极的中心对称取向。
具体而言,在图5的情况下,液晶分子的取向方向大致等于预倾角的方向,因此,液晶分子以与电势表面垂直的方向取向。因此,与图4不同,液晶分子基于被施加了最高电压的电极的中心不对称地取向。
然而,一旦驱动电驱动液晶透镜,液晶层不具有实际透镜形状,但由于液晶分子的折射率的差异,当每个透镜区域限定抛物线形的光学路径差异时液晶层就实现了透镜功能。这里,可以说基于液晶分子的倾斜度来确定光学路径差异。
与图4相比,可以理解到,当预倾角增加到如图5所示的大约4度时,可以消除液晶分子在电极中心的周围完全水平倾斜的现象。
如果预倾角增加到如图5所示的大约4度,虽然电驱动液晶透镜可以有不对称的取向特性,但是通过预倾角增加垂直电场的影响,从而液晶经历对称折射率差异,因此满足了垂直取向的条件。由于液晶层基于被施加了最高电压的电极而具有对称的折射率差异,电驱动液晶透镜在以垂直于电极纵向的方向进行摩擦并且预倾角在4~45范围内取值的条件下呈现对称的液晶取向。
当预倾角是如图5所示的4度时,液晶分子基于电极中心具有相同的取向方向和相同的倾斜度,因此允许电驱动液晶透镜进行关于电极的对称操作。
从上述试验可以理解到,如果以垂直于电极纵向的方向进行摩擦并且初始预倾角被设定为大约4度或更大的较大值以增加预倾角的影响使其大于电场的影响,则可以防止液晶由电驱动液晶透镜的下基板的水平电场导致的变形。
图6是示出基于摩擦和预倾角的透镜形状图。
图6示出电驱动液晶透镜基于第1到4情况的不同情况下的不同形状。这里,第1种情况采用理想的透镜,第2种情况采用摩擦角是90度并且预倾角是4度的透镜,第3种情况采用摩擦角是零度并且预倾角是1度的透镜,第4种情况采用摩擦角是零度并且预倾角是4度的透镜。
尤其是,在第3种情况,摩擦角是零度(平行于电极的纵向)并且预倾角是1度,可以理解到,电驱动液晶透镜的对称性被破坏并且电驱动液晶透镜不能被正常驱动。如上所述,这是因为当施加电场时液晶分子发生了水平变形。
在第4种情况,尽管电驱动液晶透镜的对称性与第3种情况相比在邻近电极中心的区域未被完全破坏,左右侧也可能具有不同的形状。也就是说,可以理解到,当在平行于电极纵向的方向进行摩擦时,即使预倾角具有较大值,电驱动液晶透镜也不具有理想的透镜形状。
与此相对照,在第2种情况,摩擦的角是90度因而以垂直于电极纵向的方向进行摩擦,并且预倾角是4度,可以理解到,电驱动液晶透镜可以以与理想透镜基本上相同的方式作为水平对称透镜进行操作。通过这种情况,当摩擦角是90度并且预倾角在4~45度范围内时,可以理解到电驱动液晶透镜作为理想透镜进行操作。
图7是示出本发明的电驱动液晶透镜的截面图。
如图7所示,本发明的电驱动液晶透镜包括:第一基板400和第二基板500,第一基板400和第二基板500彼此相对布置并且分别具有多个透镜区域L,并且第一基板的多个透镜区域L对应于第二基板的多个透镜区域;多个第一电极401a和401b,其形成在第一基板400上并且在每个透镜区域彼此等间距地隔开;第二电极501,其形成第二基板500的整个表面上;施加不同电压Vmin、V1、V2......Vmax到各第一电极401a和401b的电压源;以及填充在第一基板400和第二基板500之间的液晶层600。
单个电驱动液晶透镜包含具有光学路径差异的多个周期性重复的透镜区域L。
第一电极401a和401b可以如图所示彼此等间距隔开,或者也可以根据需要,具有从透镜区域L的边缘E到中心O逐渐增加或减少的可变间隔。
为了防止在各电极所处位置的透射损耗,第一电极401a和401b和第二电极501由透明金属制成。
第一电极401a和401b可以在单层中彼此隔开,或者可以被划分在不同的层中,使得如所示出的,第一电极401a设置在第一基板400上,第一电极401b设置在绝缘膜402上。在后一种情况下,在相同的层中的第一电极401a或401b可以以增加的距离彼此隔开,以防止在具有较小宽度的相邻的第一电极401a或401b之间发生短路。而且,从平面图来看的话,所有第一电极401a和401b可以密集地排列,以基本上覆盖第一基板400的整个表面。
关于每个透镜区域L,将大约等于阈值电压的第一电压Vmin施加到位于透镜区域L的中心O的第一电极,而将最高的第n个(nth)电压Vmax施加到位于透镜区域L的边缘E的第一电极。在这种情况下,施加到位于透镜区域L的中心O和边缘E之间的第一电极401a和401b的电压在从透镜区域L的阈值电压Vmin到第n个电压Vmax的范围内,并且随着距透镜区域L的中心O的距离的增加而逐渐增加。当将上述电压施加到多个第一电极401a和401b时,将地电压施加到第二电极501,由此在第一电极401a和401b与第二电极501之间产生垂直电场。
在施加上述电压时,期望施加到相邻的第一电极401a和401b的电压的差是1V或更少,从而不会在第一电极401a和401b之间产生过强的水平电场。
多个第一电极401a和401b关于透镜区域L的边缘E水平对称地形成。通过在焊盘部分(对应于显示面板350的非显示部分)的金属线(未示出),各第一电极401a和401b连接到相应电压信号Vmin、V1、V2......Vmax的电压源,使相应电压施加到第一电极401a和401b。
这里,施加到对应于透镜区域L的中心O的第一电极401a或401b的最低阈值电压Vmin是具有大约1.4~2V的峰值的交流电(AC)方波电压。阈值电压Vmin由确定,其中,Δε是液晶的介电常数各向异性,K1是液晶的弹性模数,ε0是自由空间介电常数。另外,施加到第一电极51的电压中的最高电压Vmax,即施加到位于透镜区域L的边缘E的第一电极401a和401b的电压是具有大约2.5~10V的峰值的AC方波电压。
如果假设透镜区域L的宽度是节距P,在透镜区域L的中心O和边缘E之间的距离等于P/2。这表明电压的对称值被施加到从透镜区域L的边缘E到中心O的对称第一电极401a和401b。
第一取向膜403和第二取向膜502分别形成在包括第一电极401a和401b的第一基板400上以及在第二电极501上。在这种情况下,为了使电驱动液晶透镜用作在未施加电压的初始状态时的透明层,第一取向膜403可以具有与第一电极401a和401b的纵向垂直的摩擦方向或者相对于第一电极401a和401b的纵向在30~90度范围的摩擦方向。在这种情况下,第二取向膜502具有相交于或者反平行于第一取向膜403的摩擦方向的摩擦方向(这里,术语“反平行”表示具有相反行进方向的平行方向)。因此,电驱动液晶透镜可以将从位于其下的显示面板传输的图像直接传送给观看者。
多个第一电极401a和401b具有以相交于第一基板400或者绝缘膜402的方向(即第一基板400的一边的方向)延伸的条状。每个第一电极401a和401b具有1~10μm的宽度,并且在两相邻的第一电极401a和401b之间的距离在1-10μm的范围内。例如,节距为在90μm到1,000μm的范围内变化的变量,并且,根据第一电极401a和401b的上述宽度和距离,基于每一透镜区域可形成大约10到100或更多的第一电极。
虽然未显示,密封图案(未示出)形成在第一和第二基板400和500的外围区域(即包括焊盘部分的非显示区域)以支撑第一基板400和第二基板500之间的间隙。在第一基板400和第二基板500之间的液晶层600必须具有大约15μm或更多的足够厚度,以形成具有足够相位的电驱动液晶透镜。为了稳定地保持液晶层600的厚度,还可以设置球状间隔物或者柱状间隔物来支撑第一基板400和第二基板500之间的单元间隙。在这种情况下,放置所述间隔物具有防止破坏电驱动液晶透镜的相位的优点。
当具有相同宽度的第一电极401a和401b设置在第一基板400上,并且从透镜区域L的边缘E到中心O逐渐减少的电压被施加到第一电极401a和401b时,第一电极401a和401b与第二电极501之间产生平缓的垂直电场,相邻的第一电极401a和401b之间产生轻微的水平电场。从而,可以观察到平缓的横向电场,其中电场的强度在透镜区域L的边缘E较高,在透镜区域L的中心O较低。
在表现基于电场的每一位置取向的液晶的光学路径的长度时,透镜区域L的边缘E具有最短的光学路径,并且透镜区域L的中心O具有最长的光学路径。因此,可以理解到,电驱动液晶透镜具有类似于平缓抛物线形的透镜形状。
这里,施加到第一电极401a和401b和第二电极501的电压引起通过液晶分子产生的电场的运行,使光的折射率在空间上采取抛物线函数的形式。
如所示出的第一电极401a和401b可以分成两层,或者可形成在同一层中。同时,第一电极401a和401b的宽度和距离可以具有相等的值,或者宽度和距离之一可以具有不同的值,或者宽度和距离两者都具有不同的值。第一电极的宽度和距离上的变化可以依赖于期望的透镜轮廓。
图8A和8B分别是示出当没有电压施加到图7的相邻的电极时以及当将电压施加到电极时的液晶取向图。
如图8A所示,当不施加电压时,第一电极401a和401b之间的液晶分子610以初始摩擦方向取向。
如图8B所示,当施加电压时,例如,当施加到相邻的第一电极401a和401b的电压分别是5V和1V时,即使相邻的电极401a和401b之间产生水平电场,因为水平的电场具有与初始取向方向相同的方向,因此液晶分子610也保持初始取向方向。这防止与被施加了高电压的第一基板400邻近的液晶分子610的变形,因此消除了由第一基板400的水平电场带来的任何影响。另外,第一和第二基板400和500之间产生的垂直电场可以正常驱动液晶层600。
如上所述,在本发明的电驱动液晶透镜中,形成在第一电极401a和401b上方的第一取向膜403经受在垂直于第一电极401a和401b的纵向的方向上的摩擦,以便消除由水平电场带来的任何影响,因此能够控制例如液晶分子的水平变形的异常行为。由此,可以减小已经被形成为具有防止由水平电场带来的影响所需的足够厚度的液晶层的厚度。
另外,在本发明中,给定预倾角是4度或更大,使预倾角的影响大于电压驱动的影响(尤其是,水平电场的影响)。这能够防止当施加电压时产生的水平变形,也可以防止电驱动液晶透镜的不对称。
根据需要,如果预倾角由紫外线(UV)的照射(取向)确定,即使当预倾角在0~0.5度的范围内时也可以应用具有对称特性的电驱动液晶透镜。在上述摩擦角是90度并且预倾角是1度的情况下,液晶分子相对于基板表面有点倾斜,因此基于是否施加电压具有很强的移动趋势。然而,如果预倾角具有在0~0.5度范围内的较小值,根据是否施加电场获得液晶分子的取向,而不受初始取向条件的影响。在这种情况下,因为摩擦方向与第一电极的纵向垂直,当从无电压状态到电压施加状态转变时,平行于第一电极水平取向的液晶分子由于垂直电场变得直立,因而能够驱动电驱动液晶透镜。
图9是示出基于预倾角变化的透镜形状图。
由图9的模拟结果可以理解到,当摩擦方向与电极的纵向垂直时,如果预倾角增加到4度或更大时,水平电场的影响减少,因此,最终的透镜形状更接近理想透镜形状。
在上述模拟中,电驱动液晶透镜在摩擦方向垂直于第一电极的纵向并且预倾角在3~5度的范围内以0.5度逐步增加的条件下实现。
在这种情况下,可以理解到,当预倾角是3或者3.5度时,电驱动液晶透镜由于电极的左、右侧的透镜高度彼此稍微不同而具有不对称的特性,但是在预倾角是4度时,电驱动液晶透镜具有对称的特性。
仅当摩擦方向与电极的纵向垂直时,上述的特性是不适用的;当摩擦方向相对于电极的纵向在30~90度范围内时,可以获得相似的改进效果。
下文将描述包括上述电驱动液晶透镜的立体显示器件。
图10是示出本发明的立体显示器件的截面图。
在图10中,透镜区域L在水平方向重复,并且第一电极401a和401b具有在进入到图中的方向延伸的细长条形。
如图10所示,本发明的立体显示器件包括:电驱动液晶透镜2000,当接收到电压被驱动以起到透镜作用;显示面板350,位于电驱动液晶透镜2000的下面并且用于发射2D图像信息;和光源700,位于显示面板350的下面并且用于向显示面板350发射光。
根据实际情况,如果显示面板350是自照明装置,可以省略光源700。
显示面板350包含第一和第二图像像素P1和P2,所述第一和第二图像像素P1和P2交替并且重复地排列以分别显示并且分别重复设置显示第一和第二图像IM1和IM2。显示面板350可以选自包括液晶显示器(LCD),有机发光显示器(OLED),等离子体显示面板(PDP),场发射显示器(FED)等等的各种平板显示器。显示面板350位于电驱动液晶透镜2000的下面,并且用于将2D图像信号传送到电驱动液晶透镜2000。
本发明的电驱动液晶透镜2000用于根据透镜表面的轮廓发射源自2D图像信号的3D图像信号,并且位于形成2D图像的显示面板350上。根据是否对其施加电压,电驱动液晶透镜2000可以选择性地发射3D图像信号或者2D图像信号。具体而言,电驱动液晶透镜1000具有在没有施加电压时切换为显示2D图像或者在施加电压时切换为显示3D图像的切换功能。
同时,当向电驱动液晶透镜2000中设置的多个第一电极401a和401b施加从上述的阈值电压(即具有1.4~2V的峰值的AC方波电压)到最高电压(即具有2.5~10V的峰值的AC方波电压)范围的电压并向第二电极501施加地电压时,电驱动液晶透镜2000起到类似于光学抛物线形透镜的功能,由此将来自显示面板350的第一和第二图像IM1和IM2分别传送到第一和第二观看区V1和V2。如果设定第一观看区V1和第二观看区V2之间的距离为观看者眼睛之间的距离,观看者能组合传送到第一和第二观看区V1和V2的第一和第二图像IM1和IM2,因此感知基于双眼像差的3维图像。
另一方面,当没有电压施加到第一电极401a和401b和第二电极501时,电驱动液晶透镜2000简单地用作透明层,以直接显示显示面板350的第一和第二图像IM1和IM2而没有折射。因此,与观看区无关,第一和第二图像IM1和IM2被直接传送到观看者,因而观看者感知2维图像。
在图中,电驱动液晶透镜2000的一个透镜区域L具有与位于电驱动液晶透镜2000下面的显示面板350的两个像素P1和P2总宽度相对应的宽度。根据需要,多个像素可以与透镜区域L相对应。另外,透镜区域L可以相对于像素倾斜预定角度,并且根据需要,可以相对于像素逐步布置透镜区域L(更具体地,将第n个像素水平线的透镜区域偏移第(n+1)个像素水平线的透镜区域预定距离。
透镜区域L限定为具有与节距P相应的宽度,并且具有相同节距的多个透镜区域L以确定的方向(例如,在如图10所示的水平方向)周期性地重复。这里“节距P”表示单个透镜区域L的水平宽度。应注意的是,透镜区域L不具有物理凸透镜形状,但是具有当通过电场对液晶取向时获得的透镜效果。在图10中,上述的透镜区域L以节距P大小的间隔水平重复。
同时,在上述的电驱动液晶透镜中,形成液晶层的液晶分子具有正介电各向异性,使得通过电场将液晶分子取向为垂直于电势表面。如果液晶分子具有负介电各向异性,可以获得与上述描述相反的取向特性。
在上述立体显示器件中,优选地,在极化光从显示面板350传输到电驱动液晶透镜2000时,极化光的传输轴与包含在该电驱动液晶透镜中的第一取向膜的摩擦方向一致。
从这上述描述明显看出,根据本发明的电驱动液晶透镜和使用该透镜的立体显示器件具有下列效果。
首先,为了减小单元间隙,设置多个细微分裂电极并且对各电极施加不同的电压。由于这种构造,电驱动液晶透镜可以获得改进的透镜轮廓以及减小的单元间隙,最终降低了工艺成本。
第二,即使由于当高电压施加到每个细微分裂电极中心时产生的电压差导致相邻电极之间产生水平电场,通过在相对于细微分裂电极的纵向为30~90度范围内的方向进行摩擦,可以防止液晶分子由水平电场引起水平变形。
第三,因为取向膜具有0~0.5度范围或者具有4度或更大的预倾角,可以通过消除预倾角的影响或通过当从无电压状态到电压施加状态转换时增加电场的影响使其大于预倾角的影响,来确保电驱动液晶透镜的液晶层的折射率的对称性。在一种情况下,当通过控制液晶分子的预倾角以大约或者恰好垂直于细微分裂电极的纵向的方向进行摩擦时,可以控制液晶分子在水平方向的行为。
在不脱离本发明的精神或范围的情况下,对本发明可进行各种修改和变化,这对于所属领域技术人员来说是显而易见的。因而,本发明意在覆盖落入所附权利要求书范围及其等效范围内的对本发明的所有修改和变化。

Claims (6)

1.一种电驱动液晶透镜,包括:
第一基板和第二基板,所述第一基板和第二基板彼此相对布置并且分别包括多个透镜区域;
多个第一电极,其形成在该第一基板上并且在每个透镜区域中,并且在确定的方向上彼此分开,其中从每个透镜区域的中心到边缘逐渐增加的电压被施加到各所述第一电极;
第二电极,其形成在该第二基板的整个表面上;
第一取向膜,其形成在包括所述第一电极的第一基板的整个表面上,其中该第一取向膜在相对于所述第一电极的纵向呈90度角的条件下经受摩擦,并被取向为具有预倾角,所述预倾角在4~45度的范围内;以及
液晶层,其填充在所述第一基板和第二基板之间。
2.根据权利要求1的透镜,其中形成该液晶层的液晶具有正介电各向异性。
3.根据权利要求1的透镜,还包括在该第二电极上的第二取向膜。
4.根据权利要求3的透镜,其中该第二取向膜具有与该第一取向膜的摩擦方向反平行的摩擦方向。
5.一种立体显示器件,包括:
发射2维图像信号的显示面板;以及
电驱动液晶透镜,该电驱动液晶透镜直接发射来自该显示面板的2维图像信号,或者将所述2维图像信号转换为3维图像信号以发射所述3维图像信号,其中该电驱动液晶透镜包括:
第一基板和第二基板,所述第一基板和第二基板彼此相对布置并且分别包括多个透镜区域;
多个第一电极,其形成在该第一基板上并且在每个透镜区域中,并且在确定的方向上彼此分开,其中从每个透镜区域的中心到边缘逐渐增加的电压被施加到各所述第一电极;
第二电极,其形成在该第二基板的整个表面上;
第一取向膜,其形成在包括所述第一电极的第一基板的整个表面上,其中该第一取向膜在相对于所述第一电极的纵向呈90度角的条件下经受摩擦,并被取向为具有预倾角,所述预倾角在4~45度的范围内;以及
液晶层,其填充在所述第一基板和第二基板之间。
6.根据权利要求5的器件,其中在极化光从该显示面板传输到该电驱动液晶透镜时,所述极化光的传输轴与包含在该电驱动液晶透镜中的第一取向膜的摩擦方向一致。
CN201010273970.0A 2009-12-31 2010-09-02 电驱动液晶透镜及使用该透镜的立体显示器件 Active CN102116989B (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR1020090135686A KR20110078788A (ko) 2009-12-31 2009-12-31 액정 전계 렌즈 및 이를 이용한 입체 표시 장치
KR10-2009-0135686 2009-12-31

Publications (2)

Publication Number Publication Date
CN102116989A CN102116989A (zh) 2011-07-06
CN102116989B true CN102116989B (zh) 2014-02-12

Family

ID=44215811

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201010273970.0A Active CN102116989B (zh) 2009-12-31 2010-09-02 电驱动液晶透镜及使用该透镜的立体显示器件

Country Status (3)

Country Link
US (1) US8941786B2 (zh)
KR (1) KR20110078788A (zh)
CN (1) CN102116989B (zh)

Families Citing this family (29)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5301605B2 (ja) * 2011-04-08 2013-09-25 株式会社ジャパンディスプレイ 液晶表示装置
JP6019016B2 (ja) * 2011-05-12 2016-11-02 創太 清水 幾何学変換レンズ
JP5667928B2 (ja) * 2011-05-20 2015-02-12 株式会社ジャパンディスプレイ 画像表示装置
JP5596625B2 (ja) * 2011-06-07 2014-09-24 株式会社ジャパンディスプレイ 表示装置
US20140184962A1 (en) * 2011-08-09 2014-07-03 Sharp Kabushiki Kaisha Stereoscopic display device
JP5597661B2 (ja) * 2012-03-05 2014-10-01 株式会社東芝 画像表示装置
CN102540494A (zh) * 2012-03-20 2012-07-04 福建华映显示科技有限公司 立体显示装置
CN102707344A (zh) * 2012-03-26 2012-10-03 京东方科技集团股份有限公司 一种3d显示装置、透镜面板及其制作方法
JP5921376B2 (ja) * 2012-08-01 2016-05-24 株式会社ジャパンディスプレイ 立体表示装置
KR20140028475A (ko) 2012-08-29 2014-03-10 삼성디스플레이 주식회사 액정 렌즈 패널, 이를 포함하는 3차원 패널 어셈블리 및 표시 장치
JP2014081419A (ja) * 2012-10-15 2014-05-08 Japan Display Inc 液晶表示装置
KR102053290B1 (ko) 2013-09-09 2019-12-09 삼성디스플레이 주식회사 액정 표시 장치의 제조 방법
US9500882B2 (en) 2013-09-17 2016-11-22 Johnson & Johnson Vision Care, Inc. Variable optic ophthalmic device including shaped liquid crystal elements with nano-scaled droplets of liquid crystal
US9541772B2 (en) 2013-09-17 2017-01-10 Johnson & Johnson Vision Care, Inc. Methods and apparatus for ophthalmic devices including cycloidally oriented liquid crystal layers
US9592116B2 (en) 2013-09-17 2017-03-14 Johnson & Johnson Vision Care, Inc. Methods and apparatus for ophthalmic devices including cycloidally oriented liquid crystal layers
US9880398B2 (en) 2013-09-17 2018-01-30 Johnson & Johnson Vision Care, Inc. Method and apparatus for ophthalmic devices including gradient-indexed and shaped liquid crystal layers
US9442309B2 (en) 2013-09-17 2016-09-13 Johnson & Johnson Vision Care, Inc. Method and apparatus for ophthalmic devices comprising dielectrics and nano-scaled droplets of liquid crystal
US9869885B2 (en) 2013-09-17 2018-01-16 Johnson & Johnson Vision Care, Inc. Method and apparatus for ophthalmic devices including gradient-indexed liquid crystal layers and shaped dielectric layers
KR20150081102A (ko) 2014-01-03 2015-07-13 삼성디스플레이 주식회사 액정 렌즈 패널 및 이를 포함하는 표시 장치
KR102192590B1 (ko) * 2014-02-04 2020-12-18 삼성디스플레이 주식회사 표시 장치 및 이의 구동 방법
KR102221553B1 (ko) * 2014-05-09 2021-03-02 삼성디스플레이 주식회사 3차원 표시 장치 및 이를 위한 액정 렌즈 패널 장치
CN104238230B (zh) * 2014-09-02 2020-06-23 深圳超多维科技有限公司 液晶透镜及立体显示装置
CN104317133A (zh) * 2014-11-12 2015-01-28 京东方科技集团股份有限公司 液晶透镜及显示装置
CN105388670A (zh) * 2015-12-24 2016-03-09 上海天马微电子有限公司 液晶面板及其制作方法、包含其的显示装置
TWI627481B (zh) 2016-07-27 2018-06-21 南韓商Lg化學股份有限公司 透光率可變的薄膜、其製造方法及使用
KR20180036821A (ko) * 2016-09-30 2018-04-10 삼성디스플레이 주식회사 입체 영상 표시 장치
CN107505716A (zh) * 2017-09-15 2017-12-22 京东方科技集团股份有限公司 一种显示装置及显示装置的工作方法
CN108983530B (zh) * 2018-07-25 2021-11-02 京东方科技集团股份有限公司 光线调节装置和照明设备
CN109298572B (zh) * 2018-10-17 2022-05-24 京东方科技集团股份有限公司 角度调节器及其制造方法、显示装置及角度调节方法

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101464578A (zh) * 2007-12-18 2009-06-24 乐金显示有限公司 电驱动液晶透镜和利用它的立体显示装置

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2003001285A1 (fr) * 2001-06-26 2003-01-03 Sony Corporation Element d'afficheur a cristaux liquides du type reflectif, unite d'affichage, systeme optique de projection et systeme d'afficheur de projection
US7932980B2 (en) * 2005-11-23 2011-04-26 University Of Central Florida Research Foundation, Inc. Liquid crystal display device having patterned electrodes for repetitive divided horizontal electric field and fringing electric field
KR101429906B1 (ko) * 2007-07-11 2014-08-14 엘지디스플레이 주식회사 액정 전계 렌즈 및 이를 이용한 입체 표시 장치
CN104252055B (zh) * 2008-06-21 2019-08-02 凌威光电公司 使用有效电极结构的动态重构的电光学装置

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101464578A (zh) * 2007-12-18 2009-06-24 乐金显示有限公司 电驱动液晶透镜和利用它的立体显示装置

Also Published As

Publication number Publication date
US8941786B2 (en) 2015-01-27
US20110292306A1 (en) 2011-12-01
CN102116989A (zh) 2011-07-06
KR20110078788A (ko) 2011-07-07

Similar Documents

Publication Publication Date Title
CN102116989B (zh) 电驱动液晶透镜及使用该透镜的立体显示器件
US8502930B2 (en) Electrically-driven liquid crystal lens and stereoscopic display device using the same
CN102116991B (zh) 电场驱动液晶透镜单元及采用该透镜单元的立体图像显示装置
CN102116990B (zh) 电驱动液晶透镜及其立体显示器件
CN101464578B (zh) 电驱动液晶透镜和利用它的立体显示装置
US7872694B2 (en) Electrically-driven liquid crystal lens and stereoscopic display device using the same
US8305550B2 (en) Electrically-driven liquid crystal lens and stereoscopic device using the same
US8823917B2 (en) Electric field driven liquid crystal lens cell and stereoscopic image display device using the same
CN101344642B (zh) 电驱动液晶透镜及使用该电驱动液晶透镜的立体显示装置
CN101339345B (zh) 电驱动液晶透镜以及使用该电驱动液晶透镜的显示装置
US20120069255A1 (en) Stereoscopic image display apparatus
CN106997757B (zh) 显示装置
CN102053446A (zh) 电驱动液晶透镜及使用其的立体显示装置
US8570451B2 (en) Display apparatus and liquid crystal lens
KR20090060633A (ko) 입체 표시 장치
KR102000144B1 (ko) 스윗처블 입체 영상 표시장치
KR101675860B1 (ko) 액정 전계 렌즈 및 이를 이용한 입체 표시 장치

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C14 Grant of patent or utility model
GR01 Patent grant