CN102103748A - 一种复杂背景下红外弱小目标检测和跟踪方法 - Google Patents

一种复杂背景下红外弱小目标检测和跟踪方法 Download PDF

Info

Publication number
CN102103748A
CN102103748A CN 201010590696 CN201010590696A CN102103748A CN 102103748 A CN102103748 A CN 102103748A CN 201010590696 CN201010590696 CN 201010590696 CN 201010590696 A CN201010590696 A CN 201010590696A CN 102103748 A CN102103748 A CN 102103748A
Authority
CN
China
Prior art keywords
target
target area
gray
entropy
expression
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN 201010590696
Other languages
English (en)
Other versions
CN102103748B (zh
Inventor
李映
梁石
张艳宁
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Northwestern Polytechnical University
Original Assignee
Northwestern Polytechnical University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Northwestern Polytechnical University filed Critical Northwestern Polytechnical University
Priority to CN201010590696.XA priority Critical patent/CN102103748B/zh
Publication of CN102103748A publication Critical patent/CN102103748A/zh
Application granted granted Critical
Publication of CN102103748B publication Critical patent/CN102103748B/zh
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Image Analysis (AREA)

Abstract

本发明涉及一种复杂背景下红外弱小目标检测与跟踪方法。考虑到红外图像SNR低、噪声大,单一特征进行跟踪不稳定的问题,本发明首先利用方差加权信息熵提取出感兴趣目标区域作为检测结果,利用灰度和纹理特征建立目标模板,用Mean Shift算法实现红外弱小目标的跟踪,有效地避免了单一特征在复杂背景条件下的跟踪不稳定问题。多段红外视频序列的跟踪实验,都验证了本发明的有效性。

Description

一种复杂背景下红外弱小目标检测和跟踪方法
技术领域
本发明涉及一种涉及红外图像处理方法,具体是红外弱小目标的检测与跟踪方法。
背景技术
红外目标的检测与跟踪,是红外搜索与跟踪系统,精确制导系统,红外预警系统中的一项核心技术。然而,由于远距离下目标成像面积小,对比度较低,边缘模糊,尺寸及形状变化不定,可检测信号相对较弱,特别是在非平稳复杂背景干扰下,背景与目标常交叠在一起,成像的信噪比较低,使得复杂背景下红外弱小目标的检测与跟踪变得很困难。
对于序列图像中的弱小目标的检测和跟踪,其涉及到的相关技术主要包括图像的预处理、目标检测和目标跟踪3个方面。图像预处理是为了背景抑制与目标增强,便于在复杂背景下更好的检测目标。目标检测是从图像中提取出感兴趣的目标对象,是红外目标检测与跟踪的关键。目前,红外序列图像中弱小目标检测算法主要有基于运动能量累积的方法,基于管道滤波的方法,基于运动假设的方法,基于背景预测的方法等。目前有很多目标跟踪算法,大致可以分为两类,确定性方法和随机性方法。确定性方法是通过寻找目标的最优匹配来实现跟踪,如Mean Shift算法。该方法实时性好,能够快速的实现目标匹配,但在遮挡等情况下容易陷入局部极值,跟踪的鲁棒性较差。随机性方法是通过对目标的状态进行估计,如卡尔曼滤波,粒子滤波算法。卡尔曼滤波是有效的线性最优估计技术,但不能处理非线性和非高斯的情况。而粒子滤波方法具有较强的抗遮挡和背景干扰的能力,但计算量比较大,而且存在退化现象。
目标跟踪的关键是提取目标模板进行匹配,因而特征提取是跟踪算法中最基本和最关键的问题。目前使用比较多的特征有颜色信息、运动信息和边缘特征等,而红外目标一般都没有明显的轮廓,同时也没有颜色信息,因此选择灰度分布描述目标。灰度分布描述是一种比较稳健的目标描述策略,它能减弱目标的部分遮挡、旋转和变形对跟踪算法的影响,但是采用单一灰度特征进行跟踪鲁棒性不高,当目标和背景的灰度分布比较相似,或者是光照不稳定时,往往导致跟踪失败。
复杂背景下红外图像信噪比低,噪声干扰大,目标和背景对比度低,使得弱小目标的检测变得很困难;在复杂背景下,不同的特征对不同场景的贡献不一样,因此单一特征表示目标往往得不到好的跟踪效果。
发明内容
要解决的技术问题
为了避免现有技术的不足之处,本发明提出一种复杂背景下红外弱小目标检测和跟踪方法,基于方差加权信息熵实现复杂背景下基于感兴趣区域的目标检测与提取,采用灰度-纹理特征的Mean Shift算法实现目标跟踪。
本发明的思想在于:基于方差加权信息熵(Variance weighted information entropy,Variance WIE)实现了感兴趣区域(region of interest,ROI)的提取,利用灰度-纹理特征表示目标模板,采用Mean Shift算法实现目标跟踪,有效地避免了单一特征在复杂背景条件下的跟踪不稳定问题。
技术方案
一种复杂背景下红外弱小目标检测和跟踪方法,其特征在于步骤如下:
步骤1基于方差加权信息熵的感兴趣区域提取:
步骤(1):将M×N大小的初始帧图像分割成m×n大小的子图像块,得到子图像块集合F(u,v),其中:m=2k,n=2l,1≤k≤4,1≤l≤4,0≤u≤M/m-1,0≤v≤N/n-1;
步骤(2):对子图像块集合F(u,v)中的每幅图像F(i,j),采用公式
Figure BSA00000387583400031
计算其方差加权信息熵H(i,j),得到M/(m-1)×N/(n-1)大小的熵图像,并计算熵图像的均值μ和方差δ;其中:0≤i≤M/m-1,0≤j≤N/n-1,s表示灰度值,ps表示每种灰度级对应的概率,
Figure BSA00000387583400032
表示红外图像的灰度平均值,当ps=0时,令ps*log(ps)=0;
步骤(3):当步骤(2)得到的熵图像中最大的熵值H(t,r)≥HT时,H(t,r)对应的子图像F(t,r)为种子;当H(t,r)<HT时,取m=m/2,n=n/2,重复步骤(1)和(2),直到熵图像中最大的熵值满足H(t,r)≥HT或m=2或n=2;其中(t,r)表示熵最大的图像块的位置;
步骤(4):在熵图像上,以步骤(3)得到的种子,采用基于八邻域的区域增长方法进行增长,得到包含目标的矩形感兴趣区域ROI(centerx,centery,w,h)作为复杂背景下红外弱小目标检测的结果,其中:centerx为区域中心横坐标,centery为区域中心纵坐标,w为区域的宽度,h为区域高度,均为整数;所述基于八邻域的区域增长方法中的相似度α∈(0,1);
步骤2多特征融合:
步骤①:在初始帧中,以感兴趣区域ROI(centerx,centery,w,h)作为目标区域
Figure BSA00000387583400033
将目标区域中的像素点M=w×h分为16个特征区间gr(xi),其中:xi表示像素点的位置(rowi,coli);所述gr(xi)∈[1,16];然后利用LBP纹理空间将目标区域中的像素点M=w×h分为5个特征区间tx(xi)∈[2,6]:
Figure BSA00000387583400034
其中:2,3,4,5,6表示五种模式;
所述其中:1表示圆环的半径,8表示圆环上点的个数;gc表示坐标为(x0,y0)的中心点yc的灰度值;gb表示以中心点为中心,半径为1的圆环上第b个等分点的灰度值,等分点坐标为(x0-sin(2πb/8),y0+cos(2πb/8)),b∈[0,7];
Figure BSA00000387583400042
tx(xi)为xi处对应的灰度特征值,tx(xi)∈[1,5];
步骤②:将特征区间gr(xi)和tx(xi)∈[1,5]相加m=16×5=80,得到m个特征区间gt(xi),其中gt(xi)=(gt(xi)-1)×5+tx(xi),gt(xi)∈[1,80];
所述目标区域特征区间的灰度纹理特征表示为q={qu}u=1,…,m,其中:
Figure BSA00000387583400043
参数描述目标区域的大小,δ是狄拉克函数,K(·)是加权函数,定义为
Figure BSA00000387583400045
C为归一化系数;所述C的取值保证使得
Figure BSA00000387583400047
其中||y-xi||表示区域的中心点y与区域中像素点xi的欧氏距离;
步骤3Mean Shift跟踪步骤:
步骤(一):由步骤2得到初始帧中目标区域的灰度纹理特征q={qu}u=1,...,m以及初始帧目标的位置y0(centerx,centery),目标区域大小即为w×h;从第二帧pFrame=2开始采用迭代方程
Figure BSA00000387583400048
将当前目标区域的中心位置y0移动到新的目标区域中心位置y1,xi为当前目标区域中的像素点,i=1,...,M,ωi为当前目标区域中像素点的权值,
Figure BSA00000387583400049
pu(y0)为用步骤2中同样的方法得到的当前目标区域的灰度纹理特征;初始化迭代次数k=0,令k←k+1,d←||y1-y0||,当满足d<ε or k≥N时迭代停止,ynew(pFrame)=y1,否则,令y0←y1,继续迭代。其中d表示偏移距离,ε表示阈值,N表示最大迭代次数,0<ε<0.5,N≥10;ynew(pFrame)即为当前帧的目标跟踪结果,表示目标区域的中心坐标;
步骤(二):令y0←ynew(pFrame),pFrame←pFrame+1,
if pFrame>TotalFrames
跟踪结束,ynew即为目标跟踪的结果,表示第2到TotalFrames帧中目标区域的中心坐标;TotalFrames表示图像序列的帧数;
否则由步骤(一)重新开始。
有益效果
本发明提出的一种复杂背景下红外弱小目标检测和跟踪方法,首先利用方差加权信息熵做感兴趣区域提取,得到包含目标的矩形框,缩小了解空间、剔除了大量的噪声干扰;然后在包含目标的矩形区域内利用灰度-纹理特征建立目标模板,用Mean Shift算法实现红外弱小目标的跟踪,有效地避免了单一特征在复杂背景条件下的跟踪不稳定问题。
附图说明
图1:本发明方法的流程图
具体实施方式
现结合实施例、附图对本发明作进一步描述:
步骤1基于加权信息熵的感兴趣区域提取:
(1)将M×N大小的图像分割成m×n大小的子图像块,得到子图像块集合F(u,v),其中:m=2k,n=2l,1≤k≤4,1≤l≤4,0≤u≤M/m-1,0≤v≤N/n-1,这里我们取k=l=3;
(2)对子图像块集合F(u,v)中的每幅图像F(i,j),采用公式
Figure BSA00000387583400061
计算其方差加权信息熵H(i,j),得到M/(m-1)×N/(n-1)大小的熵图像,并计算熵图像的均值μ和方差δ。其中:0≤i≤M/m-1,0≤j≤N/n-1,s表示灰度值,s∈[0,255],ps表示每种灰度级对应的概率,
Figure BSA00000387583400062
表示红外图像的灰度平均值,当ps=0时,令ps*log(ps)=0;
(3)以H(t,r)=max{H(u,v)}表示步骤(2)得到的熵图像中最大的熵值,(t,r)表示熵最大的图像块的位置。如果H(t,r)≥HT,其中HT=μ+α*δ,α=1,2,3,...,这里α取6,则H(t,r)对应的子图像F(t,r)即为种子。如果H(t,r)<HT,则取m=m/2,n=n/2,重复步骤(1)和(2),直到熵图像中最大的熵值满足H(t,r)≥HT或m=2或n=2;
(4)在熵图像上,结合步骤(3)得到的种子,采用基于八邻域的区域增长方法,相似度α∈(0,1),本文取α=0.5,得到包含目标的矩形感兴趣区域ROI,表示为ROI(centerx,centery,w,h),分别代表感兴趣区域中心横坐标,中心纵坐标,区域的宽度,区域的高度,且它们都为整数。ROI(centerx,centery,w,h)即作为弱小目标检测的结果。
步骤2多特征融合:
以步骤1得到的感兴趣区域ROI(centerx,centery,w,h)作为目标区域,记目标区域为
Figure BSA00000387583400063
则M=w×h,代表目标区域像素点的个数,xi表示像素点的位置(rowi,coli)。将像素点灰度空间划分为16个区间,用gr(xi)表示xi处对应的灰度特征值,gr(xi)∈[1,16];利用LBP纹理空间划分为5个区间,取其值
Figure BSA00000387583400064
为2,3,4,5,6的五种模式,为方便表示,将2,3,4,5,6相应的转化为1,2,3,4,5,其中
Figure BSA00000387583400071
圆环上点的个数为8,圆环的半径为1,gc表示中心点yc的灰度值,坐标为(x0,y0),gb表示以中心点为中心,半径为1的圆环上第b个等分点的灰度值,坐标用(x0-sin(2πb/8),y0+cos(2πb/8))表示,b∈[0,7],
Figure BSA00000387583400072
用tx(xi)表示xi处对应的灰度特征值,tx(xi)∈[1,5],则特征空间被划分为m个空间,m=16×5=80,用gt(xi)表示,gt(xi)=(gt(xi)-1)×5+tx(xi),gt(xi)∈[1,80],统计目标区域中特征点落在每个区域的像素个数,则目标空间灰度纹理特征记为q={qu}u=1,...,m
Figure BSA00000387583400073
C为归一化系数,使得
Figure BSA00000387583400075
||y-xi||表示区域的中心点y与区域中像素点xi的欧氏距离,参数
Figure BSA00000387583400076
描述目标区域的大小,δ是狄拉克函数,K(.)是加权函数,定义为
步骤3Mean Shift跟踪:
从当前目标区域的中心位置y0移动到新的目标区域中心位置的y1的迭代方程为:
Figure BSA00000387583400078
xi为初始目标区域中的像素点,i=1,...,M,ωi为当前目标区域中像素点的权值,
Figure BSA00000387583400079
q={qu}u=1,…,m为步骤2中得到的初始目标区域的灰度纹理特征,pu(y0)为用步骤2中同样的方法得到的当前目标区域的灰度纹理特征。具体跟踪步骤如下:
由步骤2得到目标区域的灰度纹理特征q={qu}u=1,...,m以及初始帧目标的位置y0(centerx,centery),目标区域大小即为w×h;从第二帧开始跟踪目标,pFrame=2;视频序列图像帧数为TotalFrames;
(1)载入第pFrame帧图像。初始化,迭代次数k←0;
(2)在当前帧中计算候选目标区域的灰度纹理特征p(y0);
(3)计算权值{ωi}i=1,...,m
(4)计算目标区域的新位置y1
(5)k←k+1,d←||y1-y0||,d表示偏移距离,设定阈值ε和最大迭代次数N,0<ε<0.5,N≥10,这里取阈值ε=0.1,迭代次数N=10;
if d<ε or k≥N
迭代停止,ynew(pFrame)=y1即为当前帧的目标跟踪结果,表示目标区域的中心坐标,转入(6);
else
转入(2);
(6)y0←ynew(pFrame),pFrame←pFrame+1;
if pFrame>TotalFrames
跟踪结束,ynew即为目标跟踪的结果,表示第2到TotalFrames帧中跟踪得到的目标区域的中心坐标;
else
转入步骤3的(1)步骤。

Claims (1)

1.一种复杂背景下红外弱小目标检测和跟踪方法,其特征在于步骤如下:
步骤1基于方差加权信息熵的感兴趣区域提取:
步骤(1):将M×N大小的初始帧图像分割成m×n大小的子图像块,得到子图像块集合F(u,v),其中:m=2k,n=2l,1≤k≤4,1≤l≤4,0≤u≤M/m-1,0≤v≤N/n-1;
步骤(2):对子图像块集合F(u,v)中的每幅图像F(i,j),采用公式
Figure FSA00000387583300011
计算其方差加权信息熵H(i,j),得到M/(m-1)×N/(n-1)大小的熵图像,并计算熵图像的均值μ和方差δ;其中:0≤i≤M/m-1,0≤j≤N/n-1,s表示灰度值,ps表示每种灰度级对应的概率,
Figure FSA00000387583300012
表示红外图像的灰度平均值,当ps=0时,令ps*log(ps)=0;
步骤(3):当步骤(2)得到的熵图像中最大的熵值H(t,r)≥HT时,H(t,r)对应的子图像F(t,r)为种子;当H(t,r)<HT时,取m=m/2,n=n/2,重复步骤(1)和(2),直到熵图像中最大的熵值满足H(t,r)≥HT或m=2或n=2;其中(t,r)表示熵最大的图像块的位置;
步骤(4):在熵图像上,以步骤(3)得到的种子,采用基于八邻域的区域增长方法进行增长,得到包含目标的矩形感兴趣区域ROI(centerx,centery,w,h)作为复杂背景下红外弱小目标检测的结果,其中:centerx为区域中心横坐标,centery为区域中心纵坐标,w为区域的宽度,h为区域高度,均为整数;所述基于八邻域的区域增长方法中的相似度α∈(0,1);
步骤2多特征融合:
步骤①:在初始帧中,以感兴趣区域ROI(centerx,centery,w,h)作为目标区域将目标区域中的像素点M=w×h分为16个特征区间gr(xi),其中:xi表示像素点的位置(rowi,coli);所述gr(xi)∈[1,16];然后利用LBP纹理空间将目标区域中的像素点M=w×h分为5个特征区间tx(xi)∈[2,6]:
Figure FSA00000387583300021
其中:2,3,4,5,6表示五种模式;
所述其中:1表示圆环的半径,8表示圆环上点的个数;gc表示坐标为(x0,y0)的中心点yc的灰度值;gb表示以中心点为中心,半径为1的圆环上第b个等分点的灰度值,等分点坐标为(x0-sin(2πb/8),y0+cos(2πb/8)),b∈[0,7];
Figure FSA00000387583300023
tx(xi)为xi处对应的灰度特征值,tx(xi)∈[1,5];
步骤②:将特征区间gr(xi)和tx(xi)∈[1,5]相加m=16×5=80,得到m个特征区间gt(xi),其中gt(xi)=(gt(xi)-1)×5+tx(xi),gt(xi)∈[1,80];
所述目标区域特征区间的灰度纹理特征表示为q={qu}u=1,…,m,其中:
Figure FSA00000387583300024
参数
Figure FSA00000387583300025
描述目标区域的大小,δ是狄拉克函数,K(·)是加权函数,定义为
Figure FSA00000387583300026
C为归一化系数;所述C的取值保证
Figure FSA00000387583300027
使得
Figure FSA00000387583300028
其中||y-xi||表示区域的中心点y与区域中像素点xi的欧氏距离;
步骤3Mean Shift跟踪步骤:
步骤(一):由步骤2得到初始帧中目标区域的灰度纹理特征q={qu}u=1,…,m以及初始帧目标的位置y0(centerx,centery),目标区域大小即为w×h;从第二帧pFrame=2开始采用迭代方程
Figure FSA00000387583300031
将当前目标区域的中心位置y0移动到新的目标区域中心位置y1,xi为当前目标区域中的像素点,i=1,...,M,ωi为当前目标区域中像素点的权值,
Figure FSA00000387583300032
pu(y0)为用步骤2中同样的方法得到的当前目标区域的灰度纹理特征;初始化迭代次数k=0,令k←k+1,d←||y1-y0||,当满足d<εor k≥N时迭代停止,ynew(pFrame)=y1,否则,令y0←y1,继续迭代。其中d表示偏移距离,ε表示阈值,N表示最大迭代次数,0<ε<0.5,N≥10;ynew(pFrame)即为当前帧的目标跟踪结果,表示目标区域的中心坐标;
步骤(二):令y0←ynew(pFrame),pFrame←pFrame+1,
if pFrame>TotalFrames
跟踪结束,ynew即为目标跟踪的结果,表示第2到TotalFrames帧中目标区域的中心坐标;TotalFrames表示图像序列的帧数;
否则由步骤(一)重新开始。
CN201010590696.XA 2010-12-14 2010-12-14 一种复杂背景下红外弱小目标检测和跟踪方法 Expired - Fee Related CN102103748B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201010590696.XA CN102103748B (zh) 2010-12-14 2010-12-14 一种复杂背景下红外弱小目标检测和跟踪方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201010590696.XA CN102103748B (zh) 2010-12-14 2010-12-14 一种复杂背景下红外弱小目标检测和跟踪方法

Publications (2)

Publication Number Publication Date
CN102103748A true CN102103748A (zh) 2011-06-22
CN102103748B CN102103748B (zh) 2014-02-05

Family

ID=44156492

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201010590696.XA Expired - Fee Related CN102103748B (zh) 2010-12-14 2010-12-14 一种复杂背景下红外弱小目标检测和跟踪方法

Country Status (1)

Country Link
CN (1) CN102103748B (zh)

Cited By (23)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102254186A (zh) * 2011-08-03 2011-11-23 浙江大学 一种采用局部结构相似度差异的红外目标探测方法
CN102779348A (zh) * 2012-06-20 2012-11-14 中国农业大学 无标识运动目标跟踪测量方法
CN102955945A (zh) * 2011-08-29 2013-03-06 北京邮电大学 一种用于目标识别和跟踪的纹理特征提取方法
CN103150705A (zh) * 2012-12-06 2013-06-12 华中科技大学 一种弱小目标图像的自适应恢复增强方法
CN103413138A (zh) * 2013-07-18 2013-11-27 航天恒星科技有限公司 一种红外图像序列中点目标检测方法
CN103514600A (zh) * 2013-09-13 2014-01-15 西北工业大学 一种基于稀疏表示的红外目标快速鲁棒跟踪方法
CN104392461A (zh) * 2014-12-17 2015-03-04 中山大学 一种基于纹理特征的视频跟踪方法
CN104766100A (zh) * 2014-10-22 2015-07-08 中国人民解放军电子工程学院 基于机器学习的红外小目标图像背景预测方法与装置
CN105654516A (zh) * 2016-02-18 2016-06-08 西北工业大学 基于目标显著性的卫星图像对地面弱小运动目标检测方法
CN105976403A (zh) * 2016-07-25 2016-09-28 中国电子科技集团公司第二十八研究所 一种基于核函数质心漂移的红外成像目标跟踪方法
CN106997596A (zh) * 2017-04-01 2017-08-01 太原理工大学 一种基于信息熵和联合向量的lbf活动轮廓模型的肺结节分割方法
CN107369164A (zh) * 2017-06-20 2017-11-21 成都中昊英孚科技有限公司 一种红外弱小目标的跟踪方法
CN107704814A (zh) * 2017-09-26 2018-02-16 中国船舶重工集团公司第七〇九研究所 一种基于视频的振动目标监测方法
CN108647698A (zh) * 2018-05-21 2018-10-12 西安电子科技大学 特征提取与描述方法
CN108734717A (zh) * 2018-04-17 2018-11-02 西北工业大学 基于深度学习的单帧星图背景暗弱目标提取方法
CN109493365A (zh) * 2018-10-11 2019-03-19 中国科学院上海技术物理研究所 一种弱小目标的跟踪方法
CN105761279B (zh) * 2016-02-18 2019-05-24 西北工业大学 基于轨迹分割与拼接的目标跟踪方法
CN109886991A (zh) * 2019-03-04 2019-06-14 电子科技大学 一种基于邻域强度纹理编码的红外成像河道检测方法
CN109903272A (zh) * 2019-01-30 2019-06-18 西安天伟电子系统工程有限公司 目标检测方法、装置、设备、计算机设备和存储介质
CN109978851A (zh) * 2019-03-22 2019-07-05 北京航空航天大学 一种红外视频空中弱小运动目标检测跟踪方法
CN110276280A (zh) * 2019-06-06 2019-09-24 刘嘉津 一种农作物害虫图像自动识别的光学处理方法
CN111666944A (zh) * 2020-04-27 2020-09-15 中国空气动力研究与发展中心计算空气动力研究所 一种红外弱小目标检测方法及装置
CN113853515A (zh) * 2019-05-30 2021-12-28 松下知识产权经营株式会社 运动物体的应力分析装置

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101847259A (zh) * 2010-01-21 2010-09-29 西北工业大学 基于加权信息熵和马尔可夫随机场的红外目标分割方法

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101847259A (zh) * 2010-01-21 2010-09-29 西北工业大学 基于加权信息熵和马尔可夫随机场的红外目标分割方法

Non-Patent Citations (4)

* Cited by examiner, † Cited by third party
Title
《中国博士学位论文电子期刊》 20091215 宁纪锋 图像分割和目标跟踪中的若干问题研究 1 , *
《中国图象图形学报》 20080331 王新红等 基于空间边缘方向直方图的Mean Shift跟踪算法 1 第13卷, 第3期 *
《光子学报》 20071130 王永忠等 一种基于纹理特征的红外成像目标跟踪方法 1 第36卷, 第11期 *
《模式识别与人工智能》 20071031 宁纪锋等 一种基于纹理模型的Mean Shift目标跟踪算法 1 第20卷, 第5期 *

Cited By (37)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102254186A (zh) * 2011-08-03 2011-11-23 浙江大学 一种采用局部结构相似度差异的红外目标探测方法
CN102955945B (zh) * 2011-08-29 2015-08-19 北京邮电大学 一种用于目标识别和跟踪的纹理特征提取方法
CN102955945A (zh) * 2011-08-29 2013-03-06 北京邮电大学 一种用于目标识别和跟踪的纹理特征提取方法
CN102779348B (zh) * 2012-06-20 2015-01-07 中国农业大学 无标识运动目标跟踪测量方法
CN102779348A (zh) * 2012-06-20 2012-11-14 中国农业大学 无标识运动目标跟踪测量方法
CN103150705A (zh) * 2012-12-06 2013-06-12 华中科技大学 一种弱小目标图像的自适应恢复增强方法
CN103150705B (zh) * 2012-12-06 2016-05-25 华中科技大学 一种弱小目标图像的自适应恢复增强方法
CN103413138B (zh) * 2013-07-18 2016-08-10 航天恒星科技有限公司 一种红外图像序列中点目标检测方法
CN103413138A (zh) * 2013-07-18 2013-11-27 航天恒星科技有限公司 一种红外图像序列中点目标检测方法
CN103514600A (zh) * 2013-09-13 2014-01-15 西北工业大学 一种基于稀疏表示的红外目标快速鲁棒跟踪方法
CN103514600B (zh) * 2013-09-13 2016-08-31 西北工业大学 一种基于稀疏表示的红外目标快速鲁棒跟踪方法
CN104766100B (zh) * 2014-10-22 2018-05-18 中国人民解放军电子工程学院 基于机器学习的红外小目标图像背景预测方法与装置
CN104766100A (zh) * 2014-10-22 2015-07-08 中国人民解放军电子工程学院 基于机器学习的红外小目标图像背景预测方法与装置
CN104392461B (zh) * 2014-12-17 2017-07-11 中山大学 一种基于纹理特征的视频跟踪方法
CN104392461A (zh) * 2014-12-17 2015-03-04 中山大学 一种基于纹理特征的视频跟踪方法
CN105654516A (zh) * 2016-02-18 2016-06-08 西北工业大学 基于目标显著性的卫星图像对地面弱小运动目标检测方法
CN105654516B (zh) * 2016-02-18 2019-03-26 西北工业大学 基于目标显著性的卫星图像对地面弱小运动目标检测方法
CN105761279B (zh) * 2016-02-18 2019-05-24 西北工业大学 基于轨迹分割与拼接的目标跟踪方法
CN105976403A (zh) * 2016-07-25 2016-09-28 中国电子科技集团公司第二十八研究所 一种基于核函数质心漂移的红外成像目标跟踪方法
CN105976403B (zh) * 2016-07-25 2018-09-21 中国电子科技集团公司第二十八研究所 一种基于核函数质心漂移的红外成像目标跟踪方法
CN106997596A (zh) * 2017-04-01 2017-08-01 太原理工大学 一种基于信息熵和联合向量的lbf活动轮廓模型的肺结节分割方法
CN106997596B (zh) * 2017-04-01 2019-08-20 太原理工大学 一种基于信息熵和联合向量的lbf活动轮廓模型的肺结节分割方法
CN107369164A (zh) * 2017-06-20 2017-11-21 成都中昊英孚科技有限公司 一种红外弱小目标的跟踪方法
CN107369164B (zh) * 2017-06-20 2020-05-22 成都中昊英孚科技有限公司 一种红外弱小目标的跟踪方法
CN107704814A (zh) * 2017-09-26 2018-02-16 中国船舶重工集团公司第七〇九研究所 一种基于视频的振动目标监测方法
CN108734717A (zh) * 2018-04-17 2018-11-02 西北工业大学 基于深度学习的单帧星图背景暗弱目标提取方法
CN108734717B (zh) * 2018-04-17 2021-11-23 西北工业大学 基于深度学习的单帧星图背景暗弱目标提取方法
CN108647698A (zh) * 2018-05-21 2018-10-12 西安电子科技大学 特征提取与描述方法
CN109493365A (zh) * 2018-10-11 2019-03-19 中国科学院上海技术物理研究所 一种弱小目标的跟踪方法
CN109903272A (zh) * 2019-01-30 2019-06-18 西安天伟电子系统工程有限公司 目标检测方法、装置、设备、计算机设备和存储介质
CN109903272B (zh) * 2019-01-30 2021-09-03 西安天伟电子系统工程有限公司 目标检测方法、装置、设备、计算机设备和存储介质
CN109886991A (zh) * 2019-03-04 2019-06-14 电子科技大学 一种基于邻域强度纹理编码的红外成像河道检测方法
CN109978851A (zh) * 2019-03-22 2019-07-05 北京航空航天大学 一种红外视频空中弱小运动目标检测跟踪方法
CN113853515A (zh) * 2019-05-30 2021-12-28 松下知识产权经营株式会社 运动物体的应力分析装置
CN113853515B (zh) * 2019-05-30 2024-03-19 松下知识产权经营株式会社 运动物体的应力分析装置
CN110276280A (zh) * 2019-06-06 2019-09-24 刘嘉津 一种农作物害虫图像自动识别的光学处理方法
CN111666944A (zh) * 2020-04-27 2020-09-15 中国空气动力研究与发展中心计算空气动力研究所 一种红外弱小目标检测方法及装置

Also Published As

Publication number Publication date
CN102103748B (zh) 2014-02-05

Similar Documents

Publication Publication Date Title
CN102103748B (zh) 一种复杂背景下红外弱小目标检测和跟踪方法
Wu et al. Spatio-temporal context for codebook-based dynamic background subtraction
Guo et al. A novel image edge detection algorithm based on neutrosophic set
CN106991686B (zh) 一种基于超像素光流场的水平集轮廓跟踪方法
CN101924871A (zh) 基于均值偏移的视频目标跟踪方法
Zhang et al. Level set evolution driven by optimized area energy term for image segmentation
Karpagavalli et al. Estimating the density of the people and counting the number of people in a crowd environment for human safety
CN103870818A (zh) 一种烟雾检测方法和装置
Hossain et al. Moving object detection for real time video surveillance: An edge based approach
Zhang et al. Visual saliency based object tracking
CN102930558B (zh) 一种多特征融合的红外图像目标实时跟踪方法
Quast et al. AUTO GMM-SAMT: An automatic object tracking system for video surveillance in traffic scenarios
Cheng Highway traffic flow estimation for surveillance scenes damaged by rain
phadke Robust multiple target tracking under occlusion using Fragmented Mean Shift and Kalman Filter
Mofaddel et al. Fast and accurate approaches for image and moving object segmentation
Wang et al. Pedestrian analysis and counting system with videos
Chiu et al. Moving/motionless foreground object detection using fast statistical background updating
Guo et al. Research on the detection and tracking technology of moving object in video images
Tao et al. A novel adaptive motion detection based on k-means clustering
CN112418105B (zh) 基于差分方法的高机动卫星时间序列遥感影像运动舰船目标检测方法
Jiang Object modelling and tracking in videos via multidimensional features
Du et al. Foreground detection in surveillance videos via a hybrid local texture based method
Albalooshi et al. Adaptive segmentation technique for automatic object region and boundary extraction for activity recognition
Hou et al. Human detection in intelligent video surveillance: A review
Mukherjee et al. An adaptive differential evolution based fuzzy approach for edge detection in color and grayscale images

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C14 Grant of patent or utility model
GR01 Patent grant
CF01 Termination of patent right due to non-payment of annual fee

Granted publication date: 20140205

Termination date: 20141214

EXPY Termination of patent right or utility model