CN102098141A - Link transmission device and method in SC-FDMA (Single Carrier-Frequency Division Multiple Access) system and space time block code coder and method - Google Patents

Link transmission device and method in SC-FDMA (Single Carrier-Frequency Division Multiple Access) system and space time block code coder and method Download PDF

Info

Publication number
CN102098141A
CN102098141A CN2009102426243A CN200910242624A CN102098141A CN 102098141 A CN102098141 A CN 102098141A CN 2009102426243 A CN2009102426243 A CN 2009102426243A CN 200910242624 A CN200910242624 A CN 200910242624A CN 102098141 A CN102098141 A CN 102098141A
Authority
CN
China
Prior art keywords
module
data
domain
time
frequency
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN2009102426243A
Other languages
Chinese (zh)
Inventor
吴晔
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Potevio Information Technology Co Ltd
Original Assignee
Potevio Information Technology Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Potevio Information Technology Co Ltd filed Critical Potevio Information Technology Co Ltd
Priority to CN2009102426243A priority Critical patent/CN102098141A/en
Priority to PCT/CN2010/079574 priority patent/WO2011069453A1/en
Publication of CN102098141A publication Critical patent/CN102098141A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • H04B7/06Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station
    • H04B7/0613Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission
    • H04B7/0667Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission of delayed versions of same signal
    • H04B7/0669Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission of delayed versions of same signal using different channel coding between antennas
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/02Arrangements for detecting or preventing errors in the information received by diversity reception
    • H04L1/06Arrangements for detecting or preventing errors in the information received by diversity reception using space diversity
    • H04L1/0618Space-time coding
    • H04L1/0625Transmitter arrangements
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/02Arrangements for detecting or preventing errors in the information received by diversity reception
    • H04L1/06Arrangements for detecting or preventing errors in the information received by diversity reception using space diversity
    • H04L1/0618Space-time coding
    • H04L1/0637Properties of the code
    • H04L1/0643Properties of the code block codes

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Radio Transmission System (AREA)

Abstract

本发明公开了一种单载波频分多址SC-FDMA系统中的链路发送单元,包括:信道编码模块、星座调制模块、数据分流模块、DFT模块、STBC器、资源映射模块、IFFT模块和发射模块,其中数据分流模块用于对星座调制模块输入的经过星座调制后的时域数据流进行分流,并将所述分流后得到的时域子数据流进行先STBC后DFT,或者进行先DFT后STBC。应用本发明所述的装置和方法,由于数据分流模块的增加,使得分流后得到的时域子数据流既可以先转换为频域子数据流、再对频域子数据流进行STBC,也可以直接对时域子数据流进行STBC,从而使得STBC既可以在DFT之前进行,也可以在DFT之后进行,从而提高了系统设计的灵活性。

Figure 200910242624

The invention discloses a link sending unit in a single carrier frequency division multiple access SC-FDMA system, comprising: a channel coding module, a constellation modulation module, a data distribution module, a DFT module, an STBC device, a resource mapping module, an IFFT module and The transmitting module, wherein the data splitting module is used to split the constellation-modulated time-domain data stream input by the constellation modulation module, and perform STBC first and then DFT on the time-domain sub-data stream obtained after the splitting, or perform DFT first Post-STBC. Applying the device and method of the present invention, due to the increase of the data distribution module, the time-domain sub-data stream obtained after the distribution can be converted into a frequency-domain sub-data stream first, and then STBC is performed on the frequency-domain sub-data stream, or The STBC is directly performed on the time-domain sub-data flow, so that the STBC can be performed before or after the DFT, thereby improving the flexibility of system design.

Figure 200910242624

Description

SC-FDMA系统中链路传输装置及方法和空时块码编码器及方法Link transmission device and method, space-time block code encoder and method in SC-FDMA system

技术领域technical field

本发明涉及无线通信系统,特别涉及一种单载波频分多址(SC-FDMA)系统中的链路传输装置及方法和空时块码编码(STBC)器及编码方法。The present invention relates to a wireless communication system, in particular to a link transmission device and method in a single carrier frequency division multiple access (SC-FDMA) system, a space-time block code (STBC) device and a coding method.

背景技术Background technique

目前,第三代合作伙伴计划(3GPP)正在考虑的高级长期演进(LTEadvanced)中的上行链路传输是以SC-FDMA技术为基础的,且在SC-FDMA系统中进行上行链路传输时采用了STBC发射分集的方法。采用上述方法的上行链路传输装置包含了上行链路发送单元和上行链路接收单元,以下分别进行介绍。Currently, the uplink transmission in Long Term Evolution Advanced (LTEadvanced), which is being considered by the Third Generation Partnership Project (3GPP), is based on SC-FDMA technology, and the uplink transmission in the SC-FDMA system uses The method of STBC transmit diversity. The uplink transmission device adopting the above method includes an uplink sending unit and an uplink receiving unit, which will be introduced respectively below.

参见图1,图1为现有技术上行链路发送单元的结构示意图。如图1所示,该发送单元主要包括:Referring to FIG. 1 , FIG. 1 is a schematic structural diagram of an uplink sending unit in the prior art. As shown in Figure 1, the sending unit mainly includes:

信道编码模块101,用于对输入的信息比特流进行信道编码,并将信道编码后得到的编码比特流输出到星座调制模块102。The channel coding module 101 is configured to perform channel coding on the input information bit stream, and output the coded bit stream obtained after channel coding to the constellation modulation module 102 .

星座调制模块102,用于对信道编码模块101输入的编码比特流进行星座调制,并将星座调制后得到的时域数据流输出到傅里叶变换(DFT)模块103。The constellation modulation module 102 is configured to perform constellation modulation on the coded bit stream input by the channel coding module 101 , and output the time domain data stream obtained after constellation modulation to a Fourier transform (DFT) module 103 .

星座调制模块102对信道编码后得到的编码比特流进行星座调制后,得到的星座调制后的数据流为时域表现形式,即时域数据流。为了后续描述方便,假设星座调制后得到的时域数据流d=[d[0],d[1],...,d[2M-1]]T,其中,所述2M为时域数据流中数据的个数,所述T为转置。After the constellation modulation module 102 performs constellation modulation on the coded bit stream obtained after channel coding, the obtained constellation-modulated data stream is a time-domain representation form, that is, an instant-domain data stream. For the convenience of subsequent description, it is assumed that the time-domain data stream d=[d[0], d[1], ..., d[2M-1]] T obtained after constellation modulation, wherein the 2M is time-domain data The number of data in the stream, the T is the transpose.

DFT模块103,用于对星座调制模块102输入的时域数据流进行DFT,得到时域数据流的频域表现形式,即频域数据流,并将所述频域数据流输出到STBC器104。The DFT module 103 is used to perform DFT on the time-domain data stream input by the constellation modulation module 102 to obtain the frequency-domain representation of the time-domain data stream, that is, the frequency-domain data stream, and output the frequency-domain data stream to the STBC device 104 .

时域数据流d=[d[0],d[1],...,d[2M-1]]T经过DFT之后,其频域数据流为D=[D[0],D[1],...,D[2M-1]]T,其中所述D[0],D[1],...,D[2M-1]为d[0],d[1],...,d[2M-1]的DFT结果。Time-domain data flow d=[d[0], d[1],...,d[2M-1]] After T undergoes DFT, its frequency-domain data flow is D=[D[0], D[1 ], ..., D[2M-1]] T , wherein the D[0], D[1], ..., D[2M-1] are d[0], d[1],. .., the DFT result of d[2M-1].

STBC模块104,用于对DFT模块103输入的频域数据流进行STBC,得到STBC后的频域编码序列,并将得到的频域编码序列输出到资源映射模块105。The STBC module 104 is configured to perform STBC on the frequency-domain data stream input by the DFT module 103 to obtain a frequency-domain coded sequence after STBC, and output the obtained frequency-domain coded sequence to the resource mapping module 105 .

在采用STBC单元对频域数据流进行STBC时,紧邻的两个发射时间段T1和T2内需要采用不同的STBC,且每个发射时间段都需要采用两根天线进行发射。When the STBC unit is used to perform STBC on the frequency domain data stream, different STBCs need to be used in the two adjacent transmission time periods T1 and T2, and two antennas need to be used for transmission in each transmission time period.

在T1时间段内,对频域数据流进行STBC后,得到的STBC后的频域编码序列为DT1 1和DT1 2,也即频域数据流D被编码为DT1 1和DT1 2两个序列,这两个频域编码序列DT1 1和DT1 2分别为:In the T1 time period, after performing STBC on the frequency domain data stream, the obtained frequency domain coding sequence after STBC is D T1 1 and D T1 2 , that is, the frequency domain data stream D is coded as D T1 1 and D T1 2 Two sequences, the two frequency-domain coding sequences D T1 1 and D T1 2 are respectively:

DD. TT 11 11 == [[ DD. [[ 00 ]] ,, DD. [[ 22 ]] ,, .. .. .. ,, DD. [[ 22 Mm -- 22 ]] ]] TT ,,

DD. TT 11 22 == [[ DD. [[ 11 ]] ,, DD. [[ 33 ]] ,, .. .. .. ,, DD. [[ 22 Mm -- 11 ]] ]] TT ,,

其具体的STBC过程如下:The specific STBC process is as follows:

D T 1 1 ( m 1 ) = D ( 2 m 1 ) , 其中,所述m1=0,1,...,M-1,所述D(2m1)为频域数据流D的第2m1个元素,所述DT1 1(m1)为序列DT1 1的第m1个元素; D. T 1 1 ( m 1 ) = D. ( 2 m 1 ) , Wherein, the m 1 =0, 1, ..., M-1, the D(2m 1 ) is the 2m 1th element of the frequency domain data stream D, and the D T1 1 (m 1 ) is the sequence The m 1st element of D T1 1 ;

D T 1 2 ( m 2 ) = D ( 2 m 2 + 1 ) , 其中,所述m2=0,1,...,M-1,所述D(2m2+1)为频域数据流D的第2m2+1个元素,所述DT1 2(m2)为序列DT1 2的第m2个元素。 D. T 1 2 ( m 2 ) = D. ( 2 m 2 + 1 ) , Wherein, the m 2 =0, 1, ..., M-1, the D(2m 2 +1) is the 2m 2 +1th element of the frequency domain data stream D, and the D T1 2 (m 2 ) is the m 2th element of the sequence D T1 2 .

在T2时间段内,对频域数据流进行STBC后,得到的STBC后的频域编码序列为DT2 1和DT2 2,也即频域数据流D被编码为DT2 1和DT2 2两个序列,这两个频域编码序列DT2 1和DT2 2分别为:In the T2 time period, after performing STBC on the frequency domain data stream, the obtained frequency domain coding sequence after STBC is D T2 1 and D T2 2 , that is, the frequency domain data stream D is coded as D T2 1 and D T2 2 Two sequences, the two frequency-domain coding sequences D T2 1 and D T2 2 are:

DD. TT 22 11 == [[ -- DD. ** [[ 11 ]] ,, -- DD. ** [[ 22 ]] ,, .. .. .. ,, -- DD. ** [[ 22 Mm -- 11 ]] ]] TT ,,

DD. TT 11 22 == [[ DD. ** [[ 00 ]] ,, DD. ** [[ 22 ]] ,, .. .. .. ,, DD. ** [[ 22 Mm -- 22 ]] ]] TT ,,

其具体的STBC过程如下:The specific STBC process is as follows:

D T 1 1 ( n 1 ) = - D * ( 2 n 1 + 1 ) , 其中,所述n1=0,1,...,M-1,所述*为共轭,所述D(2n1+1)为频域数据流D的第2n1+1个元素,所述DT2 1(n1)为序列DT2 1的第n1个元素; D. T 1 1 ( no 1 ) = - D. * ( 2 no 1 + 1 ) , Wherein, the n 1 =0, 1, ..., M-1, the * is a conjugate, and the D(2n 1 +1) is the 2n 1 +1th element of the frequency domain data stream D, The D T2 1 (n 1 ) is the n 1th element of the sequence D T2 1 ;

D T 2 2 ( n 2 ) = D * ( 2 n 2 ) , 其中,所述n2=0,1,...,M-1,所述D(2n2)为频域数据流D的第2n2个元素,所述DT2 2(n2)为序列DT1 2的第n2个元素。 D. T 2 2 ( no 2 ) = D. * ( 2 no 2 ) , Wherein, the n 2 =0, 1, ..., M-1, the D(2n 2 ) is the 2n 2th element of the frequency domain data stream D, and the D T2 2 (n 2 ) is a sequence The n 2th element of D T1 2 .

资源映射模块105,用于对STBC器104输入的频域编码序列进行资源映射,并将资源映射后的频域编码序列输出到逆快速傅里叶变换(IFFT)模块106中。The resource mapping module 105 is configured to perform resource mapping on the frequency-domain coding sequence input by the STBC unit 104 , and output the resource-mapped frequency-domain coding sequence to the inverse fast Fourier transform (IFFT) module 106 .

通过STBC器104得到两个不同时间段上的四个频域编码序列后,只有当这两个时间段上的四个频域编码序列呈发射分集顺序排列时,才表明完成了STBC,才可进行后续的处理过程。After the four frequency-domain coded sequences on two different time periods are obtained by the STBC device 104, only when the four frequency-domain coded sequences on these two time periods are arranged in a transmit diversity order, it indicates that the STBC is completed, and the Carry out subsequent processing.

四个序列是否呈发射分集顺序排列可通过如下方式来进行识别:Whether the four sequences are arranged in transmit diversity sequence can be identified by the following methods:

假设序列A、序列B、序列C和序列D的第i个元素分别为A[i]、B[i]、C[i]和D[i],当满足[A[i]]*[B[i]]*+C[i]D[i]=0且[A[i]]*[C[i]]*+B[i]D[i]=0时,则表明A、B、C和D这四个序列呈发射分集顺序排列。Assume that the i-th elements of sequence A, sequence B, sequence C, and sequence D are A[i], B[i], C[i], and D[i] respectively, when [A[i]] * [B When [i]] * +C[i]D[i]=0 and [A[i]] * [C[i]] * +B[i]D[i]=0, it means that A, B, The four sequences C and D are arranged in transmit diversity order.

从DT1 1、DT1 2、DT2 1和DT2 2的表达式可以看出,这四个频域编码序列呈发射分集顺序排列,表明了这两个紧邻时间段T1和T2上的STBC已经完成。此时,即可在对应的时间段上将对应的完成STBC的两个频域编码序列分别映射到上行链路上完成对这两个序列的资源映射过程。From the expressions of D T1 1 , D T1 2 , D T2 1 and D T2 2 , it can be seen that these four frequency-domain coded sequences are arranged in transmit diversity order, indicating that the STBC on the two adjacent time periods T1 and T2 Has been completed. At this point, the corresponding two frequency-domain coded sequences that complete the STBC can be mapped to the uplink in the corresponding time period to complete the resource mapping process for the two sequences.

IFFT模块106,用于对资源映射模块105输入的资源映射后的频域编码序列进行IFFT,并将所述IFFT后的频域编码序列输出到发射模块107。The IFFT module 106 is configured to perform IFFT on the resource-mapped frequency domain coded sequence input by the resource mapping module 105 , and output the IFFT frequency domain coded sequence to the transmitting module 107 .

同样地,IFFT模块在对频域编码序列进行IFFT时也需要分时间段来进行。Similarly, when the IFFT module performs IFFT on the coded sequence in the frequency domain, it also needs to be performed in time segments.

发射模块107,用于对IFFT模块106输入的所述IFFT后的频域编码序列进行发射。The transmitting module 107 is configured to transmit the IFFT-coded sequence in the frequency domain input by the IFFT module 106 .

在不同的时间段上将不同的IFFT后的频域编码序列进行发射,直至两个时间段上的IFFT后的频域编码序列都完成发射。Different frequency-domain coded sequences after IFFT are transmitted in different time periods until the frequency-domain coded sequences after IFFT in two time periods are all transmitted.

至此,即完成了现有采用STBC发射分集技术在SC-FDMA系统中进行上行链路发送的整个过程。So far, the entire process of uplink transmission in the SC-FDMA system using the STBC transmit diversity technology has been completed.

图2为现有图1所述的上行链路发送单元对应的上行链路接收单元的结构示意图。如图2所示,该接收单元主要包括:FIG. 2 is a schematic structural diagram of an uplink receiving unit corresponding to the uplink sending unit described in FIG. 1 . As shown in Figure 2, the receiving unit mainly includes:

接收模块201,用于接收由发射模块107发射后的频域编码序列,并将接收信号调制回基带后,输出给快速傅里叶变换(FFT)模块202。The receiving module 201 is configured to receive the coded sequence in the frequency domain transmitted by the transmitting module 107 , modulate the received signal back to baseband, and output it to the Fast Fourier Transform (FFT) module 202 .

需要说明的是,现有每个发射单元只有两个发射模块,而接收单元中接收模块的个数则不受发射模块个数的限定,为了描述方便,假设有Nr个接收模块,其中Nr≥1。不论发射模块个数的多少,每个发射模块201需要分别接收由发射模块107发射后的频域编码序列。It should be noted that each existing transmitting unit has only two transmitting modules, and the number of receiving modules in the receiving unit is not limited by the number of transmitting modules. For the convenience of description, it is assumed that there are N r receiving modules, where N r ≥ 1. Regardless of the number of transmitting modules, each transmitting module 201 needs to receive the frequency-domain code sequence transmitted by the transmitting module 107 respectively.

FFT模块202,用于对由接收模块201输入的信号进行FFT,并将所述FFT后的信号输出到资源逆映射模块203。The FFT module 202 is configured to perform FFT on the signal input by the receiving module 201 , and output the signal after the FFT to the resource inverse mapping module 203 .

资源逆映射模块203,用于对由FFT模块202输入的FFT后的信号进行资源逆映射,并将所述资源逆映射后得到的频域数据输出到数据重组模块204中。The resource inverse mapping module 203 is configured to perform resource inverse mapping on the FFT signal input by the FFT module 202 , and output the frequency domain data obtained after the resource inverse mapping to the data recombination module 204 .

同样地,为了后续描述方便,假设在T1时间段内第p个接收模块上的资源逆映射后得到的频域数据为X1,p=[X1,p[0],X1,p[1],...,X1,p[M-1]]T,在T2时间段内第p个接收模块上的资源逆映射后得到的频域数据为X2,p=[X2,p[0],X2,p[1],...,X2,p[M-1]]T,其中,所述p=1,2,...,NrSimilarly, for the convenience of subsequent description, it is assumed that the frequency domain data obtained after resource inverse mapping on the pth receiving module in the T1 time period is X 1, p = [X 1, p [0], X 1, p [ 1],..., X 1, p [M-1]] T , the frequency domain data obtained after resource inverse mapping on the pth receiving module in the T2 time period is X 2, p = [X 2, p [0], X 2 , p [1], . . . , X 2 , p [M-1]] T , wherein, p=1, 2, . . . , N r .

数据重组模块204,用于对所有资源逆映射后得到的频域数据进行重新排列组合,并将重新排列组合后的频域数据输出给多输入多输出频域均衡(MIMO FDE)模块205。The data reorganization module 204 is used to rearrange and combine the frequency domain data obtained after inverse mapping of all resources, and output the rearranged and combined frequency domain data to the multiple-input multiple-output frequency domain equalization (MIMO FDE) module 205.

在经过资源逆映射模块203之后,分别得到了T1时间段内的Nr个频域数据和T2时间段内的Nr个频域数据。为了后续处理方便,分别将这两个时间段内的Nr个频域数据重新组合,得到2M个大小为Nr×1的接收信号向量

Figure G2009102426243D00041
Figure G2009102426243D00042
其中,所述X1,[m]为T1时间段内在第m个子载波上的接收信号向量;所述X2,[m]为T2时间段内在第m个子载波上的接收信号向量;将这两个相邻时间段T1和T2内的同一子载波上的接收信号向量按如下形式重新排列:After going through the resource inverse mapping module 203, N r pieces of frequency domain data in the T1 time period and N r frequency domain data in the T2 time period are respectively obtained. For the convenience of subsequent processing, the N r frequency domain data in these two time periods are recombined to obtain 2M received signal vectors with a size of N r ×1
Figure G2009102426243D00041
and
Figure G2009102426243D00042
Wherein, the X 1, [m] is the received signal vector on the m subcarrier in the T1 time period; the X 2, [m] is the received signal vector on the m subcarrier in the T2 time period; The received signal vectors on the same subcarrier in two adjacent time periods T1 and T2 are rearranged as follows:

Xx 11 ,, [[ mm ]] == Hh 11 11 [[ mm ]] DD. [[ 22 mm ]] ++ Hh 11 22 [[ mm ]] DD. [[ 22 mm ++ 11 ]] ++ NN 11 [[ mm ]] ,,

Xx 22 ,, [[ mm ]] == Hh 22 22 [[ mm ]] DD. ** [[ 22 mm ]] -- Hh 22 11 [[ mm ]] DD. ** [[ 22 mm ++ 11 ]] ++ NN 22 [[ mm ]] ,,

其中,所述m=0,1,...,M-1,H1 j[m]和H2 j[m]分别为在T1时间段和T2时间段内第j个发射模块上的第m个子载波到所有接收模块的频域信道响应向量,N1[m]和N2[m]分别为在T1时间段和T2时间段内接收单元在第m个子载波上的白噪声向量,其单边能量谱密度为N0,且j=1,2。Wherein, the m=0, 1, ..., M-1, H 1 j [m] and H 2 j [m] are respectively the j-th transmission module in the T1 time period and the T2 time period The frequency-domain channel response vectors from m subcarriers to all receiving modules, N 1 [m] and N 2 [m] are the white noise vectors of the receiving unit on the mth subcarrier in the T1 time period and T2 time period respectively, where The unilateral energy spectral density is N 0 , and j=1,2.

进一步地,两个时间段内同一子载波上的接收信号向量可以简化为:Further, the received signal vector on the same subcarrier in two time periods can be simplified as:

X[m]=H[m]D[m]+N[m],其中,X[m]=H[m]D[m]+N[m], where,

X ‾ [ m ] = X 1 T [ m ] X 2 H [ m ] T , H ‾ [ m ] = H 1 1 [ m ] H 1 2 [ m ] H 2 2 * [ m ] - H 2 1 * [ m ] , D[m]=[D[2m]D[2m+1]]T N ‾ [ m ] = N 1 T [ m ] N 2 H [ m ] T . x ‾ [ m ] = x 1 T [ m ] x 2 h [ m ] T , h ‾ [ m ] = h 1 1 [ m ] h 1 2 [ m ] h 2 2 * [ m ] - h 2 1 * [ m ] , D[m]=[D[2m]D[2m+1]] T , N ‾ [ m ] = N 1 T [ m ] N 2 h [ m ] T .

由此,即得到了经过数据重组模块204后的最终接收信号向量X[m]。Thus, the final received signal vector X[m] after passing through the data reassembly module 204 is obtained.

MIMO FDE模块205,用于对由数据重组模块204输入的最终接收信号向量进行频域均衡,并将频域均衡后的软估计值输出给数据流合并模块206。The MIMO FDE module 205 is used to perform frequency domain equalization on the final received signal vector input by the data reassembly module 204, and output the soft estimated value after frequency domain equalization to the data stream merging module 206.

当接收到经过数据重新排列组合后的最终接收信号向量X[m]后,MIMOFDE模块205即对X[m]按照如下公式进行频域均衡,After receiving the final received signal vector X[m] after data rearrangement and combination, the MIMOFDE module 205 performs frequency domain equalization on X[m] according to the following formula,

DD. ~~ [[ mm ]] == WW Hh [[ mm ]] Xx ‾‾ [[ mm ]] ,,

其中,所述

Figure G2009102426243D00057
为D[m]频域均衡后的估计值,且 D ~ [ m ] = D ~ [ 2 m ] D ~ [ 2 m + 1 ] T , 所述 W [ m ] = R [ m ] - 1 H ‾ ^ [ m ] , 所述 R [ m ] = H ‾ ^ [ m ] H ‾ ^ H [ m ] + N _ vscul 2 M N 0 I , 所述
Figure G2009102426243D000511
为H[m]的估计值,所述N_vscul为发射单元进行IFFT的大小。Among them, the
Figure G2009102426243D00057
is the estimated value of D[m] after frequency domain equalization, and D. ~ [ m ] = D. ~ [ 2 m ] D. ~ [ 2 m + 1 ] T , said W [ m ] = R [ m ] - 1 h ‾ ^ [ m ] , said R [ m ] = h ‾ ^ [ m ] h ‾ ^ h [ m ] + N _ vscule 2 m N 0 I , said
Figure G2009102426243D000511
is the estimated value of H[m], and the N_vscul is the size of IFFT performed by the transmitting unit.

数据流合并模块206,用于对频域均衡后的软估计值进行合并,并将合并后的软估计值输出给逆傅里叶变换(IDFT)模块207。The data stream merging module 206 is configured to combine the soft estimated values after frequency domain equalization, and output the combined soft estimated values to an inverse Fourier transform (IDFT) module 207 .

由MIMO FDE模块205得到的频域均衡后的软估计值 D ~ [ m ] = D ~ [ 2 m ] D ~ [ 2 m + 1 ] T 是一个长度为M的数据流,需要将其合并为长度为2M的数据流,合并后的数据流为:Soft estimated value after frequency domain equalization obtained by MIMO FDE module 205 D. ~ [ m ] = D. ~ [ 2 m ] D. ~ [ 2 m + 1 ] T is a data stream with a length of M, which needs to be combined into a data stream with a length of 2M, and the combined data stream for:

DD. ~~ == [[ DD. ~~ [[ 00 ]] ,, DD. ~~ [[ 11 ]] ,, .. .. .. ,, DD. ~~ [[ 22 Mm -- 11 ]] ]] TT ..

IDFT模块207,用于对由数据流合并模块206输入的长度为2M的数据流进行IDFT,并将IDFT后的数据流输出给星座解调模块208。The IDFT module 207 is configured to perform IDFT on the data stream with a length of 2M input by the data stream merging module 206 , and output the IDFT-processed data stream to the constellation demodulation module 208 .

星座解调模块208,用于对由IDFT模块207输入的IDFT后的数据流进行星座解调,并将星座解调后得数据流输出给信道解码模块209。The constellation demodulation module 208 is configured to perform constellation demodulation on the IDFT-processed data stream input by the IDFT module 207 , and output the constellation-demodulated data stream to the channel decoding module 209 .

信道解码模块209,用于对由星座解调模块208输入的星座解调后的数据流进行信道解码后,得到信息比特流。The channel decoding module 209 is configured to perform channel decoding on the constellation demodulated data stream input by the constellation demodulation module 208 to obtain an information bit stream.

至此,即完成了现有采用STBC发射分集技术在SC-FDMA系统中进行上行链路接收的整个过程。So far, the whole process of performing uplink reception in the SC-FDMA system using the STBC transmit diversity technology is completed.

通过上述分析,现有的上行链路发送单元,由于只能在频域进行STBC,而不能在时域进行STBC,也就导致了STBC只能在DFT之后进行,而不能在DFT之前进行,从而限制了系统设计的灵活性。Through the above analysis, because the existing uplink sending unit can only perform STBC in the frequency domain, but not in the time domain, STBC can only be performed after DFT, and cannot be performed before DFT, thus Limit the flexibility of system design.

此外,现有在进行多天线发射分集时发送单元中只考虑了一个天线组,即2天线发射分集的情况,也即只能对一个信息比特流进行处理,而对多于一个天线组的2天线组、3天线组等情况并没有考虑。由此,导致了现有在进行接收时也就没有考虑多天线发射分集而带来的连续干扰(SIC)问题。In addition, only one antenna group is considered in the existing transmitting unit when performing multi-antenna transmit diversity, that is, the situation of 2-antenna transmit diversity, that is, only one information bit stream can be processed, and more than one antenna group 2 Antenna groups, 3-antenna groups, etc. are not considered. As a result, the existing continuous interference (SIC) problem caused by multi-antenna transmit diversity is not considered when performing reception.

目前,下行链路传输也可以采用上述上行链路传输的方式实现,因此在下行链路发送和接收方面也存在与上述上行链路传输同样的缺点,这里不再重复。At present, the downlink transmission can also be realized by the above-mentioned uplink transmission method, so the downlink transmission and reception also has the same disadvantages as the above-mentioned uplink transmission, which will not be repeated here.

发明内容Contents of the invention

有鉴于此,本发明的第一个目的在于提供一种SC-FDMA系统中的链路发送单元,其中STBC不仅可以在频域进行,也可以在时域进行,从而提高了系统设计的灵活性。In view of this, the first object of the present invention is to provide a link transmission unit in a SC-FDMA system, wherein STBC can be performed not only in the frequency domain, but also in the time domain, thereby improving the flexibility of system design .

本发明的第二个目的在于提供一种SC-FDMA系统中的空时块码编码(STBC)器,该编码器能够对时域数据流进行编码。A second object of the present invention is to provide a space-time block code (STBC) coder in an SC-FDMA system, which coder is capable of coding a time-domain data stream.

本发明的第三个目的在于提供一种SC-FDMA系统中的链路接收单元,其中STBC不仅可以在频域进行,也可以在时域进行,从而提高了系统设计的灵活性。The third object of the present invention is to provide a link receiving unit in an SC-FDMA system, wherein STBC can be performed not only in the frequency domain, but also in the time domain, thereby improving the flexibility of system design.

本发明的第四个目的在于提供一种SC-FDMA系统中的链路传输装置,其中STBC不仅可以在频域进行,也可以在时域进行,从而提高了系统设计的灵活性。The fourth object of the present invention is to provide a link transmission device in an SC-FDMA system, wherein STBC can be performed not only in the frequency domain, but also in the time domain, thereby improving the flexibility of system design.

本发明的第五个目的在于提供一种SC-FDMA系统中的链路发送方法,其中STBC不仅可以在频域进行,也可以在时域进行,从而提高了系统设计的灵活性。The fifth object of the present invention is to provide a link transmission method in SC-FDMA system, wherein STBC can be performed not only in frequency domain, but also in time domain, thereby improving the flexibility of system design.

本发明的第六个目的在于提供一种SC-FDMA系统中的空时块码编码(STBC)方法,应用该方法能够对时域数据流进行编码。The sixth object of the present invention is to provide a space-time block code (STBC) method in an SC-FDMA system, which can encode time-domain data streams.

本发明的第七个目的在于提供一种SC-FDMA系统中的链路接收方法,其中STBC不仅可以在频域进行,也可以在时域进行,从而提高了系统设计的灵活性。The seventh object of the present invention is to provide a link receiving method in SC-FDMA system, wherein STBC can be performed not only in frequency domain, but also in time domain, thereby improving the flexibility of system design.

本发明的第八个目的在于提供一种SC-FDMA系统中的链路传输方法,其中STBC不仅可以在频域进行,也可以在时域进行,从而提高了系统设计的灵活性。The eighth object of the present invention is to provide a link transmission method in SC-FDMA system, wherein STBC can be performed not only in frequency domain, but also in time domain, thereby improving the flexibility of system design.

为达到上述目的的第一个方面,本发明提供了一种SC-FDMA系统中的链路发送单元,该单元包括信道编码模块、星座调制模块、DFT模块、STBC器、资源映射模块、IFFT模块、发射模块,其中,该单元还包括数据分流模块,In order to achieve the first aspect of the above object, the present invention provides a link transmission unit in an SC-FDMA system, the unit includes a channel coding module, a constellation modulation module, a DFT module, an STBC device, a resource mapping module, and an IFFT module , a transmitting module, wherein the unit also includes a data distribution module,

所述数据分流模块接收所述星座调制模块输入的时域数据流进行分流,在紧邻的两个时间段的第一个时间段内,将分流后得到的两个数据量相同的时域子数据流输出到所述DFT模块,所述DFT模块对输入的两个时域子数据流进行进行DFT处理后,将得到的两个数据量相同的频域子数据流,输出到所述资源映射模块进行资源映射;在紧邻的两个时间段的第二个时间段内,将分流后得到的两个数据量相同的时域子数据流输出到所述STBC器,所述STBC器对输入的两个时域子数据流进行第一预定算法的处理,得到的两个数据量相同且呈发射分集顺序排列的时域编码序列输出到所述DFT模块,DFT模块对输入的两个时域编码序列进行DFT处理后,将得到的两个数据量相同的频域编码序列,输出到所述资源映射模块进行资源映射;The data distribution module receives the time-domain data stream input by the constellation modulation module for distribution, and in the first time period of the two adjacent time periods, divides the two time-domain sub-data with the same data volume obtained after the distribution The stream is output to the DFT module, and after the DFT module performs DFT processing on the two input time-domain sub-data streams, the obtained two frequency-domain sub-data streams with the same amount of data are output to the resource mapping module Perform resource mapping; in the second time period of the two adjacent time periods, output the two time-domain sub-data streams with the same amount of data obtained after splitting to the STBC device, and the STBC device will input the two The two time-domain sub-data streams are processed by the first predetermined algorithm, and the obtained two time-domain coded sequences with the same amount of data and arranged in transmit diversity order are output to the DFT module, and the DFT module performs the input of the two time-domain coded sequences After performing DFT processing, output the obtained two frequency-domain coding sequences with the same amount of data to the resource mapping module for resource mapping;

或,所述数据分流模块接收所述星座调制模块输入的时域数据流进行分流,在紧邻的两个时间段的第一个时间段内,将分流后得到的两个数据量相同的时域子数据流输出到所述DFT模块,所述DFT模块对输入的两个时域子数据流进行进行DFT处理后,将得到的两个数据量相同的频域子数据流,输出到所述资源映射模块进行资源映射;在紧邻的两个时间段的第二个时间段内,将分流后得到的两个数据量相同的时域子数据流输出到所述DFT模块,DFT模块对输入的两个时域子数据流进行DFT处理后,将得到的两个数据量相同的频域子数据流分别输出到所述STBC器,所述STBC器对输入的两个数据量相同的频域子数据流进行第二预定算法的处理,得到的两个数据量相同且呈发射分集顺序排列的频域编码序列,输出到所述资源映射模块进行资源映射。Or, the data distribution module receives the time-domain data stream input by the constellation modulation module for distribution, and in the first time period of the two adjacent time periods, divides the two time-domain data streams with the same amount of data obtained after the distribution. The sub-data streams are output to the DFT module, and after the DFT module performs DFT processing on the two input time-domain sub-data streams, the obtained two frequency-domain sub-data streams with the same amount of data are output to the resource The mapping module performs resource mapping; in the second time period of the two adjacent time periods, the two time-domain sub-data streams with the same amount of data obtained after splitting are output to the DFT module, and the DFT module inputs the two After DFT processing is performed on the time-domain sub-data streams, the obtained two frequency-domain sub-data streams with the same amount of data are respectively output to the STBC device, and the STBC device inputs the two frequency-domain sub-data with the same amount of data The stream is processed by the second predetermined algorithm, and the obtained two frequency-domain coded sequences with the same amount of data and arranged in transmit diversity sequence are output to the resource mapping module for resource mapping.

为达到上述目的的第二个方面,本发明提供了一种SC-FDMA系统中的STBC器,该STBC器包括:In order to achieve the second aspect of the above object, the present invention provides an STBC device in an SC-FDMA system, the STBC device comprising:

数据流处理模块,用于将第一个数据流和第二个数据流分别处理为原数据流的共轭,并将处理后的两个数据流输出到相乘模块;The data stream processing module is used to process the first data stream and the second data stream into conjugates of the original data stream respectively, and output the processed two data streams to the multiplication module;

相乘模块,用于将数据流处理模块输入的处理后的两个数据流分别与编码矩阵P进行相乘,并将相乘后得到一个数据流作为一个编码序列,将相乘后得到的另一个数据流输出到取反模块;The multiplication module is used to multiply the processed two data streams input by the data stream processing module with the coding matrix P respectively, and use one data stream obtained after the multiplication as a coding sequence, and the other data stream obtained after the multiplication A data stream is output to the inversion module;

取反模块,用于将相乘模块输入的另一个数据流进行取反运算,得到另一个编码序列,The inversion module is used to invert another data stream input by the multiplication module to obtain another coded sequence,

其中,所述

Figure G2009102426243D00091
所述T为输入的每个数据流的长度。Among them, the
Figure G2009102426243D00091
The T is the length of each input data stream.

为达到上述目的的第三个方面,本发明提供了一种SC-FDMA系统中的链路接收单元,该单元包括第一数据重组模块,其特征在于,该单元还包括K/m0个分层处理模块,其中,In order to achieve the third aspect of the above object, the present invention provides a link receiving unit in an SC-FDMA system, the unit includes a first data reorganization module, and it is characterized in that the unit also includes K/m 0 sub-units layer processing module, where,

第一个分层处理模块接收第一数据重组模块输出的对所有资源逆映射后的频域数据进行重新排列组合的数据,进行频域均衡与连续干扰SIC消除处理后生成2m0个信息比特流输出,并将这2m0个信息比特流发送给下一个分层处理模块,下一个分层处理模块处理后再输出2m0个信息比特流,并将这2m0个信息比特流发送给再下一个分层处理模块进行处理,直到第K/m0个分层处理模块处理后输出最后2m0个信息比特流;The first hierarchical processing module receives the data output by the first data reorganization module that rearranges and combines the frequency domain data after all resource inverse mapping, performs frequency domain equalization and continuous interference SIC elimination processing, and generates 2m 0 information bit streams output, and send the 2m 0 information bit streams to the next layered processing module, and then output the 2m 0 information bit streams after the next layered processing module processes, and send the 2m 0 information bit streams to the next layered processing module A layered processing module processes until the K/m 0th layered processing module processes and outputs the last 2m 0 information bit streams;

其中,第K/m0个分层处理模块包括:多输入输出频域均衡MIMO FDE模块、第二数据重组模块、2m0个IDFT模块、第三数据重组模块、m0个星座解调模块m0个信道编码模块,第1~第K/m0-1个分层处理模块还包括:再编码模块、信道增益模块和SIC模块;Among them, the K/m 0th hierarchical processing module includes: multiple input and output frequency domain equalization MIMO FDE module, the second data reorganization module, 2m 0 IDFT modules, the third data reorganization module, m 0 constellation demodulation module m 0 channel coding modules, the 1st to K/m 0-1 layered processing modules also include: re-encoding module, channel gain module and SIC module;

所述MIMO FDE模块接收从其所在分层处理模块外输入的频域数据,MIMO FDE模块将经FDE处理后的频域数据发送给第二数据重组模块;The MIMO FDE module receives the frequency domain data input from outside its layered processing module, and the MIMO FDE module sends the frequency domain data after FDE processing to the second data recombination module;

第二数据重组模块对频域数据进行重新排列组合后,生成2m0个频域子数据流分别输入到对应的逆傅里叶变换IDFT模块;IDFT模块将经过IDFT处理后的2m0个频域子数据流输出给第三数据重组模块;第三数据重组模块对频域子数据进行重新排列组合后,生成m0个频域数据流分别输入到对应的星座解调模块;星座解调模块将星座解调后的数据流输出到信道解码模块;信道解码模块将经过信道解码的2m0个信息比特流输出;所述第1~第K/m0-1个分层处理模块中的信道解码模块还将这2m0个信息比特流发送给再编码模块;After the second data reorganization module rearranges and combines the frequency domain data, 2m 0 frequency domain sub-data streams are generated and input to the corresponding inverse Fourier transform IDFT module; the IDFT module will process the IDFT processed 2m 0 frequency domain The sub-data stream is output to the third data reorganization module; after the third data reorganization module rearranges and combines the sub-data in the frequency domain, m 0 frequency domain data streams are generated and input to the corresponding constellation demodulation module respectively; the constellation demodulation module will The data stream after constellation demodulation is output to the channel decoding module; the channel decoding module outputs 2m 0 information bit streams after channel decoding; the channel decoding module in the first to K/m0-1 layered processing modules Also send these 2m 0 information bit streams to the re-encoding module;

所述再编码模块包括信道编码模块、星座调制模块、数据分流模块、傅里叶变换DFT模块、空时块码编码STBC器和第四数据重组模块,其中,所述星座调制模块接收m0个数据进行星座调制后形成时域数据流发送给数据分流模块;数据分流模块接收星座调制模块输入的时域数据流进行分流,并将分流后得到的两个数据量相同的时域子数据流输出到所述STBC器;所述STBC器对输入的两个时域子数据流进行第一预定算法的处理,得到的两个数据量相同且呈发射分集顺序排列的时域编码序列输出到所述DFT模块;DFT模块对输入的两个时域编码序列进行DFT处理后,将得到的两个数据量相同的频域编码序列,输出到所述第四数据重组模块进行重新排列组合;The re-encoding module includes a channel coding module, a constellation modulation module, a data splitting module, a Fourier transform DFT module, a space-time block code STBC device and a fourth data reorganization module, wherein the constellation modulation module receives m 0 After constellation modulation, the data forms a time-domain data stream and sends it to the data distribution module; the data distribution module receives the time-domain data stream input by the constellation modulation module for distribution, and outputs two time-domain sub-data streams with the same amount of data obtained after distribution to the STBC device; the STBC device performs the processing of the first predetermined algorithm on the two input time-domain sub-data streams, and the obtained two time-domain coding sequences with the same amount of data and arranged in transmit diversity order are output to the DFT module: After the DFT module performs DFT processing on the two input time-domain coded sequences, the obtained two frequency-domain coded sequences with the same amount of data are output to the fourth data reorganization module for rearrangement and combination;

或,所述数据分流模块接收所述星座调制模块输入的时域数据流进行分流,并将分流后得到的两个数据量相同的时域子数据流输出到所述DFT模块;DFT模块对输入的两个时域子数据流进行DFT处理后,将得到的两个数据量相同的频域子数据流分别输出到所述STBC器;所述STBC器对输入的两个数据量相同的频域子数据流进行第二预定算法的处理,得到的两个数据量相同且呈发射分集顺序排列的频域编码序列,输出到所述第四数据重组模块进行重新排列组合;Or, the data splitting module receives the time-domain data stream input by the constellation modulation module to split, and outputs two time-domain sub-data streams with the same amount of data obtained after splitting to the DFT module; the DFT module inputs After the two time-domain sub-data streams of the two time-domain sub-data streams are processed by DFT, the two obtained frequency-domain sub-data streams with the same amount of data are output to the STBC device respectively; The sub-data stream is processed by the second predetermined algorithm, and the obtained two frequency-domain coded sequences with the same amount of data and arranged in transmit diversity order are output to the fourth data reorganization module for rearrangement and combination;

所述第四数据重组模块将重新排列组合的频域编码序列输出到信道增益模块;所述信道增益模块对接收的经过重新排列组合的频域编码序列进行信道估计后,将所述信道估计后的频域编码序列输出到SIC模块;The fourth data recombination module outputs the rearranged and combined frequency domain coded sequence to the channel gain module; after the channel gain module performs channel estimation on the received rearranged and combined frequency domain coded sequence, the channel estimated The frequency-domain coding sequence is output to the SIC module;

SIC模块接收从其所在分层处理模块外输入的频域数据,并将该频域数据和从信道增益模块接收的频域编码序列进行SIC处理,将处理后的频域数据,发送给下一个分层处理模块中的MIMO FDE模块,如下一个分层处理模块非第K/m0个分层处理模块,则该频域数据还发送给下一个分层处理模块中的SIC模块;The SIC module receives the frequency-domain data input from the layered processing module where it is located, performs SIC processing on the frequency-domain data and the frequency-domain coding sequence received from the channel gain module, and sends the processed frequency-domain data to the next For the MIMO FDE module in the layered processing module, if the next layered processing module is not the K/m 0th layered processing module, the frequency domain data is also sent to the SIC module in the next layered processing module;

所述K为输出的信息比特流的总个数,m0为能被K整除的整数。The K is the total number of output information bit streams, and m 0 is an integer divisible by K.

为达到上述目的的第四个方面,本发明提供了一种SC-FDMA系统中的链路传输装置,该装置包括第一个方面的链路发送单元和第三个方面的链路接收单元。In order to achieve the above objective in a fourth aspect, the present invention provides a link transmission device in an SC-FDMA system, which includes the link sending unit of the first aspect and the link receiving unit of the third aspect.

为达到上述目的的第五个方面,本发明提供了一种SC-FDMA系统中的链路发送方法,应用于第一个方面的发送单元,该方法包括:In order to achieve the fifth aspect of the above object, the present invention provides a link transmission method in an SC-FDMA system, which is applied to the transmission unit of the first aspect, and the method includes:

由数据分流模块对所述星座调制模块输入的时域数据流进行接收和分流,在紧邻的两个时间段的第一个时间段内,将分流后得到的两个数据量相同的时域子数据流输出到所述DFT模块,由所述DFT模块对输入的两个时域子数据流进行进行DFT处理后,将得到的两个数据量相同的频域子数据流,输出到所述资源映射模块进行资源映射;在紧邻的两个时间段的第二个时间段内,将分流后得到的两个数据量相同的时域子数据流输出到所述空时块码编码STBC器,由所述STBC器对输入的两个时域子数据流进行第一预定算法的处理,得到的两个数据量相同且呈发射分集顺序排列的时域编码序列输出到所述傅里叶变换DFT模块,由DFT模块对输入的两个时域编码序列进行DFT处理后,将得到的两个数据量相同的频域编码序列,输出到所述资源映射模块进行资源映射;The time-domain data stream input by the constellation modulation module is received and distributed by the data distribution module, and in the first time period of the two adjacent time periods, the two time-domain data streams with the same amount of data obtained after the distribution are divided The data stream is output to the DFT module, and after the DFT module performs DFT processing on the input two time-domain sub-data streams, the obtained two frequency-domain sub-data streams with the same amount of data are output to the resource The mapping module performs resource mapping; in the second time period of the two adjacent time periods, two time-domain sub-data streams with the same amount of data obtained after splitting are output to the space-time block code STBC device, by The STBC implements the processing of the first predetermined algorithm on the two input time-domain sub-data streams, and the obtained two time-domain coding sequences with the same amount of data and arranged in transmit diversity order are output to the Fourier transform DFT module After the DFT module performs DFT processing on the two input time-domain coded sequences, the obtained two frequency-domain coded sequences with the same amount of data are output to the resource mapping module for resource mapping;

或,由所述数据分流模块接收所述星座调制模块输入的时域数据流进行分流,在紧邻的两个时间段的第一个时间段内,将分流后得到的两个数据量相同的时域子数据流输出到所述DFT模块,由所述DFT模块对输入的两个时域子数据流进行进行DFT处理后,将得到的两个数据量相同的频域子数据流,输出到所述资源映射模块进行资源映射;在紧邻的两个时间段的第二个时间段内,将分流后得到的两个数据量相同的时域子数据流输出到所述DFT模块,由DFT模块对输入的两个时域子数据流进行DFT处理后,将得到的两个数据量相同的频域子数据流分别输出到所述STBC器,由所述STBC器对输入的两个数据量相同的频域子数据流进行第二预定算法的处理,得到的两个数据量相同且呈发射分集顺序排列的频域编码序列,输出到所述资源映射模块进行资源映射。Or, the time-domain data stream input by the constellation modulation module is received by the data splitting module for splitting, and in the first time period of the two adjacent time periods, the two time periods with the same amount of data obtained after the splitting are The domain sub-data stream is output to the DFT module, and after the DFT module performs DFT processing on the two input time-domain sub-data streams, the obtained two frequency-domain sub-data streams with the same amount of data are output to the DFT module. The above resource mapping module performs resource mapping; in the second time period of the two adjacent time periods, the two time-domain sub-data streams with the same amount of data obtained after splitting are output to the DFT module, and are processed by the DFT module After the two input time-domain sub-data streams are processed by DFT, the obtained two frequency-domain sub-data streams with the same amount of data are respectively output to the STBC device, and the two input data streams with the same amount of data are input by the STBC device The frequency-domain sub-data stream is processed by the second predetermined algorithm, and two frequency-domain coded sequences with the same amount of data and arranged in transmit diversity sequence are obtained, and output to the resource mapping module for resource mapping.

为达到上述目的的第六个方面,本发明提供了一种SC-FDMA系统中的STBC方法,该方法包括:In order to achieve the sixth aspect of the above object, the present invention provides a STBC method in an SC-FDMA system, the method comprising:

将两个数据流分别处理为原数据流的共轭,得到处理后的两个数据流;Process the two data streams as conjugates of the original data streams to obtain the two processed data streams;

将处理后的两个数据流分别与编码矩阵P进行相乘,并将相乘后得到一个数据流作为一个编码序列;Multiply the processed two data streams with the encoding matrix P respectively, and obtain a data stream as an encoding sequence after the multiplication;

将相乘后得到的另一个数据流进行取反运算后,得到另一个编码序列,其中,所述

Figure G2009102426243D00121
所述T为输入的每个数据流的长度。After performing an inverse operation on another data stream obtained after multiplication, another coded sequence is obtained, wherein the
Figure G2009102426243D00121
The T is the length of each input data stream.

为达到上述目的的第七个方面,本发明提供了一种SC-FDMA系统中的链路接收方法,应用于第三个方面的接收单元,该方法包括:In order to achieve the seventh aspect of the above object, the present invention provides a link receiving method in an SC-FDMA system, which is applied to the receiving unit of the third aspect, and the method includes:

由第一个分层处理模块接收第一数据重组模块输出的对所有资源逆映射后的频域数据进行重新排列组合的数据,进行频域均衡与SIC消除处理后生成2m0个信息比特流输出,并将这2m0个信息比特流发送给下一个分层处理模块,下一个分层处理模块处理后再输出2m0个信息比特流,并将这2m0个信息比特流发送给再下一个分层处理模块进行处理,直到第K/m0个分层处理模块处理后输出最后2m0个信息比特流;The first layered processing module receives the data output by the first data reorganization module and rearranges and combines the frequency domain data after all resource inverse mapping, performs frequency domain equalization and SIC elimination processing, and generates 2m 0 information bit stream output , and send the 2m 0 information bit streams to the next layered processing module, the next layered processing module outputs 2m 0 information bit streams after processing, and sends the 2m 0 information bit streams to the next The layered processing module processes until the K/m 0th layered processing module processes and outputs the last 2m 0 information bit streams;

其中,第K/m0个分层处理模块包括:多输入输出频域均衡MIMO FDE模块、第二数据重组模块、2m0个IDFT模块、第三数据重组模块、m0个星座解调模块、m0个信道编码模块,第1~第K/m0-1个分层处理模块还包括:再编码模块、信道增益模块和连续干扰SIC模块;Among them, the K/m 0th hierarchical processing module includes: multiple input and output frequency domain equalization MIMO FDE module, the second data reorganization module, 2m 0 IDFT modules, the third data reorganization module, m 0 constellation demodulation modules, m 0 channel coding modules, the 1st to K/m 0 -1 layered processing modules also include: a re-encoding module, a channel gain module and a continuous interference SIC module;

由所述MIMO FDE模块接收从其所在分层处理模块外输入的频域数据,并将经FDE处理后的频域数据发送给第二数据重组模块;The MIMO FDE module receives the frequency domain data input from outside the layered processing module where it is located, and sends the frequency domain data after FDE processing to the second data reorganization module;

由第二数据重组模块对频域数据进行重新排列组合后,生成2m0个频域子数据流分别输入到对应的逆傅里叶变换IDFT模块;由IDFT模块将经过IDFT处理后的2m0个频域子数据流输出给第三数据重组模块;由第三数据重组模块对频域子数据进行重新排列组合后,生成m0个频域数据流分别输入到对应的星座解调模块;由星座解调模块将星座解调后的数据流输出到信道解码模块;由信道解码模块将经过信道解码的2m0个信息比特流输出;由所述第1~第K/m0-1个分层处理模块中的信道解码模块还将这2m0个信息比特流发送给再编码模块;After the frequency domain data is rearranged and combined by the second data reorganization module, 2m 0 frequency domain sub-data streams are generated and input to the corresponding inverse Fourier transform IDFT module respectively; the 2m 0 sub-data streams after IDFT processing are processed by the IDFT module The frequency domain sub-data stream is output to the third data reorganization module; after rearranging and combining the frequency domain sub-data by the third data reorganization module, m0 frequency domain data streams are generated and input to the corresponding constellation demodulation module respectively; The demodulation module outputs the data stream after constellation demodulation to the channel decoding module; the channel decoding module outputs 2m 0 information bit streams after channel decoding; the first to K/m 0 -1 layers The channel decoding module in the processing module also sends the 2m 0 information bit streams to the re-encoding module;

所述再编码模块包括信道编码模块、星座调制模块、数据分流模块、傅里叶变换DFT模块、空时块码编码STBC器和第四数据重组模块,其中,由所述星座调制模块接收m0个数据进行星座调制后形成时域数据流发送给数据分流模块;由数据分流模块接收星座调制模块输入的时域数据流进行分流,并将分流后得到的两个数据量相同的时域子数据流输出到所述STBC器;由所述STBC器对输入的两个时域子数据流进行第一预定算法的处理,得到的两个数据量相同且呈发射分集顺序排列的时域编码序列输出到所述DFT模块;由DFT模块对输入的两个时域编码序列进行DFT处理后,将得到的两个数据量相同的频域编码序列,输出到所述第四数据重组模块进行重新排列组合;The re-encoding module includes a channel coding module, a constellation modulation module, a data splitting module, a Fourier transform DFT module, a space-time block code coding STBC device and a fourth data reorganization module, wherein the constellation modulation module receives m 0 After constellation modulation, the data is formed into a time-domain data stream and sent to the data splitting module; the data splitting module receives the time-domain data stream input by the constellation modulation module for splitting, and divides the two time-domain sub-data with the same amount of data obtained after splitting The stream is output to the STBC device; the STBC device performs the first predetermined algorithm processing on the two input time-domain sub-data streams, and the obtained two time-domain coded sequences with the same amount of data and arranged in a transmit diversity order are output to the DFT module; after the DFT module performs DFT processing on the two input time-domain coded sequences, the obtained two frequency-domain coded sequences with the same amount of data are output to the fourth data reorganization module for rearrangement and combination ;

或,由所述数据分流模块接收所述星座调制模块输入的时域数据流进行分流,并将分流后得到的两个数据量相同的时域子数据流输出到所述DFT模块;由DFT模块对输入的两个时域子数据流进行DFT处理后,将得到的两个数据量相同的频域子数据流分别输出到所述STBC器;由所述STBC器对输入的两个数据量相同的频域子数据流进行第二预定算法的处理,得到的两个数据量相同且呈发射分集顺序排列的频域编码序列,输出到所述第四数据重组模块进行重新排列组合;Or, the time-domain data stream input by the constellation modulation module is received by the data splitting module for splitting, and two time-domain sub-data streams with the same amount of data obtained after splitting are output to the DFT module; by the DFT module After performing DFT processing on the two input time-domain sub-data streams, the obtained two frequency-domain sub-data streams with the same amount of data are respectively output to the STBC device; the two input data volumes are the same by the STBC device The frequency-domain sub-data stream is processed by the second predetermined algorithm, and the obtained two frequency-domain coded sequences with the same amount of data and arranged in transmit diversity order are output to the fourth data reorganization module for rearrangement and combination;

由所述第四数据重组模块将重新排列组合的频域编码序列输出到信道增益模块;由所述信道增益模块对接收的经过重新排列组合的频域编码序列进行信道估计后,将所述信道估计后的频域编码序列输出到SIC模块;The fourth data recombination module outputs the rearranged and combined frequency-domain code sequence to the channel gain module; after the channel gain module performs channel estimation on the received rearranged and combined frequency-domain code sequence, the channel The estimated frequency-domain coding sequence is output to the SIC module;

由SIC模块接收从其所在分层处理模块外输入的频域数据,并将该频域数据和从信道增益模块接收的频域编码序列进行SIC处理,将处理后的频域数据,发送给下一个分层处理模块中的MIMO FDE模块,如下一个分层处理模块非第K/m0个分层处理模块,则该频域数据还发送给下一个分层处理模块中的SIC模块;The SIC module receives the frequency domain data input from outside the layered processing module where it is located, and performs SIC processing on the frequency domain data and the frequency domain coding sequence received from the channel gain module, and sends the processed frequency domain data to the next A MIMO FDE module in a layered processing module, if the next layered processing module is not the K/m 0th layered processing module, the frequency domain data is also sent to the SIC module in the next layered processing module;

所述K为输出的信息比特流的总个数,m0为能被K整除的整数。The K is the total number of output information bit streams, and m 0 is an integer divisible by K.

为达到上述目的的第八个方面,本发明提供了一种SC-FDMA系统中的链路传输方法,该方法包括第五个方面的链路发送方法和第七个方面的链路发送方法。In order to achieve the above object in the eighth aspect, the present invention provides a link transmission method in the SC-FDMA system, the method includes the link transmission method in the fifth aspect and the link transmission method in the seventh aspect.

由上述的技术方案可见,本发明所采用的SC-FDMA系统中链路传输装置和方法,通过在链路发送单元增加一个数据分流模块,从而使得分流后得到的时域子数据流既可以先转换为频域子数据流、再对频域子数据流进行STBC,也可以直接对时域子数据流进行STBC,也就使得不仅可以在频域进行STBC,也可以在时域进行STBC,进而使得STBC既可以在DFT之后进行,也可以在DFT之前进行,从而提高了系统设计的灵活性。It can be seen from the above technical solution that the link transmission device and method in the SC-FDMA system adopted in the present invention, by adding a data distribution module in the link sending unit, so that the time domain sub-data stream obtained after the distribution can be obtained first Convert to the frequency domain sub-data stream, and then perform STBC on the frequency domain sub-data stream, and also directly perform STBC on the time domain sub-data stream, which makes it possible to perform STBC not only in the frequency domain, but also in the time domain, and then The STBC can be performed after the DFT or before the DFT, thereby improving the flexibility of the system design.

附图说明Description of drawings

图1为现有技术上行链路发送单元的结构示意图。Fig. 1 is a schematic structural diagram of an uplink sending unit in the prior art.

图2为现有技术上行链路接收单元的结构示意图。Fig. 2 is a schematic structural diagram of an uplink receiving unit in the prior art.

图3为本发明实施例一中链路发送单元的结构示意图。FIG. 3 is a schematic structural diagram of a link sending unit in Embodiment 1 of the present invention.

图4为本发明实施例一中空时块码编码(STBC)器的结构示意图。FIG. 4 is a schematic structural diagram of a space-time block code (STBC) coder according to an embodiment of the present invention.

图5为本发明实施例一中链路发送单元的发送流程图。FIG. 5 is a sending flowchart of the link sending unit in Embodiment 1 of the present invention.

图6为本发明实施例一中链路接收单元的结构示意图。FIG. 6 is a schematic structural diagram of a link receiving unit in Embodiment 1 of the present invention.

图7为图6所示实施例中再编码模块的结构示意图。FIG. 7 is a schematic structural diagram of the re-encoding module in the embodiment shown in FIG. 6 .

图8为本发明实施例一中链路接收单元的接收流程图。FIG. 8 is a receiving flowchart of the link receiving unit in Embodiment 1 of the present invention.

图9为本发明实施例二中链路发送单元的结构示意图。FIG. 9 is a schematic structural diagram of a link sending unit in Embodiment 2 of the present invention.

图10为本发明实施例二中链路发送单元的流程图。FIG. 10 is a flow chart of the link sending unit in Embodiment 2 of the present invention.

图11为本发明实施例二链路接收单元中再编码模块的结构示意图。FIG. 11 is a schematic structural diagram of a recoding module in a link receiving unit according to Embodiment 2 of the present invention.

具体实施方式Detailed ways

为解决现有技术中存在的问题,本发明提出了一种新的SC-FDMA系统中链路传输装置,即在链路发送单元中增加一个数据分流模块,数据分流模块的增加使得分流后得到的时域子数据流既可以先转换为频域子数据流、再对频域子数据流进行STBC,也可以直接对时域子数据流进行STBC,也就使得STBC不仅可以在频域进行,也可以在时域进行,进而使得STBC既可以在DFT之后进行,也可以在DFT之前进行,从而提高了系统设计的灵活性。In order to solve the problems in the prior art, the present invention proposes a new link transmission device in the SC-FDMA system, that is, a data distribution module is added to the link sending unit, and the increase of the data distribution module makes the data distribution module obtain after distribution The time-domain sub-data stream can be converted into a frequency-domain sub-stream first, and then STBC is performed on the frequency-domain sub-stream, or STBC can be directly performed on the time-domain sub-stream, which makes STBC not only in the frequency domain, but also in the frequency domain. It can also be performed in the time domain, so that STBC can be performed after DFT or before DFT, thereby improving the flexibility of system design.

为使本发明的目的、技术方案及优点更加清楚明白,以下参照附图并举实施例,对本发明进一步详细说明。In order to make the object, technical solution and advantages of the present invention clearer, the present invention will be further described in detail below with reference to the accompanying drawings and examples.

实施例一Embodiment one

本实施例中,STBC在DFT之前进行,参见图3所述的链路发送单元的结构示意图。如图3所示,该发送单元包括:In this embodiment, STBC is performed before DFT, refer to the schematic structural diagram of the link sending unit shown in FIG. 3 . As shown in Figure 3, the sending unit includes:

信道编码模块301,用于对输入的信息比特流进行信道编码,并将信道编码后得到的编码比特流输出到星座调制模块302。The channel coding module 301 is configured to perform channel coding on the input information bit stream, and output the coded bit stream obtained after channel coding to the constellation modulation module 302 .

星座调制模块302,用于对信道编码模块301输入的信道编码后的编码比特流进行星座调制,并将星座调制后得到的时域数据流输出到数据分流模块303。The constellation modulation module 302 is configured to perform constellation modulation on the channel-coded coded bit stream input by the channel coding module 301 , and output the time-domain data stream obtained after the constellation modulation to the data splitting module 303 .

同现有技术一样,在本实施例中,得到的星座调制后的数据流也为时域数据流,且为了同现有STBC过程进行比较,假设在第k个天线上的时域数据流中数据的个数同现有技术时域数据流中数据的个数一样,令时域数据流dk=[dk[0],dk[1],...,dk[2M-1]]T,其中,所述k为天线组的序号,所述2M为时域数据流中数据的个数。As in the prior art, in this embodiment, the obtained constellation-modulated data stream is also a time-domain data stream, and in order to compare with the existing STBC process, it is assumed that in the time-domain data stream on the kth antenna The number of data is the same as the number of data in the prior art time-domain data stream, so that the time-domain data stream d k =[d k [0], d k [1], ..., d k [2M- 1]] T , wherein the k is the serial number of the antenna group, and the 2M is the number of data in the time domain data stream.

数据分流模块303,用于对星座调制模块302输入的时域数据流进行分流,并将分流后得到的两个数据量相同的时域子数据流输出到STBC器304。The data splitting module 303 is configured to split the time-domain data stream input by the constellation modulation module 302 , and output two time-domain sub-data streams with the same amount of data obtained after splitting to the STBC device 304 .

在本实施例中,由于采用了2天线发射分集的方法,当其中一个天线上有数据发射时,另一个天线上对应的也要由数据发射,也就是两天线上的数据量始终要保持一致。因此,对时域数据流dk进行分流时需要将dk均分为两个数据量相同的时域子数据流,具体实现方式可以为:任取dk中的一半的数据作为其中的一个时域子数据流dk1,余下的部分作为另一个时域子数据流dk2In this embodiment, due to the adoption of the 2-antenna transmit diversity method, when data is transmitted on one of the antennas, the corresponding data on the other antenna is also transmitted, that is, the amount of data on the two antennas must always be consistent . Therefore, when splitting the time-domain data stream d k , it is necessary to equally divide d k into two time-domain sub-data streams with the same amount of data. The specific implementation method can be: randomly take half of the data in d k as one of them The time-domain sub-data stream d k1 , and the remaining part is another time-domain sub-data stream d k2 .

为了实现的方便,在本实施例中,将时域数据流dk=[dk[0],dk[1],...,dk[2M-1]]T进行奇偶分组,得到奇子数据流dk o和偶子数据流dk e两个时域子数据流,并将这两个时域子数据流分别作为dk1和dk2,这两个子时域子数据流分别为,For the convenience of implementation, in this embodiment, the time-domain data stream d k =[d k [0], d k [1], ..., d k [2M-1]] T is grouped by parity, to obtain The odd sub-data stream d k o and the even sub-data stream d k e are two time-domain sub-data streams, and these two time-domain sub-data streams are respectively referred to as d k1 and d k2 , and these two sub-time-domain sub-data streams are respectively for,

dd kk oo == [[ [[ dd kk oo [[ 00 ]] ,, dd kk oo [[ 11 ]] ,, .. .. .. ,, dd kk oo [[ Mm -- 11 ]] ]] TT == [[ dd kk [[ 00 ]] ,, dd kk [[ 22 ]] ,, .. .. .. ,, dd kk [[ 22 Mm -- 22 ]] ]] TT ,,

dd kk ee == [[ [[ dd kk ee [[ 00 ]] ,, dd kk ee [[ 11 ]] ,, .. .. .. ,, dd kk ee [[ Mm -- 11 ]] ]] TT == [[ dd kk [[ 11 ]] ,, dd kk [[ 33 ]] ,, .. .. .. ,, dd kk [[ 22 Mm -- 11 ]] ]] TT ..

另一种比较方便的实现方式为取dk的前一半数据dk前作为一个时域子数据流dk1,后一半数据dk后作为另一个时域子数据流dk2,实际中也可以采用其它的分流方式,以不影响本发明实施例的实现为准。Another more convenient implementation method is to take the first half of the data d k of d k as a time-domain sub-data stream d k1 , and the second half of the data d k as another time-domain sub-data stream d k2 . In practice, it can also be The use of other distribution methods shall prevail without affecting the implementation of the embodiments of the present invention.

STBC器304,用于对数据分流模块303输入的两个数据量相同的时域子数据流进行第一预定算法的处理,并将所述第一预定算法处理后得到的两个时域编码序列输出到DFT模块305。The STBC unit 304 is configured to process the two time-domain sub-data streams with the same amount of data input by the data splitting module 303 with a first predetermined algorithm, and process the two time-domain coded sequences obtained after the first predetermined algorithm is processed Output to DFT module 305.

需要说明的是,在本实施例中,在紧邻的两个发射时间段T1和T2内,对于同一个分流后的两个数据量相同的时域子数据流分别采用了不同的处理方式,并且这两个时间段的处理方式可以互换,以下举例说明其具体处理过程。It should be noted that in this embodiment, in the two immediately adjacent transmission time periods T1 and T2, different processing methods are adopted for the same divided time-domain sub-data streams with the same amount of data, and The processing methods of these two time periods can be interchanged, and the following examples illustrate the specific processing process.

在T1时间段内,不对分流后的时域子数据流进行STBC,直接将分流后得到的两个数据量相同的时域子数据流dk1和dk2输出到DFT模块305。In the T1 time period, STBC is not performed on the divided time-domain sub-data streams, and the two divided time-domain sub-data streams d k1 and d k2 with the same data volume are directly output to the DFT module 305 .

在T2时间段内,对分流后的两个数据量相同的时域子数据流进行第一预定算法的处理后,即可得到两个时域编码序列,且具体的处理过程不同,会得到不同的时域编码序列。在本实施例中,具体的处理过程为:对两个时域子数据流dk1和dk2采用编码矩阵P进行编码,得到两个时域编码序列dk 1和dk 2In the T2 time period, after the first pre-determined algorithm is processed on the two divided time-domain sub-data streams with the same amount of data, two time-domain coding sequences can be obtained, and the specific processing procedures are different, resulting in different time-domain encoding sequence. In this embodiment, the specific processing process is: encode the two time-domain sub-data streams d k1 and d k2 using the encoding matrix P to obtain two time-domain encoding sequences d k 1 and d k 2 ,

dd kk 11 == PP [[ [[ dd kk 11 ]] Hh ]] TT ,,

dd kk 22 == -- PP [[ [[ dd kk 22 ]] Hh ]] TT ,,

其中,所述

Figure G2009102426243D00173
所述H为共轭转置。Among them, the
Figure G2009102426243D00173
The H is a conjugate transpose.

则这两个编码序列dk 1和dk 2分别为:Then the two coding sequences d k 1 and d k 2 are:

dd kk 11 == [[ dd kk 11 [[ 00 ]] ** ,, dd kk 11 [[ Mm -- 11 ]] ** ,, dd kk 11 [[ Mm -- 22 ]] ** ,, .. .. .. ,, dd kk 11 [[ 11 ]] ** ]] TT ,,

dd kk 22 == [[ -- dd kk 22 [[ 00 ]] ** ,, -- dd kk 22 [[ Mm -- 11 ]] ** ,, -- dd kk 22 [[ Mm -- 22 ]] ** ,, .. .. .. ,, -- dd kk 22 [[ 11 ]] ** ]] TT ..

采用上述处理过程的STBC器参见图4,如图4所示,该STBC器主要包括:Adopt the STBC device of above-mentioned process referring to Fig. 4, as shown in Fig. 4, this STBC device mainly comprises:

数据流处理模块401,用于分别对输入的两个数据流进行处理,并将处理后的两个数据流分别输出到相乘模块402中。The data stream processing module 401 is configured to respectively process the two input data streams, and output the processed two data streams to the multiplication module 402 respectively.

对两个数据流分别处理为,将这两个数据流进行一定的运算,得到的处理后的两个数据流分别为数据流1共轭和数据流2共轭。The two data streams are processed separately, and a certain operation is performed on the two data streams, and the obtained processed two data streams are the conjugate of data stream 1 and the conjugate of data stream 2 respectively.

相乘模块402,用于将数据流处理模块401输入的两个处理的数据流分别与编码矩阵P进行相乘运算,并将其中的一个运算后的结果输出到取反模块403。The multiplication module 402 is configured to multiply the two processed data streams input by the data stream processing module 401 by the encoding matrix P, and output one of the calculated results to the inversion module 403 .

将处理后的两个数据流分别与编码矩阵P进行相乘运算后,即可将运算后的输出的一个数据流作为一个编码序列,将另一个数据流输出到取反模块403中。After the two processed data streams are multiplied by the encoding matrix P, one of the output data streams after the operation can be used as an encoding sequence, and the other data stream can be output to the inversion module 403 .

取反模块403,用于对相乘模块402输入的相乘后的结果进行取反运算,得到一个编码序列。The inversion module 403 is configured to perform an inversion operation on the multiplied result input by the multiplication module 402 to obtain a coded sequence.

需要说明的是,在本实施例中,所采用的编码矩阵为:It should be noted that, in this embodiment, the encoding matrix used is:

Figure G2009102426243D00181
所述T为输入的数据流的长度。
Figure G2009102426243D00181
The T is the length of the input data stream.

还需说明的是,在本实施例中,对数据流1和数据流2进行的各种操作可以互换,并不影响本发明实施例的实现。It should also be noted that in this embodiment, various operations performed on the data stream 1 and the data stream 2 can be interchanged, which does not affect the implementation of the embodiment of the present invention.

至此,即得到了本发明所采用的STBC器。So far, the STBC device used in the present invention has been obtained.

同样地,在本实施例中,也可采用其他的第一预定算法实现过程,即可采用其他的STBC器,实际中,以不影响本发明实施例的实现为准。Similarly, in this embodiment, other first predetermined algorithms may also be used to implement the process, that is, other STBC devices may be used. In practice, the realization of the embodiment of the present invention shall not be affected.

还需说明的是,上述仅仅是以在T1时间段内不进行STBC,在T2时间段内进行STBC为例来说明的,还可在T1时间段内进行STBC,在T2时间段内不进行STBC来实现本实施例的完整的STBC过程,实际中以不影响本发明实施例的实现为准。It should also be noted that the above is only an example of not performing STBC in the T1 time period and performing STBC in the T2 time period. It is also possible to perform STBC in the T1 time period and not perform STBC in the T2 time period. In order to realize the complete STBC process of this embodiment, it shall prevail that the realization of the embodiment of the present invention is not affected in practice.

DFT模块305,用于对STBC器304输入的两个时域编码序列进行DFT,得到时域编码序列的频域表现形式,即频域编码序列,并将所述频域编码序列输出到资源映射模块306。The DFT module 305 is configured to perform DFT on the two time-domain coded sequences input by the STBC 304 to obtain the frequency-domain representation of the time-domain coded sequence, that is, the frequency-domain coded sequence, and output the frequency-domain coded sequence to the resource map Module 306.

由于在STBC器304中,对于紧邻的两个不同的时间段内的两个子数据流采用了不同的处理方式,因此,在本实施例中,亦需对这两个时间段内的不同的处理结果分别进行处理。Since in the STBC device 304, different processing methods are used for the two sub-data streams in two adjacent time periods, therefore, in this embodiment, different processing methods for the two time periods are also required. The results are processed separately.

在T1时间段内,对未经过任何编码的两个时域子数据流dk1和dk2直接分别进行DFT,得到两个子数据流dk1和dk2的频域表现形式Dk1和Dk2,之后,即可将Dk1和Dk2输入到资源映射模块306中。具体如何进行DFT为现有技术,故此处不再赘述。In the T1 time period, DFT is directly performed on the two time-domain sub-data streams d k1 and d k2 without any encoding, and the frequency-domain representations D k1 and D k2 of the two sub-data streams d k1 and d k2 are obtained, After that, D k1 and D k2 can be input into the resource mapping module 306 . How to perform DFT specifically is a prior art, so it will not be repeated here.

在T2时间段内,对经过STBC后的时域编码序列dk 1和dk 2分别进行DFT,得到的频域编码序列Dk 1和Dk 2分别为:In the T2 time period, DFT is performed on the time-domain coded sequences d k 1 and d k 2 after STBC respectively, and the obtained frequency-domain coded sequences D k 1 and D k 2 are respectively:

DD. kk 11 == [[ [[ DD. kk 11 [[ 00 ]] ]] ** ,, [[ DD. kk 11 [[ 11 ]] ]] ** ,, .. .. .. ,, [[ DD. kk 11 [[ Mm -- 22 ]] ]] ** ,, [[ DD. kk 11 [[ Mm -- 11 ]] ]] ** ]] TT ,,

DD. kk 22 == [[ -- [[ DD. kk 22 [[ 00 ]] ]] ** ,, -- [[ DD. kk 22 [[ 11 ]] ]] ** ,, .. .. .. ,, -- [[ DD. kk 22 [[ Mm -- 22 ]] ]] ** ,, -- [[ DD. kk 22 [[ Mm -- 11 ]] ]] ** ]] TT ,,

其中,所述Dk1[0],Dk1[1],...,Dk1[M-1]为dk1[0],dk1[1],...,dk1[M-1]的DFT结果,所述Dk2[0],Dk2[1],...,Dk2[M-1]为dk2[0],dk2[1],...,dk2[M-1]的DFT结果。Wherein, the D k1 [0], D k1 [1], ..., D k1 [M-1] is d k1 [0], d k1 [1], ..., d k1 [M-1 ], the Dk2 [0], Dk2 [1], ..., Dk2 [M-1] is dk2 [0], dk2 [1], ..., dk2 [ M-1] DFT results.

同样地,在本实施例中,如果在T1时间段内进行了STBC,在T2时间段内没有进行STBC,则在DFT模块305中需要在T1时间段内对经过STBC后的时域编码序列dk 1和dk 2分别进行DFT,而在T2时间段内对未经过任何编码的两个子数据流dk1和dk2直接分别进行DFT。Similarly, in this embodiment, if STBC is performed in the T1 time period and STBC is not performed in the T2 time period, then the time-domain coding sequence d DFT is performed on k 1 and d k 2 respectively, and DFT is directly performed on the two sub-data streams d k1 and d k2 that have not undergone any encoding within the T2 time period.

从Dk1、Dk2、Dk 1和Dk 2的表达式可以看出,Dk1、Dk2、Dk 1和Dk 2这四个序列呈发射分集顺序排列,也即完成了针对SC-FDMA系统的STBC。具体的发射分集顺序排列的判断方式同现有技术一样,这里不再赘述。It can be seen from the expressions of D k1 , D k2 , D k 1 and D k 2 that the four sequences D k1 , D k2 , D k 1 and D k 2 are arranged in transmit diversity order, that is, the SC - STBC for FDMA systems. The specific judgment method of transmit diversity sequence arrangement is the same as that of the prior art, and will not be repeated here.

需要说明的是,由于第一预定算法处理过程不同,因此,得到的四个频域编码序列会有不同的表现形式,不管它们的表现形式如何,只要四个频域编码序列呈发射分集顺序排列,也就表明第一预定算法的处理过程完成。It should be noted that, due to the different processing procedures of the first predetermined algorithm, the obtained four frequency-domain coded sequences will have different representations, regardless of their representations, as long as the four frequency-domain coded sequences are arranged in transmit diversity order , which means that the processing of the first predetermined algorithm is completed.

资源映射模块306,用于对DFT模块305输入的频域编码序列进行资源映射,并将所述资源映射后的频域编码序列输出到IFFT模块307。The resource mapping module 306 is configured to perform resource mapping on the frequency-domain coding sequence input by the DFT module 305 , and output the resource-mapped frequency-domain coding sequence to the IFFT module 307 .

具体如何对频域编码序列进行资源映射为现有技术,这里不再对其进行赘述。Specifically, how to perform resource mapping on frequency-domain coded sequences is a prior art, and will not be repeated here.

IFFT模块307,用于对资源映射模块306输入的资源映射后的频域编码序列进行IFFT,并将所述IFFT后的频域编码序列输出到发射模块308。The IFFT module 307 is configured to perform IFFT on the resource-mapped frequency domain coded sequence input by the resource mapping module 306 , and output the IFFT frequency domain coded sequence to the transmitting module 308 .

发射模块308,用于对IFFT模块307输入的IFFT后的频域编码序列进行发射。The transmitting module 308 is configured to transmit the IFFT-coded sequence in the frequency domain input by the IFFT module 307 .

至此,即得到了本实施例所采用的链路发送单元。So far, the link sending unit used in this embodiment is obtained.

需要说明的是,在本实施例中,信道编码模块301、星座调制模块302、资源映射模块306、IFFT模块307以及发射模块308的具体操作分别同现有信道编码模块101、星座调制模块102、资源映射模块105、IFFT模块106以及发射模块107,故在本实施例中没有对其进行赘述。并且,信道编码模块301、星座调制模块302、数据分流模块303和STBC器304的数量相同为多个,DFT模块305、资源映射模块306以及IFFT模块307的数量为信道编码模块301的四倍,发射模块308的数量为信道编码模块301的两倍。It should be noted that, in this embodiment, the specific operations of the channel coding module 301, the constellation modulation module 302, the resource mapping module 306, the IFFT module 307, and the transmitting module 308 are respectively the same as the existing channel coding module 101, constellation modulation module 102, The resource mapping module 105, the IFFT module 106 and the transmitting module 107 are not described in detail in this embodiment. Moreover, the number of the channel coding module 301, the constellation modulation module 302, the data splitting module 303 and the STBC device 304 are the same as multiple, and the number of the DFT module 305, the resource mapping module 306 and the IFFT module 307 is four times that of the channel coding module 301, The number of transmitting modules 308 is twice that of the channel coding modules 301 .

还需说明的是,本实施例仅仅是以第k个天线组对信息比特流k的处理为例来进行说明的。实际中,如果有多个信息比特流,则对这多个信息比特流是并行处理的,每个信息比特流在各自的天线组上进行发射,且发射时并不影响其它天线组上的信息比特流,也不受其它天线上信息比特流的影响。It should also be noted that this embodiment is only described by taking the processing of the information bit stream k by the kth antenna group as an example. In practice, if there are multiple information bit streams, the multiple information bit streams are processed in parallel, and each information bit stream is transmitted on its own antenna group, and the transmission does not affect the information on other antenna groups The bit stream is not affected by the bit stream of information on other antennas.

图5为图3所述发送单元对应的发送流程图,如图5所示,该流程包括:Fig. 5 is a sending flowchart corresponding to the sending unit described in Fig. 3, as shown in Fig. 5, the flow includes:

步骤501:输入待处理的信息比特流。Step 501: Input the information bit stream to be processed.

步骤502:对输入的信息比特流进行信道编码,得到经过信道编码后的编码比特流。Step 502: Perform channel coding on the input information bit stream to obtain a coded bit stream after channel coding.

步骤503:对信道编码后得到的编码比特流进行星座调制,得到经过星座调制后的时域数据流。Step 503: Perform constellation modulation on the coded bit stream obtained after channel coding to obtain a constellation-modulated time-domain data stream.

同现有技术一样,在本实施例中,得到的星座调制后的数据流也为时域数据流,且为了同现有STBC过程进行比较,假设在第k个天线上的时域数据流中数据的个数同现有技术时域数据流中数据的个数一样,令时域数据流dk=[dk[0],dk[1],...,dk[2M-1]]T,其中,所述k为天线组的序号,所述2M为时域数据流中数据的个数。As in the prior art, in this embodiment, the obtained constellation-modulated data stream is also a time-domain data stream, and in order to compare with the existing STBC process, it is assumed that in the time-domain data stream on the kth antenna The number of data is the same as the number of data in the prior art time-domain data stream, so that the time-domain data stream d k =[d k [0], d k [1], ..., d k [2M- 1]] T , wherein the k is the serial number of the antenna group, and the 2M is the number of data in the time domain data stream.

步骤504:对星座调制后得到的时域数据流进行分流,得到分流后的两个数据量相同的时域子数据流。Step 504: Split the time-domain data streams obtained after constellation modulation to obtain two split time-domain sub-data streams with the same data volume.

在本实施例中,由于采用了2天线发射分集的方法,当其中一个天线上有数据发射时,另一个天线上对应的也要由数据发射,也就是两天线上的数据量始终要保持一致。因此,对时域数据流dk进行分流时需要将dk均分为两个数据量相同的时域子数据流,具体实现方式可以为:任取dk中的一半的数据作为其中的一个时域子数据流dk1,余下的部分作为另一个时域子数据流dk2In this embodiment, due to the adoption of the 2-antenna transmit diversity method, when data is transmitted on one of the antennas, the corresponding data on the other antenna is also transmitted, that is, the amount of data on the two antennas must always be consistent . Therefore, when splitting the time-domain data stream d k , it is necessary to equally divide d k into two time-domain sub-data streams with the same amount of data. The specific implementation method can be: randomly take half of the data in d k as one of them The time-domain sub-data stream d k1 , and the remaining part is another time-domain sub-data stream d k2 .

为了实现的方便,在本实施例中采用了将时域数据流进行奇偶分组,得到奇子数据流dk o和偶子数据流dk e两个数据量相同的时域子数据流的实现方式。For the convenience of realization, in this embodiment, the time-domain data stream is divided into even and odd groups to obtain two time-domain sub-data streams with the same amount of data, the odd sub-data stream d k o and the even sub-data stream d k e Way.

需要说明的是,由于在进行STBC时,在不同的时间段T1和T2内对分流后得到的两个数据量相同的时域子数据流采用了不同的处理过程,且这两个时间段的具体的处理过程可以互换,并不影响本发明实施例的实现为准。下面以在T1时间段内执行步骤505~步骤508的操作,在T2时间段内执行步骤509~步骤513的操作为例说明其具体处理过程。It should be noted that, when performing STBC, different processing procedures are used for the two time-domain sub-data streams with the same amount of data obtained after shunting in different time periods T1 and T2, and the time-domain sub-streams of the two time periods The specific processing procedures may be interchanged and shall not affect the implementation of the embodiments of the present invention. The specific processing procedure will be described below by taking the execution of the operations of steps 505 to 508 within the T1 time period and the execution of the operations of steps 509 to 513 within the T2 time period as an example.

T1时间段的具体处理过程为:The specific processing process of the T1 time period is as follows:

步骤505:对分流后得到的两个数据量相同的时域子数据流分别进行DFT,得到两个频域子数据流。Step 505: Perform DFT on the two time-domain sub-data streams with the same amount of data obtained after splitting, respectively, to obtain two frequency-domain sub-data streams.

对未经过任何编码的两个时域子数据流dk1和dk2直接分别进行DFT,得到两个子数据流dk1和dk2的频域表现形式Dk1和Dk2,具体如何进行DFT为现有技术,这里不再赘述。DFT is directly performed on the two sub-data streams d k1 and d k2 in the time domain without any encoding, and the frequency-domain representations D k1 and D k2 of the two sub-data streams d k1 and d k2 are obtained. How to perform DFT specifically for the present There are technologies, so I won't repeat them here.

步骤506:对DFT后得到的频域子数据流进行资源映射,得到资源映射后得频域子数据流。Step 506: Perform resource mapping on the frequency-domain sub-data stream obtained after DFT to obtain a frequency-domain sub-data stream after resource mapping.

步骤507:对资源映射后的频域子数据流进行IFFT,得到IFFT后的频域子数据流。Step 507: Perform IFFT on the frequency-domain sub-data stream after resource mapping to obtain the frequency-domain sub-data stream after IFFT.

步骤508:将IFFT后的频域子数据流进行发射。Step 508: Transmit the frequency-domain sub-data stream after the IFFT.

至此,即完成了T1时间段内的具体的处理过程。So far, the specific processing process in the T1 time period is completed.

T2时间段内的具体处理过程为:The specific processing process in the T2 time period is as follows:

步骤509:对分流后的得到的两个数据量相同的时域子数据流进行第一预定STBC的处理,得到时域编码序列。Step 509: Perform the first predetermined STBC processing on the two divided time-domain sub-data streams obtained with the same amount of data to obtain a time-domain coding sequence.

对分流后的两个时域子数据流dk1和dk2进行第一预定STBC的处理,即可得到两个时域编码序列,且预定的STBC过程不同,会得到不同的时域编码序列。在本实施例中,具体的STBC过程为:对两个时域子数据流dk1和dk2采用编码矩阵P进行编码,得到两个时域编码序列dk 1和dk 2Two time-domain coded sequences can be obtained by performing the first predetermined STBC processing on the divided two time-domain sub-data streams d k1 and d k2 , and different time-domain coded sequences can be obtained due to different predetermined STBC processes. In this embodiment, the specific STBC process is as follows: two time-domain sub-data streams d k1 and d k2 are encoded using the encoding matrix P to obtain two time-domain encoding sequences d k 1 and d k 2 ,

dd kk 11 == PP [[ [[ dd kk 11 ]] Hh ]] TT ,,

dd kk 22 == -- PP [[ [[ dd kk 22 ]] Hh ]] TT ,,

其中,所述所述H为共轭转置。Among them, the The H is a conjugate transpose.

则这两个编码序列dk 1和dk 2分别为:Then the two coding sequences d k 1 and d k 2 are:

dd kk 11 == [[ dd kk 11 [[ 00 ]] ** ,, dd kk 11 [[ Mm -- 11 ]] ** ,, dd kk 11 [[ Mm -- 22 ]] ** ,, .. .. .. ,, dd kk 11 [[ 11 ]] ** ]] TT ,,

dd kk 22 == [[ -- dd kk 22 [[ 00 ]] ** ,, -- dd kk 22 [[ Mm -- 11 ]] ** ,, -- dd kk 22 [[ Mm -- 22 ]] ** ,, .. .. .. ,, -- dd kk 22 [[ 11 ]] ** ]] TT ..

需要说明的是,在本实施例中,也可采用其他的STBC,以不影响本发明实施例的实现为准。It should be noted that in this embodiment, other STBCs may also be used, as long as the implementation of the embodiment of the present invention is not affected.

步骤510:对时域编码序列进行DFT,得到频域编码序列。Step 510: Perform DFT on the coded sequence in the time domain to obtain the coded sequence in the frequency domain.

对经过STBC后的时域编码序列dk 1和dk 2分别进行DFT,得到的频域编码序列Dk 1和Dk 2分别为:DFT is performed on the time-domain coded sequences d k 1 and d k 2 after STBC respectively, and the obtained frequency-domain coded sequences D k 1 and D k 2 are respectively:

DD. kk 11 == [[ [[ DD. kk 11 [[ 00 ]] ]] ** ,, [[ DD. kk 11 [[ 11 ]] ]] ** ,, .. .. .. ,, [[ DD. kk 11 [[ Mm -- 22 ]] ]] ** ,, [[ DD. kk 11 [[ Mm -- 11 ]] ]] ** ]] TT ,,

DD. kk 22 == [[ -- [[ DD. kk 22 [[ 00 ]] ]] ** ,, -- [[ DD. kk 22 [[ 11 ]] ]] ** ,, .. .. .. ,, -- [[ DD. kk 22 [[ Mm -- 22 ]] ]] ** ,, -- [[ DD. kk 22 [[ Mm -- 11 ]] ]] ** ]] TT ,,

其中,所述Dk1[0],Dk1[1],...,Dk1[M-1]为dk1[0],dk1[1],...,dk1[M-1]的DFT结果,所述Dk2[0],Dk2[1],...,Dk2[M-1]为dk2[0],dk2[1],...,dk2[M-1]的DFT结果。Wherein, the D k1 [0], D k1 [1], ..., D k1 [M-1] is d k1 [0], d k1 [1], ..., d k1 [M-1 ], the Dk2 [0], Dk2 [1], ..., Dk2 [M-1] is dk2 [0], dk2 [1], ..., dk2 [ M-1] DFT results.

步骤511:对频域编码序列进行资源映射,得到资源映射后的频域编码序列。Step 511: Perform resource mapping on the frequency-domain coded sequence to obtain a frequency-domain coded sequence after resource mapping.

步骤512:对资源映射后的频域编码序列进行IFFT,得到IFFT后的频域编码序列。Step 512: Perform IFFT on the frequency-domain coded sequence after resource mapping to obtain the frequency-domain coded sequence after IFFT.

步骤513:将IFFT后的频域编码序列进行发射。Step 513: Transmit the coded sequence in frequency domain after IFFT.

至此,即完成了T2时间段内的具体的处理过程。So far, the specific processing process in the T2 time period is completed.

在完成了T1和T2两个时间段内的具体的操作后,即完成了本发明实施例一所采用的链路发送单元的整个发送流程。After the specific operations in the two time periods T1 and T2 are completed, the entire sending process of the link sending unit adopted in Embodiment 1 of the present invention is completed.

需要说明的是,在本实施例所述流程的描述中,仅仅是以一个信息比特流为例来进行说明的,当有若干个信息比特流时,对这些若干个信息比特流是并行处理的,且它们各自的处理过程都不会影响其它信息比特流的处理,也不会受其它信息比特流的影响。It should be noted that, in the description of the process described in this embodiment, only one information bit stream is taken as an example for illustration. When there are several information bit streams, these several information bit streams are processed in parallel , and their respective processing processes will not affect the processing of other information bit streams, nor will they be affected by other information bit streams.

图6为本实施例链路发送单元对应的链路接收单元的结构示意图。如图6所示,该接收单元包括:FIG. 6 is a schematic structural diagram of a link receiving unit corresponding to the link sending unit in this embodiment. As shown in Figure 6, the receiving unit includes:

接收模块601,用于接收由发射模块308发射后的所有频域编码序列,并将接收信号调制回基带后,输出给FFT模块602。The receiving module 601 is configured to receive all frequency-domain coded sequences transmitted by the transmitting module 308 , modulate the received signal back to baseband, and output it to the FFT module 602 .

同现有一样,本实施例接收单元中接收模块的个数是不受发射模块个数的限定的,且为了同现有进行比较,假设本实施例中也有Nr个接收模块。Same as the existing ones, the number of receiving modules in the receiving unit of this embodiment is not limited by the number of transmitting modules, and for comparison with the existing ones, it is assumed that there are also N r receiving modules in this embodiment.

FFT模块602,用于对由接收模块601输入的信号进行FFT,并将所述FFT后的信号输出到资源逆映射模块603。The FFT module 602 is configured to perform FFT on the signal input by the receiving module 601 , and output the signal after the FFT to the resource inverse mapping module 603 .

资源逆映射模块603,用于对由FFT模块602输入的FFT后的信号进行资源逆映射,并将所述资源逆映射后得到的频域数据输出到第一数据重组模块604。The resource inverse mapping module 603 is configured to perform resource inverse mapping on the FFT signal input by the FFT module 602 , and output the frequency domain data obtained after the resource inverse mapping to the first data recombination module 604 .

为了同现有接收单元进行比较,在本实施例中,同样假设在T1时间段内第p个接收模块上的资源逆映射后得到的频域数据为X1,p=[X1,p[0],X1,p[1],...,X1,p[M-1]]T,在T2时间段内第p个接收模块上的资源逆映射后得到的频域数据为X2,p=[X2,p[0],X2,p[1],...,X2,p[M-1]]TIn order to compare with the existing receiving unit, in this embodiment, it is also assumed that the frequency domain data obtained after resource inverse mapping on the pth receiving module in the T1 time period is X 1, p = [X 1, p [ 0], X 1, p [1], ..., X 1, p [M-1]] T , the frequency domain data obtained after resource inverse mapping on the pth receiving module in the T2 time period is X 2, p = [X 2 , p [0], X 2 , p [1], . . . , X 2 , p [M-1]] T .

第一数据重组模块604,用于对所有资源逆映射后得到的频域数据进行重新排列组合,并将重新排列组合后的频域数据输出给MIMO FDE模块605。The first data reorganization module 604 is configured to rearrange and combine the frequency domain data obtained after inverse mapping of all resources, and output the rearranged and combined frequency domain data to the MIMO FDE module 605.

同现有技术一样,在本实施例中,经过资源逆映射模块603之后,也分别得到了T1时间段内的Nr个频域数据和T2时间段内的Nr个频域数据。同样地,为了后续处理方便,分别将这两个时间段内的Nr个频域数据重新组合,得到2M个大小为Nr×1的接收信号向量

Figure G2009102426243D00241
其中,所述X1,[m]为T1时间段内在第m个子载波上的接收信号向量;所述X2,[m]为T2时间段内在第m个子载波上的接收信号向量;并将这两个时间段内的同一个子载波上的接收信号向量按如下形式重新排列:Similar to the prior art, in this embodiment, after the resource inverse mapping module 603, N r pieces of frequency domain data in the T1 time period and N r pieces of frequency domain data in the T2 time period are respectively obtained. Similarly, for the convenience of subsequent processing, the N r frequency domain data in these two time periods are recombined to obtain 2M received signal vectors with a size of N r ×1 and
Figure G2009102426243D00241
Wherein, the X 1, [m] is the received signal vector on the m subcarrier in the T1 time period; the X 2, [m] is the received signal vector on the m subcarrier in the T2 time period; and The received signal vectors on the same subcarrier in these two time segments are rearranged as follows:

Xx 11 ,, [[ mm ]] == ΣΣ kk == 11 KK (( Hh 11 ,, kk 11 [[ mm ]] DD. kk 11 [[ mm ]] ++ Hh 11 ,, kk 22 [[ mm ]] DD. kk 22 [[ mm ]] )) ++ NN 11 [[ mm ]] ,,

Xx 22 ,, [[ mm ]] == ΣΣ kk == 11 KK (( Hh 22 ,, kk 22 [[ mm ]] DD. kk 11 ** [[ mm ]] -- Hh 22 ,, kk 11 [[ mm ]] DD. kk 22 ** [[ mm ]] )) ++ NN 22 [[ mm ]] ,,

其中,所述m=0,1,...,M-1,H1 j[m]和H2 j[m]分别为在T1时间段和T2时间段内第j个发射模块上对应的第k个天线组上的第m个子载波到所有接收模块的频域信道响应向量,N1[m]和N2[m]分别为在T1时间段和T2时间段内接收单元在第m个子载波上的白噪声向量,其单边能量谱密度为N0,且j=1,2。Wherein, the m=0, 1, ..., M-1, H 1 j [m] and H 2 j [m] are respectively the corresponding The frequency-domain channel response vectors from the mth subcarrier on the kth antenna group to all receiving modules, N 1 [m] and N 2 [m] are respectively The white noise vector on the carrier, its one-sided energy spectral density is N 0 , and j=1,2.

进一步地,两个时间段内同一子载波上的接收信号向量可以简化为:Further, the received signal vector on the same subcarrier in two time periods can be simplified as:

X 1 ‾ [ m ] = Σ k = 1 K H ‾ k [ m ] D k [ m ] + N ‾ [ m ] , 其中, x 1 ‾ [ m ] = Σ k = 1 K h ‾ k [ m ] D. k [ m ] + N ‾ [ m ] , in,

Xx ‾‾ 11 [[ mm ]] == Xx 11 TT [[ mm ]] Xx 22 Hh [[ mm ]] TT ,, Hh ‾‾ kk [[ mm ]] == Hh 11 ,, kk 11 [[ mm ]] Hh 11 ,, kk 22 [[ mm ]] Hh 22 ,, kk 22 ** [[ mm ]] -- Hh 22 ,, kk 11 ** [[ mm ]] ,, DD. kk [[ mm ]] == DD. kk 11 [[ mm ]] DD. kk 22 [[ mm ]] TT ,, NN ‾‾ [[ mm ]] == NN 11 TT [[ mm ]] NN 22 Hh [[ mm ]] TT ..

由此,即得到了经过第一数据重组模块604后的最终接收信号向量X1[m]。Thus, the final received signal vector X 1 [m] after passing through the first data reorganization module 604 is obtained.

需要说明的是,在本实施例中,由于发送单元由多个输入数据流,在接收单元部分也就存在多个发送数据流之间的干扰,因此,在接收单元不仅要对输入的信号向量进行频域均衡,还需要对多个数据流之间的干扰进行消除,本实施例采用了分层次的频域均衡与SIC消除,且假设频域均衡与SIC消除共有K/m0个分层处理模块,也即共有K/m0个层次,每个分层处理模块中都包括了MIMO FDE模块605、第二数据重组模块606、2m0个IDFT模块607、第三数据重组模块608、m0个星座解调模块609、m0个信道解码模块610、再编码模块611、信道增益模块612和SIC模块613,其中,所述m0为能被K整除的整数,下面对m0的选取过程进行详细描述。It should be noted that, in this embodiment, since the transmitting unit has a plurality of input data streams, there is also interference between a plurality of transmitting data streams in the receiving unit. Therefore, the receiving unit not only needs to For frequency domain equalization, it is also necessary to eliminate the interference between multiple data streams. This embodiment adopts hierarchical frequency domain equalization and SIC elimination, and assumes that frequency domain equalization and SIC elimination have a total of K/m 0 layers Processing modules, that is, a total of K/m 0 levels, each layered processing module includes a MIMO FDE module 605, a second data reorganization module 606, 2m 0 IDFT modules 607, a third data reorganization module 608, m 0 constellation demodulation modules 609, m 0 channel decoding modules 610, re-encoding modules 611, channel gain modules 612 and SIC modules 613, wherein, the m 0 is an integer divisible by K, the following m 0 The selection process is described in detail.

令原始发送信号向量为 d k [ i ] = [ d k 1 [ i ] , d k 2 [ i ] ] T , 对其进行频域均衡后的信号向量为 d ~ k [ i ] = [ d ~ k 1 [ i ] , d ~ k 2 [ i ] ] T , 那么最小均方误差为 MSE k = | | d ~ k [ i ] - d k [ i ] | | 2 , 也即 MSE k = E [ ( d ~ k [ i ] - d k [ i ] ) ( d ~ k [ i ] - d k [ i ] ) H ] = J k , 进一步地, J k = I 2 - 1 M Σ n = 0 M - 1 H ‾ ^ k H [ m ] R - 1 [ m ] H ‾ ^ k [ m ] , 从而,使得Jk最小的m0值即为所求,所述

Figure G2009102426243D00256
所述 R [ m ] = Σ k H ‾ ^ k [ m ] H ‾ ^ k H [ m ] + N _ vscul α 2 M N 0 I , i = 0,1 , . . . , M - 1 . Let the original sent signal vector be d k [ i ] = [ d k 1 [ i ] , d k 2 [ i ] ] T , The signal vector after frequency domain equalization is d ~ k [ i ] = [ d ~ k 1 [ i ] , d ~ k 2 [ i ] ] T , Then the minimum mean square error is MSE k = | | d ~ k [ i ] - d k [ i ] | | 2 , that is MSE k = E. [ ( d ~ k [ i ] - d k [ i ] ) ( d ~ k [ i ] - d k [ i ] ) h ] = J k , further, J k = I 2 - 1 m Σ no = 0 m - 1 h ‾ ^ k h [ m ] R - 1 [ m ] h ‾ ^ k [ m ] , Thus, the value of m 0 that makes J k the smallest is the desired value, the
Figure G2009102426243D00256
said R [ m ] = Σ k h ‾ ^ k [ m ] h ‾ ^ k h [ m ] + N _ vscule α 2 m N 0 I , i = 0,1 , . . . , m - 1 .

还需说明的是,由于发送单元是通过两个紧邻的时间段来进行发送的,因此,接收单元必然也是通过两个紧邻的时间段来进行接收的,因此,在每个均衡层次上每个时间段内都会有m0个信息比特流输出。It should also be noted that since the sending unit transmits through two adjacent time periods, the receiving unit must also receive through two adjacent time periods. Therefore, at each equalization level, each There will always be m 0 information bit streams output in the time period.

在选取好了m0之后,以第t个层次为例来说明具体的频域均衡与SIC消除过程,其中,所述t=1,2...,K/m0After m 0 is selected, the t-th level is taken as an example to illustrate the specific frequency domain equalization and SIC elimination process, where t=1, 2..., K/m 0 .

MIMO FDE模块605,用于对由第t-1个层次输入的频域均衡与SIC后的向量进行频域均衡,并将频域均衡后的软估计值输出给第二数据重组模块606。The MIMO FDE module 605 is configured to perform frequency domain equalization on the vector after frequency domain equalization and SIC input from the t-1th level, and output the soft estimated value after frequency domain equalization to the second data reorganization module 606.

在本实施例中,假设第t-1个层次输入的频域均衡与SIC后的向量为Xt[m],且假设前t-1个层次的SIC均无差错,则有,In this embodiment, it is assumed that the vector after frequency domain equalization and SIC input at the t-1th level is X t [m], and assuming that the SICs of the first t-1 levels have no errors, then there is,

Xx tt ‾‾ [[ mm ]] == ΣΣ kk Hh ‾‾ ^^ kk [[ mm ]] DD. kk [[ mm ]] ++ NN ‾‾ [[ mm ]] ,,

其中,所述 k ∈ { { 1,2 , . . . , K } - Σ s = 1 t - 1 k ^ s } , 所述 k ^ s = ( { k ( s - 1 ) m 0 + 1 , . . . , k sm 0 } ⋐ { 1 , . . . , K } ) . Among them, the k ∈ { { 1,2 , . . . , K } - Σ the s = 1 t - 1 k ^ the s } , said k ^ the s = ( { k ( the s - 1 ) m 0 + 1 , . . . , k sm 0 } ⋐ { 1 , . . . , K } ) .

得到了Xt[m]后,即可采用如下的公式对Xt[m]进行频域均衡操作,得到频域均衡后的向量为:After obtaining X t [m], the frequency domain equalization operation can be performed on X t [m] using the following formula, and the obtained vector after frequency domain equalization is:

Figure G2009102426243D002511
Figure G2009102426243D002511

其中,所述W[m]为第m个子载波的频域均衡权重矩阵,且W[m]=R-1[m]F[m]。Wherein, the W[m] is the frequency domain equalization weight matrix of the mth subcarrier, and W[m]=R −1 [m]F[m].

需要说明的是,在本实施例中,对于第1个频域均衡与SIC层次来说,输入到MIMO FDE模块605中的向量即为第一数据重组模块604输出的最终接收信号向量X1[m]。It should be noted that, in this embodiment, for the first frequency domain equalization and SIC level, the vector input to the MIMO FDE module 605 is the final received signal vector X 1 [ m].

第二数据重组模块606,用于对由MIMO FDE模块605输入的频域均衡后的向量进行重新排列组合,并将所述重新排列组合后得到的向量输出到IDFT模块607。The second data reorganization module 606 is configured to rearrange and combine the vectors after frequency domain equalization input by the MIMO FDE module 605, and output the vectors obtained after the rearrangement and combination to the IDFT module 607.

在本实施例中,对Dt[m]进行重新排列组合后得到了2m0个频域子数据流,它们分别为:In this embodiment, D t [m] is rearranged and combined to obtain 2m 0 frequency domain sub-data streams, which are respectively:

DD. ll oo == [[ DD. ll oo [[ 00 ]] ,, DD. ll oo [[ 11 ]] ,, .. .. .. ,, DD. ll oo [[ Mm -- 11 ]] ]] ,,

DD. ll ee == [[ DD. ll ee [[ 00 ]] ,, DD. ll ee [[ 11 ]] ,, .. .. .. ,, DD. ll ee [[ Mm -- 11 ]] ]] ,,

其中,所述 l = ( k ( t - 1 ) m 0 + 1 , . . . , k tm 0 ) . Among them, the l = ( k ( t - 1 ) m 0 + 1 , . . . , k tm 0 ) .

IDFT模块607,用于对由第二数据重组模块606输入的每一个子数据流分别进行IDFT,并将所有IDFT后的时域子数据流输出到第三数据重组模块608。The IDFT module 607 is configured to perform IDFT on each sub-data stream input by the second data recombination module 606 , and output all time-domain sub-data streams after IDFT to the third data recombination module 608 .

在本实施例中,对Dl o和Dl e分别进行IDFT后得到的时域子数据流为:In this embodiment, the time-domain sub-data stream obtained after performing IDFT on D l o and D l e respectively is:

dd ~~ ll oo [[ ii ]] == 11 Mm ΣΣ nno == 00 Mm -- 11 DD. ll oo [[ nno ]] ejπmiejπmi // Mm ,,

dd ~~ ll ee [[ ii ]] == 11 Mm ΣΣ nno == 00 Mm -- 11 DD. ll ee [[ nno ]] ejπmiejπmi // Mm ..

第三数据重组模块608,用于对由IDFT模块607输入的时域子数据流进行重新排列组合,并将所述重新排列组合后的时域数据流输出到星座解调模块609。The third data recombination module 608 is configured to rearrange and combine the time domain sub-data streams input by the IDFT module 607 , and output the rearranged and combined time domain data streams to the constellation demodulation module 609 .

在本实施例中,将所得到的两个时域子数据流进行重新排列组合,即将原来分奇偶后的子数据流进行相反的合并运算,得到一个完整的时域数据流。In this embodiment, the obtained two sub-data streams in the time domain are rearranged and combined, that is, the sub-data streams after the original parity division are reversely merged to obtain a complete time-domain data stream.

星座解调模块609,用于对由第三数据重组模块608输入的数据流进行星座解调,并将星座解调后的数据流输出到信道解码模块610。The constellation demodulation module 609 is configured to perform constellation demodulation on the data stream input by the third data reassembly module 608 , and output the constellation demodulated data stream to the channel decoding module 610 .

信道解码模块610,用于对由星座解调模块609输入的数据流进行信道解码,得到m0个信息比特流,并将紧邻的两个时间段内得到的m0个信息比特流分别输出到再编码模块611。The channel decoding module 610 is configured to perform channel decoding on the data stream input by the constellation demodulation module 609 to obtain m 0 information bit streams, and output the m 0 information bit streams obtained in two adjacent time periods to Re-encoding module 611 .

由于在每个时间段内分别得到m0个信息比特流,因此,在本实施例中,输入到再编码模块611中的信息比特流一共有2m0个。Since m 0 information bit streams are obtained in each time period, in this embodiment, a total of 2m 0 information bit streams are input to the re-encoding module 611 .

再编码模块611,用于对由信道解码模块610输入的2m0个信息比特流进行再编码,并将再编码后的频域编码序列输出到信道增益模块612。The re-encoding module 611 is configured to re-encode the 2m 0 information bit streams input by the channel decoding module 610, and output the re-encoded frequency-domain coded sequence to the channel gain module 612.

在本实施例中,经过再编码模块611后得到的频域编码序列为

Figure G2009102426243D00271
且由于后续假设是无差错SIC,因此, D ^ k [ m ] = D k [ m ] , 其中,所述 k ∈ k ^ s . In this embodiment, the frequency-domain coding sequence obtained after the re-encoding module 611 is
Figure G2009102426243D00271
And since the subsequent assumption is error-free SIC, therefore, D. ^ k [ m ] = D. k [ m ] , Among them, the k ∈ k ^ the s .

需要说明的是,本实施例中的再编码模块实际上与发送单元部分相对应的,但是,该模块中仅仅需要得到频域编码序列,也就不需要发射部分,图7给出了本实施例所采用的再编码模块的结构示意图。如图7所示,该模块包括:It should be noted that the re-encoding module in this embodiment actually corresponds to the sending unit part, but only the frequency-domain coding sequence needs to be obtained in this module, and the sending part is not needed. Figure 7 shows the Schematic diagram of the structure of the re-encoding module used in the example. As shown in Figure 7, this module includes:

信道编码模块701,用于对输入的信息比特流进行信道编码,并将信道编码后得到的编码比特流输出到星座调制模块702。The channel coding module 701 is configured to perform channel coding on the input information bit stream, and output the coded bit stream obtained after channel coding to the constellation modulation module 702 .

星座调制模块702,用于对信道编码模块701输入的信道编码后的编码比特流进行星座调制,并将星座调制后得到的时域数据流输出到数据分流模块703。The constellation modulation module 702 is configured to perform constellation modulation on the channel-coded coded bit stream input by the channel coding module 701 , and output the time-domain data stream obtained after the constellation modulation to the data splitting module 703 .

数据分流模块703,用于对星座调制模块702输入的时域数据流进行分流,并将分流后得到的两个数据量相同的时域子数据流输出到STBC器704。The data splitting module 703 is configured to split the time-domain data stream input by the constellation modulation module 702 , and output two time-domain sub-data streams with the same amount of data obtained after splitting to the STBC 704 .

STBC器704,用于对数据分流模块703输入的两个数据量相同的时域子数据流进行第一预定算法的处理,并将所述第一预定算法处理后得到的两个时域编码序列输出到DFT模块705。The STBC unit 704 is configured to process the two time-domain sub-data streams with the same amount of data input by the data splitting module 703 with a first predetermined algorithm, and process the two time-domain coded sequences obtained after the first predetermined algorithm Output to DFT module 705.

需要说明的是,在本实施例中,在紧邻的两个发射时间段T1和T2内,对于同一个分流后的两个数据量相同的时域子数据流分别采用了不同的处理方式,即在T1时间段内,不对分流后的时域子数据流进行STBC,直接将分流后得到的两个数据量相同的时域子数据流dk1和dk2输出到DFT模块305;在在T2时间段内,对分流后的两个数据量相同的时域子数据流进行第一预定算法的处理后,再将其输出到DFT模块305。It should be noted that, in this embodiment, in the two immediately adjacent transmission time periods T1 and T2, different processing methods are adopted for the same divided time-domain sub-data streams with the same amount of data, namely In the T1 time period, STBC is not performed on the time-domain sub-data stream after the split, and the two time-domain sub-data streams d k1 and d k2 with the same data volume obtained after the split are directly output to the DFT module 305; at the T2 time In the section, after the two divided time-domain sub-data streams with the same amount of data are processed by the first predetermined algorithm, they are output to the DFT module 305 .

具体如何进行第一预定算法的处理过程同发送单元部分,这里不再赘述。How to perform the processing of the first predetermined algorithm is the same as that of the sending unit, and will not be repeated here.

DFT模块705,用于对STBC器704输入的两个时域编码序列和数据分流单元703输入的两个时域数据流分别进行DFT,得到频域编码序列,并将所述频域编码序列输出到第四数据重组模块706。The DFT module 705 is configured to perform DFT on the two time-domain coded sequences input by the STBC unit 704 and the two time-domain data streams input by the data splitting unit 703 to obtain a frequency-domain coded sequence, and output the frequency-domain coded sequence Go to the fourth data reorganization module 706 .

第四数据重组模块706,用于对DFT模块705输入的频域编码序列进行重新排列组合,得到重新排列组合后的频域编码序列。The fourth data reorganization module 706 is configured to rearrange and combine the frequency-domain coded sequences input by the DFT module 705 to obtain rearranged and combined frequency-domain coded sequences.

在本实施例中,具体的重新排列组合的方式为:In this embodiment, the specific ways of rearranging and combining are:

D ^ k [ m ] = D ^ k 1 [ m ] D ^ k 2 [ m ] T , 其中, D. ^ k [ m ] = D. ^ k 1 [ m ] D. ^ k 2 [ m ] T , in,

Figure G2009102426243D00282
Figure G2009102426243D00283
为DFT模块705输出的2m0个频域序列,它们分别对应发送序列Dk 1[m]与Dk 2[m],且 k ∈ k ^ s .
Figure G2009102426243D00282
and
Figure G2009102426243D00283
are 2m 0 frequency domain sequences output by the DFT module 705, which correspond to the transmission sequences D k 1 [m] and D k 2 [m] respectively, and k ∈ k ^ the s .

至此,即得到了本实施例所采用的再编码模块。So far, the re-encoding module used in this embodiment is obtained.

需要说明的是,本实施例所采用的信道编码模块701、星座调制模块702、数据分流模块703、STBC器704以及DFT模块705的具体操作分别同信道编码模块301、星座调制模块302、数据分流模块303、STBC器304以及DFT模块305,不同之处在于,本实施例中共有2m0个信息比特流,而图3中则有K个信息比特流,其处理过程也完全相同,故这里不再对其进行赘述。It should be noted that the specific operations of the channel coding module 701, constellation modulation module 702, data distribution module 703, STBC device 704, and DFT module 705 used in this embodiment are the same as those of the channel coding module 301, constellation modulation module 302, and data distribution module 301 respectively. Module 303, STBC device 304 and DFT module 305, the difference is that there are 2m 0 information bit streams in this embodiment, while there are K information bit streams in Fig. 3, and its processing process is also exactly the same, so here Let's talk about it again.

信道增益模块612,用于对由再编码模块611输入的频域编码序列进行信道估计,并将信道估计后得到的频域编码序列输出到SIC模块613。The channel gain module 612 is configured to perform channel estimation on the frequency-domain coded sequence input by the re-encoding module 611 , and output the frequency-domain coded sequence obtained after channel estimation to the SIC module 613 .

在本实施例中,对频域编码序列进行信道估计其实是将信道估计值

Figure G2009102426243D00291
与频域编码序列进行相乘,再将相乘后得到的
Figure G2009102426243D00293
输入到SIC模块613中,所述
Figure G2009102426243D00294
为Dk[m]的估计值。In this embodiment, performing channel estimation on the frequency-domain coded sequence is actually the channel estimation value
Figure G2009102426243D00291
and frequency-domain coded sequence Multiply, and then multiply the obtained
Figure G2009102426243D00293
input to the SIC module 613, the
Figure G2009102426243D00294
is the estimated value of D k [m].

SIC模块613,用于接收由前一个层次的SIC模块613后的输出数据和由信道增益模块612输入的数据,并将所述数据进行SIC后,再输出给下一个层次的MIMO FDE模块605。The SIC module 613 is configured to receive output data from the SIC module 613 of the previous level and data input from the channel gain module 612, perform SIC on the data, and then output to the MIMO FDE module 605 of the next level.

在本实施例中,对数据进行SIC采用了如下形式的计算方式得到本层次的SIC后的数据Xt+1[m],即In this embodiment, the following calculation method is used to perform SIC on the data to obtain the data X t+1 [m] after SIC at this level, namely

Xx ‾‾ tt ++ 11 [[ mm ]] == Xx ‾‾ tt [[ mm ]] -- ΣΣ kk ∈∈ kk ^^ sthe s Hh ‾‾ ^^ kk [[ mm ]] DD. ^^ kk [[ mm ]] ..

由此,即得到了第t个层次上的频域均衡与SIC数据,将得到的Xt+1[m]继续下一个层次的频域均衡与SIC,直至所有的频域编码序列被解码完毕,也即得到K个输出的信息比特流为止。Thus, the frequency domain equalization and SIC data on the tth level is obtained, and the obtained X t+1 [m] continues to the next level of frequency domain equalization and SIC until all the frequency domain coding sequences are decoded , that is, until K output information bit streams are obtained.

需要说明的是,在本实施例中,对于第一个层次的频域均衡与SIC来说,SIC模块613接收的是第一数据重组模块604的输入和信道增益模块612的输入。It should be noted that, in this embodiment, for the first level of frequency domain equalization and SIC, the SIC module 613 receives the input of the first data reorganization module 604 and the input of the channel gain module 612 .

至此,即得到了本实施例所采用的接收单元,该接收单元所对应的接收流程参见图8,如图8所示,该流程包括:So far, the receiving unit used in this embodiment has been obtained. The receiving process corresponding to the receiving unit is shown in FIG. 8. As shown in FIG. 8, the process includes:

步骤801:对由接收模块接收到的信号进行FFT操作。Step 801: Perform FFT operation on the signal received by the receiving module.

步骤802:将FFT后得到的信号进行资源逆映射。Step 802: Perform resource inverse mapping on the signal obtained after FFT.

为了同现有技术进行比较,在本步骤中,假设在T1时间段内第p个接收模块上的资源逆映射后得到的频域数据为X1,p=[X1,p[0],X1,p[1],...,X1,p[M-1]]T,在T2时间段内第p个接收模块上的资源逆映射后得到的频域数据为X2,p=[X2,p[0],X2,p[1],...,X2,p[M-1]]TIn order to compare with the prior art, in this step, it is assumed that the frequency domain data obtained after resource inverse mapping on the pth receiving module in the T1 time period is X 1, p = [X 1, p [0], X 1, p [1], ..., X 1, p [M-1]] T , the frequency domain data obtained after resource inverse mapping on the pth receiving module in the T2 time period is X 2, p =[X 2 , p [0], X 2 , p [1], . . . , X 2 , p [M-1]] T .

步骤803:对资源逆映射后得到的频域数据进行重新排列组合。Step 803: rearrange and combine the frequency domain data obtained after resource inverse mapping.

在本步骤中,需要将资源逆映射后得到的T1时间段内的Nr个频域数据和T2时间段内的Nr个频域数据重新组合,分别得到2M个大小为Nr×1的接收信号向量

Figure G2009102426243D00301
Figure G2009102426243D00302
并将这两个时间段内的同一个子载波上的接收信号向量按如下形式重新排列:In this step, it is necessary to recombine the N r frequency domain data in the T1 time period obtained after resource inverse mapping and the N r frequency domain data in the T2 time period to obtain 2M N r ×1 frequency domain data respectively. receive signal vector
Figure G2009102426243D00301
and
Figure G2009102426243D00302
And rearrange the received signal vectors on the same subcarrier in the two time periods as follows:

Xx 11 ,, [[ mm ]] == ΣΣ kk == 11 KK (( Hh 11 ,, kk 11 [[ mm ]] DD. kk 11 [[ mm ]] ++ Hh 11 ,, kk 22 [[ mm ]] DD. kk 22 [[ mm ]] )) ++ NN 11 [[ mm ]] ,,

Xx 22 ,, [[ mm ]] == ΣΣ kk == 11 KK (( Hh 22 ,, kk 22 [[ mm ]] DD. kk 11 ** [[ mm ]] -- Hh 22 ,, kk 11 [[ mm ]] DD. kk 22 ** [[ mm ]] )) ++ NN 22 [[ mm ]] ,,

进一步地,两个时间段内同一子载波上的接收信号向量可以简化为:Further, the received signal vector on the same subcarrier in two time periods can be simplified as:

Xx 11 ‾‾ [[ mm ]] == ΣΣ kk == 11 KK Hh ‾‾ kk [[ mm ]] DD. kk [[ mm ]] ++ NN ‾‾ [[ mm ]] ..

步骤804:对重新排列组合后的频域数据进行频域均衡。Step 804: Perform frequency domain equalization on the rearranged and combined frequency domain data.

对频域数据进行频域均衡后得到的频域均衡后的数据D1[m]为:The frequency domain equalized data D 1 [m] obtained after performing frequency domain equalization on the frequency domain data is:

Figure G2009102426243D00306
Figure G2009102426243D00306

其中,所述W[m]为第m个子载波的频域均衡权重矩阵,且W[m]=R-1[m]F[m],所述m0为能被K整除的整数,且m0的具体选取过程在前面已经描述过,这里不再赘述。Wherein, the W[m] is the frequency domain equalization weight matrix of the mth subcarrier, and W[m]=R -1 [m]F[m], the m 0 is an integer divisible by K, and The specific selection process of m 0 has been described above, and will not be repeated here.

步骤805:将频域均衡后得到的向量进行重新排列组合。Step 805: rearrange and combine the vectors obtained after frequency domain equalization.

在本步骤中,将得到的D1[m]分别按照奇偶进行重新排列组合,得到了D1 o[m]和D1 e[m]两个频域子数据流,其中,In this step, the obtained D 1 [m] is rearranged and combined according to parity respectively, and two frequency-domain sub-data streams D 1 o [m] and D 1 e [m] are obtained, wherein,

Figure G2009102426243D00307
Figure G2009102426243D00307

Figure G2009102426243D00308
Figure G2009102426243D00308

步骤806:对重新排列组合后得到的子数据流进行IDFT。Step 806: Perform IDFT on the rearranged and combined sub-data streams.

对D1 o[m]和D1 e[m]两个频域子数据流分别进行IDFT,得到两个时域子数据流

Figure G2009102426243D003010
,其中,Perform IDFT on the two frequency-domain sub-data streams D 1 o [m] and D 1 e [m] respectively to obtain two time-domain sub-data streams and
Figure G2009102426243D003010
,in,

dd ~~ 11 oo [[ ii ]] == 11 Mm ΣΣ mm == 00 Mm -- 11 DD. 11 oo [[ nno ]] ejπmiejπmi // Mm ,,

dd ~~ 11 ee [[ ii ]] == 11 Mm ΣΣ mm == 00 Mm -- 11 DD. 11 ee [[ nno ]] ejπmiejπmi // Mm ..

步骤807:将IDFT后得到的时域子数据流进行重新排列组合。Step 807: rearrange and combine the time-domain sub-data streams obtained after IDFT.

将得到的两个时域子数据流再次进行重新排列组合,即将原来分奇偶后的子数据流进行相反的合并运算,得到一个完整的时域数据流。The obtained two sub-data streams in the time domain are rearranged and combined again, that is, the sub-data streams after the original parity division are reversely merged to obtain a complete time-domain data stream.

步骤808:将得到的时域数据流进行星座解调。Step 808: Perform constellation demodulation on the obtained time-domain data stream.

步骤809:将星座解调后得到的数据流进行信道解码,得到输出的信息比特流。Step 809: Perform channel decoding on the data stream obtained after constellation demodulation to obtain an output information bit stream.

在本步骤中,得到了2m0个信息比特流,具体的m0的意义及其选取过程已经描述过,这里不再赘述。In this step, 2m 0 information bit streams are obtained, the specific meaning of m 0 and the selection process have been described, and will not be repeated here.

步骤810:判断所述得到的信息比特流的总个数是否为K,如果是,则结束;否则,执行步骤811。Step 810: Judging whether the total number of information bit streams obtained is K, if yes, then end; otherwise, go to step 811.

对所述得到的信息比特流的总个数进行判断,如果总的信息比特流的个数为K,则结束接收流程;否则,执行步骤811。Judging the total number of information bit streams obtained, if the total number of information bit streams is K, then end the receiving process; otherwise, go to step 811 .

步骤811:对由步骤810得到的信息比特流进行再编码。Step 811: Re-encode the information bit stream obtained in step 810.

将2m0个信息比特流进行再编码如图7所述的再编码过程,得到了2m0个频域编码序列D1[m]。The 2m 0 information bit streams are re-encoded as shown in Figure 7, and 2m 0 frequency-domain coded sequences D 1 [m] are obtained.

步骤812:将再编码后的信息比特流进行SIC。Step 812: Perform SIC on the re-encoded information bit stream.

将重新排列组合后的频域数据进行如下公式的SIC,得到SIC后的数据X2[m]为:Perform the SIC of the rearranged and combined frequency domain data on the following formula, and obtain the data X 2 [m] after SIC as:

Xx ‾‾ 22 [[ mm ]] == Xx ‾‾ 11 [[ mm ]] -- Hh ‾‾ ^^ 11 [[ mm ]] DD. 11 [[ mm ]] ..

步骤813:将SIC后得到的数据进行频域均衡后,返回执行步骤805。Step 813: Perform frequency domain equalization on the data obtained after the SIC, and return to step 805.

再次将X2[m]执行如步骤804所述的频域均衡过程,得到了频域均衡后的数据D2[m],并返回执行步骤805。Perform the frequency domain equalization process on X 2 [m] again as described in step 804 to obtain frequency domain equalized data D 2 [m], and return to step 805 .

至此,即完成了本实施例所采用接收单元的整个工作流程。So far, the entire working process of the receiving unit used in this embodiment is completed.

综上,在本实施例中,接收单元中的再编码模块实际上是发送单元中的一部分,因此,采用的发送单元与接收单元应该是相互对应的。To sum up, in this embodiment, the re-encoding module in the receiving unit is actually a part of the sending unit, therefore, the used sending unit and receiving unit should correspond to each other.

实施例二Embodiment two

本实施例中,STBC在DFT之后进行,参见图9所述的链路发送单元的结构示意图。如图9所示,该发送单元包括:In this embodiment, STBC is performed after DFT, refer to the schematic structural diagram of the link sending unit shown in FIG. 9 . As shown in Figure 9, the sending unit includes:

信道编码模块901,用于对输入的信息比特流进行信道编码,并将信道编码后得到的编码比特流输出到星座调制模块902。The channel coding module 901 is configured to perform channel coding on the input information bit stream, and output the coded bit stream obtained after channel coding to the constellation modulation module 902 .

星座调制模块902,用于对信道编码模块901输入的信道编码后的编码比特流进行星座调制,并将星座调制后得到的时域数据流输出到数据分流模块903。The constellation modulation module 902 is configured to perform constellation modulation on the channel-coded coded bit stream input by the channel coding module 901 , and output the time-domain data stream obtained after the constellation modulation to the data splitting module 903 .

为了将STBC在DFT之前和DFT之后具体的编码结果进行比较,同实施例一一样,在本实施例中,假设在第k个天线上的时域数据流也为dk=[dk[0],dk[1],...,dk[2M-1]]T,其中,所述k为天线组的序号,所述2M为时域数据流中数据的个数。In order to compare the specific encoding results of STBC before DFT and after DFT, as in Embodiment 1, in this embodiment, it is assumed that the time-domain data stream on the kth antenna is also d k =[d k [ 0], d k [1], ..., d k [2M-1]] T , wherein the k is the serial number of the antenna group, and the 2M is the number of data in the time domain data stream.

数据分流模块903,用于对星座调制模块902输入的时域数据流进行分流,并将分流后得到的两个数据量相同的时域子数据流分别输出到DFT模块904。The data splitting module 903 is configured to split the time-domain data stream input by the constellation modulation module 902, and output two time-domain sub-data streams obtained after the splitting with the same amount of data to the DFT module 904 respectively.

同实施例一一样,在本实施例中,对时域数据流dk进行分流时也是将其均分为两个数据量相同的时域子数据流dk1和dk2来实现的,具体的实现过程同数据分流模块303,这里不再对其进行赘述。Same as the first embodiment, in this embodiment, when splitting the time-domain data stream d k , it is also realized by equally dividing it into two time-domain sub-data streams d k1 and d k2 with the same amount of data, specifically The implementation process is the same as that of the data distribution module 303, which will not be repeated here.

DFT模块904,用于对数据分流模块903输入的两个数据量相同的时域子数据流分别进行DFT,得到两个频域子数据流,并将所述两个频域子数据流输出到STBC器905。The DFT module 904 is configured to perform DFT on the two time-domain sub-data streams with the same amount of data input by the data splitting module 903 to obtain two frequency-domain sub-data streams, and output the two frequency-domain sub-data streams to STBC 905.

在本实施例中,对两个数据量相同的时域子数据流dk1和dk2进行DFT,得到的两个频域子数据流Dk1和Dk2的数据量也是相同的,分别为:In this embodiment, DFT is performed on two time-domain sub-data streams d k1 and d k2 with the same data volume, and the data volumes of the two frequency-domain sub-data streams D k1 and D k2 are also the same, which are respectively:

Dk1=[Dk1[0],Dk1[1],...,Dk1[M-1]]T Dk1 = [ Dk1 [0], Dk1 [1], . . . , Dk1 [M-1]] T ,

Dk2=[Dk2[0],Dk2[1],...,Dk2[M-1]]TD k2 = [D k2 [0], D k2 [1], . . . , D k2 [M-1]] T ,

其中,所述Dk1[0],Dk1[1],...,Dk1[M-1]为dk1[0],dk1[1],...,dk1[M-1]的DFT结果,所述Dk2[0],Dk2[1],...,Dk2[M-1]为dk2[0],dk2[1],...,dk2[M-1]的DFT结果。Wherein, the D k1 [0], D k1 [1], ..., D k1 [M-1] is d k1 [0], d k1 [1], ..., d k1 [M-1 ], the Dk2 [0], Dk2 [1], ..., Dk2 [M-1] is dk2 [0], dk2 [1], ..., dk2 [ M-1] DFT results.

需要说明的是,在本实施例中,在紧邻的两个不同的时间段T1和T2内,对分流后的两个时域子数据流在进行了DFT之后,也分别采用了不同的处理方式,并且这两个时间段的处理方式可以互换,实际中以不影响本发明实施例的实现为准。以下举例说明其具体处理过程。It should be noted that, in this embodiment, in the two adjacent time periods T1 and T2, after DFT is performed on the two time-domain sub-data streams after splitting, different processing methods are also adopted respectively. , and the processing manners of the two time periods can be interchanged, whichever does not affect the implementation of the embodiments of the present invention in practice. The following examples illustrate its specific processing.

在T1时间段内,直接将DFT后的两个频域子数据流Dk1和Dk2输出到资源映射模块906;In the T1 time period, directly output the two frequency domain sub-data streams D k1 and D k2 after DFT to the resource mapping module 906;

在T2时间段内,将DFT后的两个频域子数据流Dk1和Dk2输出到STBC器905。In the time period T2, the two frequency-domain sub-data streams D k1 and D k2 after DFT are output to the STBC 905 .

STBC器905,用于对所述DFT模块904输入的两个频域子数据流进行第二预定算法的处理,得到频域编码序列,并将所述频域编码序列输出到资源映射模块906。The STBC unit 905 is configured to process the two frequency-domain sub-data streams input by the DFT module 904 with a second predetermined algorithm to obtain a frequency-domain coding sequence, and output the frequency-domain coding sequence to the resource mapping module 906 .

对两个频域子数据流Dk1和Dk2进行第二预定算法的处理,即可得到两个频域编码序列,且处理过程不同,会得到不同的频域编码序列。在本实施例中,对两个频域子数据流Dk1和Dk2进行STBC,得到的频域编码序列Dk 1和Dk 2分别为:Two frequency-domain coded sequences can be obtained by processing the two frequency-domain sub-data streams D k1 and D k2 with the second predetermined algorithm, and different frequency-domain coded sequences can be obtained due to different processing procedures. In this embodiment, STBC is performed on two frequency-domain sub-data streams D k1 and D k2 , and the obtained frequency-domain coding sequences D k 1 and D k 2 are respectively:

DD. kk 11 == [[ -- [[ DD. kk 22 [[ 00 ]] ]] ** ,, -- [[ DD. kk 22 [[ 11 ]] ]] ** ,, .. .. .. ,, -- [[ DD. kk 22 [[ Mm -- 22 ]] ]] ** ,, -- [[ DD. kk 22 [[ Mm -- 11 ]] ]] ** ]] TT ,,

DD. kk 22 == [[ [[ DD. kk 11 [[ 00 ]] ]] ** ,, [[ DD. kk 11 [[ 11 ]] ]] ** ,, .. .. .. ,, [[ DD. kk 11 [[ Mm -- 22 ]] ]] ** ,, [[ DD. kk 11 [[ Mm -- 11 ]] ]] ** ]] TT ..

本实施例采用的具体的处理过程如下:The specific processing procedure adopted in this embodiment is as follows:

D k 1 ( s ) = - [ D k 2 ( s ) ] * , D k 2 ( s ) = [ D k 1 ( s ) ] * , 其中,所述s=0,1,...,M-1,所述*为共轭,所述Dk1(s)为频域子数据流Dk1的第s个元素,所述Dk2(s)为频域子数据流Dk2的第s个元素,所述Dk 1(s)为频域编码序列Dk 1的第s个元素。 D. k 1 ( the s ) = - [ D. k 2 ( the s ) ] * , D. k 2 ( the s ) = [ D. k 1 ( the s ) ] * , Wherein, the s=0, 1, ..., M-1, the * is a conjugate, the D k1 (s) is the sth element of the frequency domain sub-data stream D k1 , and the D k2 (s) is the s-th element of the frequency-domain sub-data stream D k2 , and the D k 1 (s) is the s-th element of the frequency-domain coding sequence D k 1 .

需要说明的是,实际中也可采用其他的STBC过程,以不影响本发明实施例的实现为准。It should be noted that in practice, other STBC processes may also be used, as long as the realization of the embodiment of the present invention is not affected.

还需说明的是,上述仅仅是以在T1时间段内不进行STBC,在T2时间段内进行STBC为例来说明的,还可在T1时间段内进行STBC,在T2时间段内不进行STBC来实现本实施例的完整的STBC过程,实际中以不影响本发明实施例的实现为准。It should also be noted that the above is only an example of not performing STBC in the T1 time period and performing STBC in the T2 time period. It is also possible to perform STBC in the T1 time period and not perform STBC in the T2 time period. In order to realize the complete STBC process of this embodiment, it shall prevail that the realization of the embodiment of the present invention is not affected in practice.

在本实施例中,从Dk1、Dk2、Dk 1和Dk 2的表达式可以看出,Dk1、Dk2、Dk 1和Dk 2呈发射分集顺序排列,表明完成了针对SC-FDMA系统的STBC。且具体的发射分集顺序排列的判断方式同现有技术一样,这里不再赘述。In this embodiment, it can be seen from the expressions of D k1 , D k2 , D k 1 and D k 2 that D k1 , D k2 , D k 1 and D k 2 are arranged in transmit diversity order, indicating that the STBC for SC-FDMA system. And the specific judgment method of transmit diversity sequence arrangement is the same as that of the prior art, and will not be repeated here.

同样地,在本实施例中,由于STBC编码过程不同,因此,得到的两个频域编码序列会有不同的表现形式,不管它们的表现形式如何,只要两个频域编码序列呈发射分集顺序排列,也就表明STBC完成。Similarly, in this embodiment, due to the different STBC encoding processes, the two obtained frequency-domain coded sequences will have different representations, no matter what their representations are, as long as the two frequency-domain coded sequences are in the transmit diversity order Arrangement, which means that the STBC is complete.

资源映射模块906,用于对DFT模块904输入的频域数据流和STBC器905输入的频域编码序列进行资源映射,并将所述资源映射后的频域编码序列输出到IFFT模块907。The resource mapping module 906 is configured to perform resource mapping on the frequency-domain data stream input by the DFT module 904 and the frequency-domain coding sequence input by the STBC 905 , and output the resource-mapped frequency-domain coding sequence to the IFFT module 907 .

IFFT模块907,用于对资源映射模块906输入的资源映射后的频域编码序列进行IFFT,并将所述IFFT后的频域编码序列输出到发射模块908。The IFFT module 907 is configured to perform IFFT on the resource-mapped frequency domain coded sequence input by the resource mapping module 906 , and output the IFFT frequency domain coded sequence to the transmitting module 908 .

发射模块908,用于对IFFT模块907输入的IFFT后的频域编码序列进行发射。The transmitting module 908 is configured to transmit the IFFT-coded sequence in the frequency domain input by the IFFT module 907 .

至此,即得到了本实施例所采用的链路发送单元。So far, the link sending unit used in this embodiment is obtained.

需要说明的是,在本实施例中,信道编码模块901、星座调制模块902、资源映射模块906、IFFT模块907以及发射模块908的具体操作分别同现有信道编码模块101、星座调制模块102、资源映射模块105、IFFT模块106以及发射模块107,数据分流模块903的具体操作同实施例一中的数据分流模块303,故此处都不再对其进行赘述。同时,信道编码模块901、星座调制模块902、数据分流模块903和STBC器905的数量相同为多个,DFT模块904、资源映射模块906以及IFFT模块907为信道编码模块901的四倍,发射模块908的数量为信道编码模块901的两倍。It should be noted that, in this embodiment, the specific operations of the channel coding module 901, the constellation modulation module 902, the resource mapping module 906, the IFFT module 907, and the transmitting module 908 are respectively the same as the existing channel coding module 101, constellation modulation module 102, The specific operations of the resource mapping module 105, the IFFT module 106, the transmitting module 107, and the data distribution module 903 are the same as those of the data distribution module 303 in Embodiment 1, so they will not be repeated here. At the same time, the number of the channel coding module 901, the constellation modulation module 902, the data splitting module 903 and the STBC device 905 are the same as multiple, the DFT module 904, the resource mapping module 906 and the IFFT module 907 are four times the channel coding module 901, and the transmitting module The number of 908 is twice that of the channel coding module 901.

同样地,在本实施例中,也是以第k个天线组对信息比特流k的处理为例来进行说明的。实际中,如果有多个信息比特流,则对这多个信息比特流是并行处理的,每个信息比特流在各自的天线组上进行发射,且发射时并不影响其它天线组上的信息比特流,也不受其它天线上信息比特流的影响。Likewise, in this embodiment, the processing of the information bit stream k by the kth antenna group is taken as an example for description. In practice, if there are multiple information bit streams, the multiple information bit streams are processed in parallel, and each information bit stream is transmitted on its own antenna group, and the transmission does not affect the information on other antenna groups The bit stream is not affected by the bit stream of information on other antennas.

图10为图9所述发送单元对应的发送流程图,如图10所示,该流程包括:Fig. 10 is a sending flowchart corresponding to the sending unit described in Fig. 9, as shown in Fig. 10, the flow includes:

步骤1001:输入待处理的信息比特流。Step 1001: Input the information bit stream to be processed.

步骤1002:对输入的信息比特流进行信道编码,得到经过信道编码后的编码比特流。Step 1002: Perform channel coding on the input information bit stream to obtain a coded bit stream after channel coding.

步骤1003:对信道编码后的得到的编码比特流进行星座调制,得到经过星座调制后的时域数据流。Step 1003: Constellation modulation is performed on the coded bit stream obtained after channel coding to obtain a constellation-modulated time-domain data stream.

为了将STBC在DFT之前和DFT之后具体的编码结果进行比较,同实施例一一样,在本实施例中,假设在第k个天线上的时域数据流也为dk=[dk[0],dk[1],...,dk[2M-1]]T,其中,所述k为天线组的序号,所述2M为时域数据流中数据的个数。In order to compare the specific encoding results of STBC before DFT and after DFT, as in Embodiment 1, in this embodiment, it is assumed that the time-domain data stream on the kth antenna is also d k =[d k [ 0], d k [1], ..., d k [2M-1]] T , wherein the k is the serial number of the antenna group, and the 2M is the number of data in the time domain data stream.

步骤1004:对星座调制后的时域数据流进行分流,得到分流后的两个数据量相同的时域子数据流。Step 1004: Divide the time-domain data stream after the constellation modulation, and obtain two sub-data streams in the time domain with the same data volume after distributing.

同实施例一一样,在本实施例中,对时域数据流dk进行分流时也是将其均分为两个数据量相同的时域子数据流dk1和dk2来实现的,具体的实现过程同数据分流模块303,这里不再对其进行赘述。Same as the first embodiment, in this embodiment, when splitting the time-domain data stream d k , it is also realized by equally dividing it into two time-domain sub-data streams d k1 and d k2 with the same amount of data, specifically The implementation process is the same as that of the data distribution module 303, which will not be repeated here.

步骤1005:分别对分流后的两个数据量相同的时域子数据流进行DFT,得到两个频域子数据流。Step 1005: DFT is performed on the divided two time-domain sub-data streams with the same amount of data respectively to obtain two frequency-domain sub-data streams.

在本实施例中,对两个数据量相同的时域子数据流dk1和dk2进行DFT,得到的两个频域子数据流Dk1和Dk2的数据量也是相同的,分别为:In this embodiment, DFT is performed on two time-domain sub-data streams d k1 and d k2 with the same data volume, and the data volumes of the two frequency-domain sub-data streams D k1 and D k2 are also the same, which are respectively:

Dk1=[Dk1[0],Dk1[1],...,Dk1[M-1]]T Dk1 = [ Dk1 [0], Dk1 [1], . . . , Dk1 [M-1]] T ,

Dk2=[Dk2[0],Dk2[1],...,Dk2[M-1]]TD k2 = [D k2 [0], D k2 [1], . . . , D k2 [M-1]] T ,

其中,所述Dk1[0],Dk1[1],...,Dk1[M-1]为dk1[0],dk1[1],...,dk1[M-1]的DFT结果,所述Dk2[0],Dk2[1],...,Dk2[M-1]为dk2[0],dk2[1],...,dk2[M-1]的DFT结果。Wherein, the D k1 [0], D k1 [1], ..., D k1 [M-1] is d k1 [0], d k1 [1], ..., d k1 [M-1 ], the Dk2 [0], Dk2 [1], ..., Dk2 [M-1] is dk2 [0], dk2 [1], ..., dk2 [ M-1] DFT results.

同样地,在本实施例中,在不同时间段内对DFT后的频域子数据流采用了不同的处理过程,且这两个时间段的具体的处理过程可以互换,并不影响本发明实施例的实现为准。下面以在T1时间段内执行步骤1006~步骤1008的操作,在T2时间段内执行步骤1009~步骤1012的操作为例说明其具体处理过程。Similarly, in this embodiment, different processing procedures are used for the frequency-domain sub-data streams after DFT in different time periods, and the specific processing procedures of these two time periods can be interchanged, which does not affect the present invention The implementation of the embodiment shall prevail. The specific processing process will be described below by taking the operations of steps 1006 to 1008 performed in the T1 time period and the operations of steps 1009 to 1012 performed in the T2 time period as examples.

T1时间段的具体处理过程为:The specific processing process of the T1 time period is as follows:

步骤1006:对两个频域子数据流进行资源映射,得到资源映射后的频域子数据流。Step 1006: Perform resource mapping on the two frequency-domain sub-data streams to obtain a frequency-domain sub-data stream after resource mapping.

步骤1007:对资源映射后的频域子数据流进行IFFT,得到IFFT后的频域子数据流。Step 1007: Perform IFFT on the frequency-domain sub-data stream after resource mapping to obtain the frequency-domain sub-data stream after IFFT.

步骤1008:将IFFT后的频域子数据流进行发射。Step 1008: Transmit the frequency-domain sub-data stream after IFFT.

至此,即完成了T1时间段内的具体的处理过程。So far, the specific processing process in the T1 time period is completed.

T2时间段内的具体处理过程为:The specific processing process in the T2 time period is as follows:

步骤1009:对DFT后得到的频域子数据流进行第二预定STBC的处理,得到频域编码序列。Step 1009: Perform a second predetermined STBC process on the frequency-domain sub-data stream obtained after DFT to obtain a frequency-domain coding sequence.

对两个频域子数据流Dk1和Dk2进行第二预定STBC的处理,即可得到两个频域编码序列,且预定的STBC处理过程不同,会得到不同的频域编码序列。在本实施例中,对两个频域子数据流Dk1和Dk2进行STBC,得到的频域编码序列Dk 1和Dk 2分别为:Two frequency-domain coded sequences can be obtained by performing the second predetermined STBC processing on the two frequency-domain sub-data streams D k1 and D k2 , and different frequency-domain coded sequences can be obtained due to different predetermined STBC processing processes. In this embodiment, STBC is performed on two frequency-domain sub-data streams D k1 and D k2 , and the obtained frequency-domain coding sequences D k 1 and D k 2 are respectively:

DD. kk 11 == [[ -- [[ DD. kk 22 [[ 00 ]] ]] ** ,, -- [[ DD. kk 22 [[ 11 ]] ]] ** ,, .. .. .. ,, -- [[ DD. kk 22 [[ Mm -- 22 ]] ]] ** ,, -- [[ DD. kk 22 [[ Mm -- 11 ]] ]] ** ]] TT ,,

DD. kk 22 == [[ [[ DD. kk 11 [[ 00 ]] ]] ** ,, [[ DD. kk 11 [[ 11 ]] ]] ** ,, .. .. .. ,, [[ DD. kk 11 [[ Mm -- 22 ]] ]] ** ,, [[ DD. kk 11 [[ Mm -- 11 ]] ]] ** ]] TT ..

本实施例采用的具体的STBC过程如下:The concrete STBC process that present embodiment adopts is as follows:

D k 1 ( s ) = - [ D k 2 ( s ) ] * , D k 2 ( s ) = [ D k 1 ( s ) ] * , 其中,所述s=0,1,...,M-1,所述Dk1(s)为频域子数据流Dk1的第s个元素,所述Dk2(s)为频域子数据流Dk2的第s个元素,所述Dk 1(s)为频域编码序列Dk 1的第s个元素。 D. k 1 ( the s ) = - [ D. k 2 ( the s ) ] * , D. k 2 ( the s ) = [ D. k 1 ( the s ) ] * , Wherein, the s=0, 1, ..., M-1, the D k1 (s) is the sth element of the frequency domain sub-data stream D k1 , and the D k2 (s) is the frequency domain sub-stream The s-th element of the data stream D k2 , the D k 1 (s) is the s-th element of the frequency-domain coding sequence D k 1 .

需要说明的是,实际中也可采用其他的STBC过程,以不影响本发明实施例的实现为准。It should be noted that in practice, other STBC processes may also be used, as long as the realization of the embodiment of the present invention is not affected.

步骤1010:对频域编码序列进行资源映射,得到资源映射后的频域编码序列。Step 1010: Perform resource mapping on the frequency-domain coded sequence to obtain a frequency-domain coded sequence after resource mapping.

步骤1011:对资源映射后的频域编码序列进行IFFT,得到IFFT后的频域编码序列。Step 1011: Perform IFFT on the frequency-domain coded sequence after resource mapping to obtain the frequency-domain coded sequence after IFFT.

步骤1012:将IFFT后的频域编码序列进行发射。Step 1012: Transmit the coded sequence in frequency domain after IFFT.

至此,即完成了T2时间段内的具体的处理过程。So far, the specific processing in the time period T2 is completed.

在完成了T1和T2两个时间段内的具体的操作后,即完成了本发明实施例二所采用的链路发送单元的整个工作流程。After the specific operations in the two time periods T1 and T2 are completed, the entire working process of the link sending unit adopted in Embodiment 2 of the present invention is completed.

需要说明的是,步骤1001~步骤1004的具体处理过程同步骤501~步骤504,故此处不再对其进行赘述。It should be noted that, the specific processing procedures of steps 1001 to 1004 are the same as those of steps 501 to 504, so they will not be repeated here.

还需说明的是,本实施例所述方法的描述同对实施例一所述方法的描述一样,也是以对一个信息比特流的处理为例来进行说明的,实际中可以对多个信息比特流同时进行处理。It should also be noted that the description of the method described in this embodiment is the same as the description of the method described in Embodiment 1, and is also explained by taking the processing of an information bit stream as an example. In practice, multiple information bit streams can be processed. Streams are processed concurrently.

本实施例发送单元所对应的接收单元类似于实施一中图6所述的链路接收单元,与图6所述链路接收单元不同之处在于,本实施例链路接收单元中所采用的再编码模块的具体结构参见图11,如图11所示,该再编码模块包括:The receiving unit corresponding to the sending unit in this embodiment is similar to the link receiving unit described in Figure 6 in Implementation One, and the difference from the link receiving unit described in Figure 6 is that the link receiving unit used in this embodiment Refer to Figure 11 for the specific structure of the re-encoding module, as shown in Figure 11, the re-encoding module includes:

信道编码模块1101,用于对输入的信息比特流进行信道编码,并将信道编码后的编码比特流输出到星座调制模块1102。The channel coding module 1101 is configured to perform channel coding on the input information bit stream, and output the coded bit stream after channel coding to the constellation modulation module 1102 .

星座调制模块1102,用于对信道编码模块1101输入的信道编码后的编码比特流进行星座调制,并将星座调制后得到的时域数据流输出到数据分流模块1103。The constellation modulation module 1102 is configured to perform constellation modulation on the channel-coded coded bit stream input by the channel coding module 1101 , and output the time-domain data stream obtained after the constellation modulation to the data splitting module 1103 .

数据分流模块1103,用于对星座调制模块1102输入的时域数据流进行分流,并将分流后得到的两个数据量相同的时域子数据流输出到DFT模块1104。The data splitting module 1103 is configured to split the time-domain data stream input by the constellation modulation module 1102 , and output two time-domain sub-data streams with the same amount of data obtained after splitting to the DFT module 1104 .

DFT模块1104,用于对数据分流模块1103输入的两个数据量相同的时域子数据流分别进行DFT,得到两个频域子数据流,并将所述两个频域子数据流输出到STBC器1105。The DFT module 1104 is configured to perform DFT on the two time-domain sub-data streams with the same amount of data input by the data splitting module 1103 to obtain two frequency-domain sub-data streams, and output the two frequency-domain sub-data streams to STBC 1105.

需要说明的是,在本实施例中,在紧邻的两个不同的时间段T1和T2内,对分流后的两个时域子数据流在进行了DFT之后,也分别采用了不同的处理方式,在T1时间段内,直接将DFT后的两个频域子数据流输出到第四数据重组模块1106;在T2时间段内,将DFT后的两个频域子数据流输出到STBC器1105。It should be noted that, in this embodiment, in the two adjacent time periods T1 and T2, after DFT is performed on the two time-domain sub-data streams after splitting, different processing methods are also adopted respectively. , within the T1 time period, directly output the two frequency domain sub-data streams after the DFT to the fourth data recombination module 1106; within the T2 time period, output the two frequency domain sub-data streams after the DFT to the STBC device 1105 .

STBC器1105,用于对DFT模块1104输入的两个频域子数据流进行第二预定算法的处理,得到频域编码序列,并将所述频域编码序列输出到第四数据重组模块1106。The STBC unit 1105 is configured to process the two frequency-domain sub-data streams input by the DFT module 1104 with a second predetermined algorithm to obtain a frequency-domain code sequence, and output the frequency-domain code sequence to the fourth data recombination module 1106 .

第四数据重组模块1106,用于对DFT模块1104输入的频域子数据流和STBC器1105输入的频域编码序列进行重新排列组合,得到重新排列组合后的频域编码序列。The fourth data reorganization module 1106 is configured to rearrange and combine the frequency domain sub-data stream input by the DFT module 1104 and the frequency domain coded sequence input by the STBC unit 1105 to obtain a frequency domain coded sequence after rearrangement and combination.

在本实施例中,具体的重新排列组合的方式为:In this embodiment, the specific ways of rearranging and combining are:

D ^ k [ m ] = D ^ k 1 [ m ] D ^ k 2 [ m ] T , 其中, D. ^ k [ m ] = D. ^ k 1 [ m ] D. ^ k 2 [ m ] T , in,

为STBC器1105输出的2m0个频域序列,它们分别对应发送序列Dk 1[m]与Dk 2[m],且 k ∈ k ^ s . and are 2m 0 frequency-domain sequences output by the STBC device 1105, which respectively correspond to the transmission sequences D k 1 [m] and D k 2 [m], and k ∈ k ^ the s .

至此,即得到了本实施例所采用的再编码模块。So far, the re-encoding module used in this embodiment is obtained.

需要说明的是,本实施例所采用的信道编码模块1101、星座调制模块1102、数据分流模块103、STBC器1104以及DFT模块1105的具体操作分别同信道编码模块901、星座调制模块902、数据分流模块903、STBC器904以及DFT模块905,不同之处在于,本实施例中共有2m0个信息比特流,而图9中则有K个信息比特流,其处理过程也完全相同,故这里不再对其进行赘述。It should be noted that the specific operations of the channel coding module 1101, constellation modulation module 1102, data distribution module 103, STBC device 1104, and DFT module 1105 used in this embodiment are the same as those of the channel coding module 901, constellation modulation module 902, and data distribution module 901 respectively. The difference between module 903, STBC device 904 and DFT module 905 is that there are 2m 0 information bit streams in this embodiment, while there are K information bit streams in Fig. 9, and the processing process is exactly the same, so here Let's talk about it again.

还需说明的是,本实施接收单元中所采用的再编码模块实际上是与本实施例发送单元相对应的。It should also be noted that the re-encoding module used in the receiving unit of this embodiment actually corresponds to the sending unit of this embodiment.

总之,本发明所采用的SC-FDMA系统中的链路传输装置和方法,通过在链路发送单元增加一个数据分流模块,从而使得分流后得到的时域子数据流既可以先转换为频域子数据流、再对频域子数据流进行STBC,也可以直接对时域子数据流进行STBC,也就使得不仅可以在频域进行STBC,也可以在时域进行STBC,进而使得STBC既可以在DFT之后进行,也可以在DFT之前进行,从而提高了系统设计的灵活性。In short, the link transmission device and method in the SC-FDMA system adopted by the present invention adds a data distribution module to the link sending unit, so that the time domain sub-data stream obtained after the distribution can be converted into the frequency domain first Sub-data flow, and then perform STBC on the frequency-domain sub-data stream, and can also directly perform STBC on the time-domain sub-data stream, which makes it possible not only to perform STBC in the frequency domain, but also to perform STBC in the time domain, and thus make STBC both It can be performed after DFT or before DFT, thus improving the flexibility of system design.

进一步地,本发明在进行多天线发射分集时,在发送单元中不仅考虑了一个天线组的情况,而且还进行了多天线组的规划,也就使得多个信息比特流可以同时进行发送,从而在接收单元中考虑了由多个发射天线分集而带来的SIC问题。Furthermore, when performing multi-antenna transmit diversity, the present invention not only considers the situation of one antenna group in the sending unit, but also performs multi-antenna group planning, so that multiple information bit streams can be sent simultaneously, thereby The SIC problem caused by the diversity of multiple transmitting antennas is considered in the receiving unit.

综上所述,以上仅为本发明的较佳实施例而已,并非用于限定本发明的保护范围。凡在本发明的精神和原则之内,所作的任何修改、等同替换、改进等,均应包含在本发明的保护范围之内。To sum up, the above are only preferred embodiments of the present invention, and are not intended to limit the protection scope of the present invention. Any modifications, equivalent replacements, improvements, etc. made within the spirit and principles of the present invention shall be included within the protection scope of the present invention.

Claims (24)

1.一种单载波频分多址SC-FDMA系统中的链路发送单元,该单元包括信道编码模块、星座调制模块、傅里叶变换DFT模块、空时块码编码STBC器、资源映射模块、逆快速傅里叶变换IFFT模块、发射模块,其特征在于,该单元还包括数据分流模块,其中,1. A link transmission unit in a single carrier frequency division multiple access SC-FDMA system, the unit includes a channel coding module, a constellation modulation module, a Fourier transform DFT module, a space-time block code encoding STBC device, and a resource mapping module , inverse fast Fourier transform IFFT module, transmitting module, it is characterized in that, this unit also comprises data splitting module, wherein, 所述数据分流模块接收所述星座调制模块输入的时域数据流进行分流,在紧邻的两个时间段的第一个时间段内,将分流后得到的两个数据量相同的时域子数据流输出到所述DFT模块,所述DFT模块对输入的两个时域子数据流进行进行DFT处理后,将得到的两个数据量相同的频域子数据流,输出到所述资源映射模块进行资源映射;在紧邻的两个时间段的第二个时间段内,将分流后得到的两个数据量相同的时域子数据流输出到所述STBC器,所述STBC器对输入的两个时域子数据流进行第一预定算法的处理,得到的两个数据量相同且呈发射分集顺序排列的时域编码序列输出到所述DFT模块,DFT模块对输入的两个时域编码序列进行DFT处理后,将得到的两个数据量相同的频域编码序列,输出到所述资源映射模块进行资源映射;The data distribution module receives the time-domain data stream input by the constellation modulation module for distribution, and in the first time period of the two adjacent time periods, divides the two time-domain sub-data with the same data volume obtained after the distribution The stream is output to the DFT module, and after the DFT module performs DFT processing on the two input time-domain sub-data streams, the obtained two frequency-domain sub-data streams with the same amount of data are output to the resource mapping module Perform resource mapping; in the second time period of the two adjacent time periods, output the two time-domain sub-data streams with the same amount of data obtained after splitting to the STBC device, and the STBC device will input the two The two time-domain sub-data streams are processed by the first predetermined algorithm, and the obtained two time-domain coded sequences with the same amount of data and arranged in transmit diversity order are output to the DFT module, and the DFT module performs the input of the two time-domain coded sequences After performing DFT processing, output the obtained two frequency-domain coding sequences with the same amount of data to the resource mapping module for resource mapping; 或,所述数据分流模块接收所述星座调制模块输入的时域数据流进行分流,在紧邻的两个时间段的第一个时间段内,将分流后得到的两个数据量相同的时域子数据流输出到所述DFT模块,所述DFT模块对输入的两个时域子数据流进行进行DFT处理后,将得到的两个数据量相同的频域子数据流,输出到所述资源映射模块进行资源映射;在紧邻的两个时间段的第二个时间段内,将分流后得到的两个数据量相同的时域子数据流输出到所述DFT模块,DFT模块对输入的两个时域子数据流进行DFT处理后,将得到的两个数据量相同的频域子数据流分别输出到所述STBC器,所述STBC器对输入的两个数据量相同的频域子数据流进行第二预定算法的处理,得到的两个数据量相同且呈发射分集顺序排列的频域编码序列,输出到所述资源映射模块进行资源映射。Or, the data distribution module receives the time-domain data stream input by the constellation modulation module for distribution, and in the first time period of the two adjacent time periods, divides the two time-domain data streams with the same amount of data obtained after the distribution. The sub-data streams are output to the DFT module, and after the DFT module performs DFT processing on the two input time-domain sub-data streams, the obtained two frequency-domain sub-data streams with the same amount of data are output to the resource The mapping module performs resource mapping; in the second time period of the two adjacent time periods, the two time-domain sub-data streams with the same amount of data obtained after splitting are output to the DFT module, and the DFT module inputs the two After DFT processing is performed on the time-domain sub-data streams, the obtained two frequency-domain sub-data streams with the same amount of data are respectively output to the STBC device, and the STBC device inputs the two frequency-domain sub-data with the same amount of data The stream is processed by the second predetermined algorithm, and the obtained two frequency-domain coded sequences with the same amount of data and arranged in transmit diversity sequence are output to the resource mapping module for resource mapping. 2.如权利要求1所述的发送单元,其特征在于,所述信道编码模块、星座调制模块、数据分流模块和STBC器的数量相同为多个;所述DFT模块、资源映射模块和IFFT模块的数量为信道编码模块的四倍;所述发射模块的数量为信道编码模块的两倍;2. The sending unit according to claim 1, characterized in that, the number of the channel coding module, the constellation modulation module, the data distribution module and the STBC device is the same as a plurality; the DFT module, the resource mapping module and the IFFT module The quantity is four times of the channel coding module; the quantity of the transmitting module is twice of the channel coding module; 其中,每个信道编码模块接收一路信息比特流,输出到对应的一个数据分流模块;Wherein, each channel coding module receives one channel of information bit stream, and outputs it to a corresponding data splitting module; 在紧邻的两个时间段的第一个时间段内,每个数据分流模块将分流后的两个时域子数据流分别输出到对应的两个DFT模块,两个DFT模块将得到的两个频域子数据流分别输出给对应的两个资源映射模块;在紧邻的两个时间段的第二个时间段内,每个数据分流模块将分流后的两个时域子数据流输出到对应的一个STBC器,STBC器将得到的两个时域编码序列分别输出到对应的两个DFT模块,两个DFT模块将得到的两个频域编码序列分别输出给对应的两个资源映射模块;或,在紧邻的两个时间段的第一个时间段内,每个数据分流模块将分流后的两个时域子数据流分别输出到对应的两个DFT模块,两个DFT模块将得到的两个频域子数据流分别输出给对应的两个资源映射模块;在紧邻的两个时间段的第二个时间段内,每个数据分流模块将分流后的两个时域子数据流分别输出到对应的两个DFT模块,两个DFT模块将得到的两个频域子数据流输出到对应的一个STBC器,STBC器将得到的两个频域编码序列分别输出到对应的两个资源映射模块;In the first time period of the two adjacent time periods, each data splitting module outputs the split two time-domain sub-data streams to the corresponding two DFT modules respectively, and the two DFT modules will obtain two The frequency domain sub-data streams are respectively output to the corresponding two resource mapping modules; in the second time period of the two adjacent time periods, each data distribution module outputs the divided two time domain sub-data streams to the corresponding An STBC device, the STBC device outputs the obtained two time-domain coded sequences to the corresponding two DFT modules respectively, and the two DFT modules output the obtained two frequency-domain coded sequences to the corresponding two resource mapping modules respectively; Or, in the first time period of the two adjacent time periods, each data splitting module outputs the split two time-domain sub-data streams to the corresponding two DFT modules respectively, and the two DFT modules will obtain The two frequency-domain sub-data streams are respectively output to the corresponding two resource mapping modules; in the second time period of the two adjacent time periods, each data distribution module splits the two time-domain sub-data streams respectively Output to the corresponding two DFT modules, the two DFT modules output the obtained two frequency domain sub-data streams to a corresponding STBC device, and the STBC device outputs the obtained two frequency domain coded sequences to the corresponding two resources respectively mapping module; 四个资源映射模块将资源映射后的四个数据流分别输出到四个对应的IFFT模块;The four resource mapping modules output the four resource-mapped data streams to four corresponding IFFT modules respectively; 四个IFFT模块将四个IFFT处理后的数据流分别在紧邻的两个不同时间段内输出到两个对应的发射模块。The four IFFT modules output the four IFFT-processed data streams to two corresponding transmitting modules in two adjacent different time periods respectively. 3.如权利要求1或2所述的发送单元,其特征在于,所述数据分流模块为:能够对时域数据流进行奇偶分流,得到奇子数据流和偶子数据流两个数据量相同的时域子数据流的数据分流模块。3. The sending unit as claimed in claim 1 or 2, wherein the data splitting module is: capable of parity splitting the time-domain data stream to obtain the same amount of data for the odd sub-data stream and the even sub-data stream The data splitting module of the time-domain sub-data flow. 4.如权利要求2所述的发送单元,其特征在于,所述对输入的两个时域子数据流进行第一预定算法处理的STBC器为:能够实现以下算法的STBC器;4. sending unit as claimed in claim 2 is characterized in that, the STBC device that the described two time domain sub-data streams of input are carried out to the first predetermined algorithm processing is: the STBC device that can realize following algorithm; dd kk 11 == PP [[ [[ dd kk 11 ]] Hh ]] TT ,, dd kk 22 == -- PP [[ [[ dd kk 22 ]] Hh ]] TT ,, 其中,所述
Figure F2009102426243C00033
所述T为转置,所述H为共轭转置,所述M为时域数据流中数据的个数的1/2,所述k为发送单元的序号。
Among them, the
Figure F2009102426243C00033
The T is a transpose, the H is a conjugate transpose, the M is 1/2 of the number of data in the time-domain data stream, and the k is the serial number of the sending unit.
5.如权利要求4所述的发送单元,其特征在于,所述STBC器包括:5. sending unit as claimed in claim 4, is characterized in that, described STBC device comprises: 数据流处理模块,用于将时域子数据流dk1和dk2进行处理,并将处理后得到的[[dk1]H]T和[[dk2]H]T分别输出到相乘模块;The data stream processing module is used to process the time-domain sub-data streams d k1 and d k2 , and output the processed [[d k1 ] H ] T and [[d k2 ] H ] T to the multiplication module respectively ; 相乘模块,用于将数据流处理模块输入的[[dk1]H]T和[[dk2]H]T分别与编码矩阵P进行相乘,并将相乘后得到的一个结果作为dk 1,将相乘后得到的另一个结果输出到取反模块;The multiplication module is used to multiply [[d k1 ] H ] T and [[d k2 ] H ] T input by the data stream processing module with the encoding matrix P respectively, and use a result obtained after multiplication as d k 1 , output another result obtained after multiplication to the negation module; 取反模块,用于将相乘模块输入的另一个结果进行取反运算,得到dk 2The inversion module is used to invert another result input by the multiplication module to obtain d k 2 . 6.如权利要求2所述的发送单元,其特征在于,所述对输入的两个频域子数据流进行第二预定算法处理的STBC器为:能够实现以下算法的STBC器;6. sending unit as claimed in claim 2 is characterized in that, the STBC device that the described two frequency domain sub-data streams of input are carried out to the second predetermined algorithm processing is: the STBC device that can realize following algorithm; D k 1 ( s ) = - [ D k 2 ( s ) ] * , D k 2 ( s ) = [ D k 1 ( s ) ] * , 其中,所述s=0,1,...,M-1,所述*为共轭,所述Dk1(s)为频域子数据流Dk1的第s个元素,所述Dk2(s)为频域子数据流Dk2的第s个元素,所述Dk 1(s)为频域编码序列Dk 1的第s个元素,所述k为发送单元的序号。 D. k 1 ( the s ) = - [ D. k 2 ( the s ) ] * , D. k 2 ( the s ) = [ D. k 1 ( the s ) ] * , Wherein, the s=0, 1, ..., M-1, the * is a conjugate, the D k1 (s) is the sth element of the frequency domain sub-data stream D k1 , and the D k2 (s) is the s-th element of the frequency domain sub-data stream D k2 , the D k 1 (s) is the s-th element of the frequency-domain coding sequence D k 1 , and the k is the serial number of the sending unit. 7.一种单载波频分多址SC-FDMA系统中的空时块码编码STBC器,其特征在于,该STBC器包括:7. a space-time block code encoding STBC device in a single carrier frequency division multiple access SC-FDMA system, it is characterized in that, this STBC device comprises: 数据流处理模块,用于将第一个数据流和第二个数据流分别处理为原数据流的共轭,并将处理后的两个数据流输出到相乘模块;The data stream processing module is used to process the first data stream and the second data stream into conjugates of the original data stream respectively, and output the processed two data streams to the multiplication module; 相乘模块,用于将数据流处理模块输入的处理后的两个数据流分别与编码矩阵P进行相乘,并将相乘后得到一个数据流作为一个编码序列,将相乘后得到的另一个数据流输出到取反模块;The multiplication module is used to multiply the processed two data streams input by the data stream processing module with the coding matrix P respectively, and use one data stream obtained after the multiplication as a coding sequence, and the other data stream obtained after the multiplication A data stream is output to the inversion module; 取反模块,用于将相乘模块输入的另一个数据流进行取反运算,得到另一个编码序列,The inversion module is used to invert another data stream input by the multiplication module to obtain another coded sequence, 其中,所述
Figure F2009102426243C00041
所述T为输入的每个数据流的长度。
Among them, the
Figure F2009102426243C00041
The T is the length of each input data stream.
8.一种单载波频分多址SC-FDMA系统中的链路接收单元,该单元包括第一数据重组模块,其特征在于,该单元还包括K/m0个分层处理模块,其中,8. A link receiving unit in a single carrier frequency division multiple access SC-FDMA system, the unit includes the first data reorganization module, it is characterized in that the unit also includes K/m 0 layered processing modules, wherein, 第一个分层处理模块接收第一数据重组模块输出的对所有资源逆映射后的频域数据进行重新排列组合的数据,进行频域均衡与连续干扰SIC消除处理后生成2m0个信息比特流输出,并将这2m0个信息比特流发送给下一个分层处理模块,下一个分层处理模块处理后再输出2m0个信息比特流,并将这2m0个信息比特流发送给再下一个分层处理模块进行处理,直到第K/m0个分层处理模块处理后输出最后2m0个信息比特流;The first hierarchical processing module receives the data output by the first data reorganization module that rearranges and combines the frequency domain data after all resource inverse mapping, performs frequency domain equalization and continuous interference SIC elimination processing, and generates 2m 0 information bit streams output, and send the 2m 0 information bit streams to the next layered processing module, and then output the 2m 0 information bit streams after the next layered processing module processes, and send the 2m 0 information bit streams to the next layered processing module A layered processing module processes until the K/m 0th layered processing module processes and outputs the last 2m 0 information bit streams; 其中,第K/m0个分层处理模块包括:多输入输出频域均衡MIMO FDE模块、第二数据重组模块、2m0个IDFT模块、第三数据重组模块、m0个星座解调模块m0个信道编码模块,第1~第K/m0-1个分层处理模块还包括:再编码模块、信道增益模块和SIC模块;Among them, the K/m 0th hierarchical processing module includes: multiple input and output frequency domain equalization MIMO FDE module, the second data reorganization module, 2m 0 IDFT modules, the third data reorganization module, m 0 constellation demodulation module m 0 channel coding modules, the 1st to K/m 0-1 layered processing modules also include: re-encoding module, channel gain module and SIC module; 所述MIMO FDE模块接收从其所在分层处理模块外输入的频域数据,MIMO FDE模块将经FDE处理后的频域数据发送给第二数据重组模块;The MIMO FDE module receives the frequency domain data input from outside its layered processing module, and the MIMO FDE module sends the frequency domain data after FDE processing to the second data recombination module; 第二数据重组模块对频域数据进行重新排列组合后,生成2m0个频域子数据流分别输入到对应的逆傅里叶变换IDFT模块;IDFT模块将经过IDFT处理后的2m0个频域子数据流输出给第三数据重组模块;第三数据重组模块对频域子数据进行重新排列组合后,生成m0个频域数据流分别输入到对应的星座解调模块;星座解调模块将星座解调后的数据流输出到信道解码模块;信道解码模块将经过信道解码的2m0个信息比特流输出;所述第1~第K/m0-1个分层处理模块中的信道解码模块还将这2m0个信息比特流发送给再编码模块;After the second data reorganization module rearranges and combines the frequency domain data, 2m 0 frequency domain sub-data streams are generated and input to the corresponding inverse Fourier transform IDFT module; the IDFT module will process the IDFT processed 2m 0 frequency domain The sub-data stream is output to the third data reorganization module; after the third data reorganization module rearranges and combines the sub-data in the frequency domain, m 0 frequency domain data streams are generated and input to the corresponding constellation demodulation module respectively; the constellation demodulation module will The data stream after constellation demodulation is output to the channel decoding module; the channel decoding module outputs 2m 0 information bit streams after channel decoding; the channel decoding module in the first to K/m0-1 layered processing modules Also send these 2m 0 information bit streams to the re-encoding module; 所述再编码模块包括信道编码模块、星座调制模块、数据分流模块、傅里叶变换DFT模块、空时块码编码STBC器和第四数据重组模块,其中,所述星座调制模块接收m0个数据进行星座调制后形成时域数据流发送给数据分流模块;数据分流模块接收星座调制模块输入的时域数据流进行分流,并将分流后得到的两个数据量相同的时域子数据流输出到所述STBC器;所述STBC器对输入的两个时域子数据流进行第一预定算法的处理,得到的两个数据量相同且呈发射分集顺序排列的时域编码序列输出到所述DFT模块;DFT模块对输入的两个时域编码序列进行DFT处理后,将得到的两个数据量相同的频域编码序列,输出到所述第四数据重组模块进行重新排列组合;The re-encoding module includes a channel coding module, a constellation modulation module, a data splitting module, a Fourier transform DFT module, a space-time block code STBC device and a fourth data reorganization module, wherein the constellation modulation module receives m 0 After constellation modulation, the data forms a time-domain data stream and sends it to the data distribution module; the data distribution module receives the time-domain data stream input by the constellation modulation module for distribution, and outputs two time-domain sub-data streams with the same amount of data obtained after distribution to the STBC device; the STBC device performs the processing of the first predetermined algorithm on the two input time-domain sub-data streams, and the obtained two time-domain coding sequences with the same amount of data and arranged in transmit diversity order are output to the DFT module: After the DFT module performs DFT processing on the two input time-domain coded sequences, the obtained two frequency-domain coded sequences with the same amount of data are output to the fourth data reorganization module for rearrangement and combination; 或,所述数据分流模块接收所述星座调制模块输入的时域数据流进行分流,并将分流后得到的两个数据量相同的时域子数据流输出到所述DFT模块;DFT模块对输入的两个时域子数据流进行DFT处理后,将得到的两个数据量相同的频域子数据流分别输出到所述STBC器;所述STBC器对输入的两个数据量相同的频域子数据流进行第二预定算法的处理,得到的两个数据量相同且呈发射分集顺序排列的频域编码序列,输出到所述第四数据重组模块进行重新排列组合;Or, the data splitting module receives the time-domain data stream input by the constellation modulation module to split, and outputs two time-domain sub-data streams with the same amount of data obtained after splitting to the DFT module; the DFT module inputs After the two time-domain sub-data streams of the two time-domain sub-data streams are processed by DFT, the two obtained frequency-domain sub-data streams with the same amount of data are output to the STBC device respectively; The sub-data stream is processed by the second predetermined algorithm, and the obtained two frequency-domain coded sequences with the same amount of data and arranged in transmit diversity order are output to the fourth data reorganization module for rearrangement and combination; 所述第四数据重组模块将重新排列组合的频域编码序列输出到信道增益模块;所述信道增益模块对接收的经过重新排列组合的频域编码序列进行信道估计后,将所述信道估计后的频域编码序列输出到SIC模块;The fourth data recombination module outputs the rearranged and combined frequency domain coded sequence to the channel gain module; after the channel gain module performs channel estimation on the received rearranged and combined frequency domain coded sequence, the channel estimated The frequency-domain coding sequence is output to the SIC module; SIC模块接收从其所在分层处理模块外输入的频域数据,并将该频域数据和从信道增益模块接收的频域编码序列进行SIC处理,将处理后的频域数据,发送给下一个分层处理模块中的MIMO FDE模块,如下一个分层处理模块非第K/m0个分层处理模块,则该频域数据还发送给下一个分层处理模块中的SIC模块;The SIC module receives the frequency-domain data input from the layered processing module where it is located, performs SIC processing on the frequency-domain data and the frequency-domain coding sequence received from the channel gain module, and sends the processed frequency-domain data to the next For the MIMO FDE module in the layered processing module, if the next layered processing module is not the K/m 0th layered processing module, the frequency domain data is also sent to the SIC module in the next layered processing module; 所述K为输出的信息比特流的总个数,m0为能被K整除的整数。The K is the total number of output information bit streams, and m 0 is an integer divisible by K. 9.如权利要求8所述的接收单元,其特征在于,所述数据分流模块为:能够对时域数据流进行奇偶分流,得到奇子数据流和偶子数据流两个数据量相同的时域子数据流的数据分流模块。9. The receiving unit as claimed in claim 8, wherein the data splitting module is: capable of parity splitting the time-domain data streams to obtain the time when two data volumes of the odd sub-data stream and the even sub-data stream are the same. Data splitting module for domain sub-data flow. 10.如权利要求8所述的接收单元,其特征在于,所述对输入的两个时域子数据流进行第一预定算法处理的STBC器为:能够实现以下算法的STBC器;10. The receiving unit as claimed in claim 8, characterized in that, the STBC device carrying out the first predetermined algorithm processing to the two time-domain sub-data streams of the input is: the STBC device capable of realizing the following algorithms; dd kk 11 == PP [[ [[ dd kk 11 ]] Hh ]] TT ,, dd kk 22 == -- PP [[ [[ dd kk 22 ]] Hh ]] TT ,, 其中,所述
Figure F2009102426243C00063
所述T为转置,所述H为共轭转置,所述M为时域数据流中数据的个数的1/2,所述k为发送单元的序号。
Among them, the
Figure F2009102426243C00063
The T is a transpose, the H is a conjugate transpose, the M is 1/2 of the number of data in the time-domain data stream, and the k is the serial number of the sending unit.
11.如权利要求10所述的接收单元,其特征在于,所述STBC器包括:11. receiving unit as claimed in claim 10, is characterized in that, described STBC device comprises: 数据流处理模块,用于将时域子数据流dk1和dk2进行处理,并将处理后得到的[[dk1]H]T和[[dk2]H]T分别输出到相乘模块;The data stream processing module is used to process the time-domain sub-data streams d k1 and d k2 , and output the processed [[d k1 ] H ] T and [[d k2 ] H ] T to the multiplication module respectively ; 相乘模块,用于将数据流处理模块输入的[[dk1]H]T和[[dk2]H]T分别与编码矩阵P进行相乘,并将相乘后得到的一个结果作为dk 1,将相乘后得到的另一个结果输出到取反模块;The multiplication module is used to multiply [[d k1 ] H ] T and [[d k2 ] H ] T input by the data stream processing module with the encoding matrix P respectively, and use a result obtained after multiplication as d k 1 , output another result obtained after multiplication to the negation module; 取反模块,用于将相乘模块输入的另一个结果进行取反运算,得到dk 2The inversion module is used to invert another result input by the multiplication module to obtain d k 2 . 12.如权利要求8所述的接收单元,其特征在于,所述对输入的两个频域子数据流进行第二预定算法处理的STBC器为:能够实现以下算法的STBC器;12. The receiving unit as claimed in claim 8, characterized in that, the STBC device carrying out the second predetermined algorithm processing to the two frequency domain sub-data streams of the input is: the STBC device capable of realizing the following algorithms; D k 1 ( s ) = - [ D k 2 ( s ) ] * , D k 2 ( s ) = [ D k 1 ( s ) ] * , 其中,所述s=0,1,...,M-1,所述*为共轭,所述Dk1(s)为频域子数据流Dk1的第s个元素,所述Dk2(s)为频域子数据流Dk2的第s个元素,所述Dk 1(s)为频域编码序列Dk 1的第s个元素,所述k为发送单元的序号。 D. k 1 ( the s ) = - [ D. k 2 ( the s ) ] * , D. k 2 ( the s ) = [ D. k 1 ( the s ) ] * , Wherein, the s=0, 1, ..., M-1, the * is a conjugate, the D k1 (s) is the sth element of the frequency domain sub-data stream D k1 , and the D k2 (s) is the s-th element of the frequency domain sub-data stream D k2 , the D k 1 (s) is the s-th element of the frequency-domain coding sequence D k 1 , and the k is the serial number of the sending unit. 13.一种单载波频分多址SC-FDMA系统中的链路传输装置,其特征在于,该装置包含权利要求2所述的发送单元和权利要求要求8所述的接收单元。13. A link transmission device in a single carrier frequency division multiple access (SC-FDMA) system, characterized in that the device comprises the sending unit as claimed in claim 2 and the receiving unit as claimed in claim 8. 14.一种单载波频分多址SC-FDMA系统中的链路发送方法,其特征在于,应用于如权利要求1所述的发送单元,该方法包括:14. A method for link transmission in a single carrier frequency division multiple access (SC-FDMA) system, characterized in that it is applied to the sending unit as claimed in claim 1, the method comprising: 由数据分流模块对所述星座调制模块输入的时域数据流进行接收和分流,在紧邻的两个时间段的第一个时间段内,将分流后得到的两个数据量相同的时域子数据流输出到所述DFT模块,由所述DFT模块对输入的两个时域子数据流进行进行DFT处理后,将得到的两个数据量相同的频域子数据流,输出到所述资源映射模块进行资源映射;在紧邻的两个时间段的第二个时间段内,将分流后得到的两个数据量相同的时域子数据流输出到所述空时块码编码STBC器,由所述STBC器对输入的两个时域子数据流进行第一预定算法的处理,得到的两个数据量相同且呈发射分集顺序排列的时域编码序列输出到所述傅里叶变换DFT模块,由DFT模块对输入的两个时域编码序列进行DFT处理后,将得到的两个数据量相同的频域编码序列,输出到所述资源映射模块进行资源映射;The time-domain data stream input by the constellation modulation module is received and distributed by the data distribution module, and in the first time period of the two adjacent time periods, the two time-domain data streams with the same amount of data obtained after the distribution are divided The data stream is output to the DFT module, and after the DFT module performs DFT processing on the input two time-domain sub-data streams, the obtained two frequency-domain sub-data streams with the same amount of data are output to the resource The mapping module performs resource mapping; in the second time period of the two adjacent time periods, two time-domain sub-data streams with the same amount of data obtained after splitting are output to the space-time block code STBC device, by The STBC implements the processing of the first predetermined algorithm on the two input time-domain sub-data streams, and the obtained two time-domain coding sequences with the same amount of data and arranged in transmit diversity order are output to the Fourier transform DFT module After the DFT module performs DFT processing on the two input time-domain coded sequences, the obtained two frequency-domain coded sequences with the same amount of data are output to the resource mapping module for resource mapping; 或,由所述数据分流模块接收所述星座调制模块输入的时域数据流进行分流,在紧邻的两个时间段的第一个时间段内,将分流后得到的两个数据量相同的时域子数据流输出到所述DFT模块,由所述DFT模块对输入的两个时域子数据流进行进行DFT处理后,将得到的两个数据量相同的频域子数据流,输出到所述资源映射模块进行资源映射;在紧邻的两个时间段的第二个时间段内,将分流后得到的两个数据量相同的时域子数据流输出到所述DFT模块,由DFT模块对输入的两个时域子数据流进行DFT处理后,将得到的两个数据量相同的频域子数据流分别输出到所述STBC器,由所述STBC器对输入的两个数据量相同的频域子数据流进行第二预定算法的处理,得到的两个数据量相同且呈发射分集顺序排列的频域编码序列,输出到所述资源映射模块进行资源映射。Or, the time-domain data stream input by the constellation modulation module is received by the data splitting module for splitting, and in the first time period of the two adjacent time periods, the two time periods with the same amount of data obtained after the splitting are The domain sub-data stream is output to the DFT module, and after the DFT module performs DFT processing on the two input time-domain sub-data streams, the obtained two frequency-domain sub-data streams with the same amount of data are output to the DFT module. The above resource mapping module performs resource mapping; in the second time period of the two adjacent time periods, the two time-domain sub-data streams with the same amount of data obtained after splitting are output to the DFT module, and are processed by the DFT module After the two input time-domain sub-data streams are processed by DFT, the obtained two frequency-domain sub-data streams with the same amount of data are respectively output to the STBC device, and the two input data streams with the same amount of data are input by the STBC device The frequency-domain sub-data stream is processed by the second predetermined algorithm, and two frequency-domain coded sequences with the same amount of data and arranged in transmit diversity sequence are obtained, and output to the resource mapping module for resource mapping. 15.如权利要求14所述的发送方法,其特征在于,所述信道编码模块、星座调制模块、数据分流模块和STBC器的数量相同为多个;所述DFT模块、资源映射模块和逆快速傅里叶变换IFFT模块的数量为信道编码模块的四倍;所述发射模块的数量为信道编码模块的两倍;15. The sending method according to claim 14, wherein the number of the channel coding module, the constellation modulation module, the data splitting module and the STBC device is the same as a plurality; the DFT module, the resource mapping module and the inverse fast The number of Fourier transform IFFT modules is four times that of the channel coding module; the number of the transmitting module is twice that of the channel coding module; 所述由数据分流模块对所述星座调制模块输入的时域数据流进行接收和分流之前,该方法还包括:由每个信道编码模块接收一路信息比特流,输出到对应的一个数据分流模块;Before the data splitting module receives and splits the time-domain data stream input by the constellation modulation module, the method further includes: each channel coding module receives an information bit stream, and outputs it to a corresponding data splitting module; 在紧邻的两个时间段的第一个时间段内,所述将分流后得到的两个数据量相同的时域子数据流输出到所述DFT模块包括:由每个数据分流模块将分流后的两个时域子数据流分别输出到对应的两个DFT模块,所述DFT模块将得到的两个数据量相同的频域子数据流输出到所述资源映射模块包括:由两个DFT模块将得到的两个频域子数据流分别输出给对应的两个资源映射模块;在紧邻的两个时间段的第二个时间段内,所述将分流后得到的两个数据量相同的时域子数据流输出到所述STBC器包括:由每个数据分流模块将分流后的两个时域子数据流输出到对应的一个STBC器,所述由STBC器将得到的两个时域编码序列输出到所述DFT模块包括:由STBC器将得到的两个时域编码序列分别输出到对应的两个DFT模块,所述由DFT模块将得到的两个数据量相同的频域编码序列输出到所述资源映射模块包括:由两个DFT模块将得到的两个频域数据流分别输出给对应的两个资源映射模块;或,In the first time period of the two immediately adjacent time periods, the output of the two time-domain sub-data streams with the same amount of data obtained after splitting to the DFT module includes: each data splitting module divides the data after splitting The two time-domain sub-data streams are respectively output to the corresponding two DFT modules, and the DFT module outputs the obtained two frequency-domain sub-data streams with the same amount of data to the resource mapping module, including: two DFT modules Output the obtained two frequency-domain sub-data streams to the corresponding two resource mapping modules respectively; in the second time period of the two adjacent time periods, the two data volumes obtained after the splitting are the same Outputting the domain sub-data stream to the STBC device includes: outputting the two time-domain sub-data streams after splitting to a corresponding STBC device by each data splitting module, and the two time-domain encodings obtained by the STBC device The sequence output to the DFT module includes: the STBC device outputs the two time-domain coded sequences obtained to the corresponding two DFT modules respectively, and the two frequency-domain coded sequences obtained by the DFT module with the same amount of data are output To the resource mapping module includes: outputting the two frequency domain data streams obtained by the two DFT modules to the corresponding two resource mapping modules respectively; or, 在紧邻的两个时间段的第一个时间段内,所述将分流后得到的两个数据量相同的时域子数据流输出到所述DFT模块包括:由每个数据分流模块将分流后的两个时域子数据流分别输出到对应的两个DFT模块,所述DFT模块将得到的两个数据量相同的频域子数据流输出到所述资源映射模块包括:两个DFT模块将得到的两个频域子数据流分别输出给对应的两个资源映射模块;在紧邻的两个时间段的第二个时间段内,所述将分流后得到的两个数据量相同的时域子数据流输出到所述DFT模块包括:由每个数据分流模块将分流后的两个时域子数据流分别输出到对应的两个DFT模块,所述由DFT模块将得到的两个数据量相同的频域子数据流分别输出到所述STBC器包括:由两个DFT模块将得到的两个频域子数据流输出到对应的一个STBC器,所述由STBC器将得到的两个频域编码序列输出到所述资源映射模块包括:由STBC器将得到的两个频域编码序列分别输出到对应的两个资源映射模块;In the first time period of the two immediately adjacent time periods, the output of the two time-domain sub-data streams with the same amount of data obtained after splitting to the DFT module includes: each data splitting module divides the data after splitting The two time-domain sub-data streams are respectively output to the corresponding two DFT modules, and the DFT module outputs the obtained two frequency-domain sub-data streams with the same amount of data to the resource mapping module, including: the two DFT modules will The obtained two frequency domain sub-data streams are respectively output to the corresponding two resource mapping modules; in the second time period of the two adjacent time periods, the two time domains with the same amount of data obtained after splitting Outputting the sub-data streams to the DFT module includes: outputting the divided two time-domain sub-data streams to the corresponding two DFT modules by each data splitting module, and the two data volumes obtained by the DFT modules Outputting the same frequency-domain sub-data streams to the STBC device respectively includes: outputting the two frequency-domain sub-data streams obtained by the two DFT modules to a corresponding STBC device, and the two frequency-domain sub-data streams obtained by the STBC device Outputting the domain coding sequence to the resource mapping module includes: outputting the two frequency domain coding sequences obtained by the STBC device to the corresponding two resource mapping modules; 所述进行资源映射包括:由四个资源映射模块将资源映射后的四个数据流分别输出到四个对应的IFFT模块;The resource mapping includes: outputting four data streams after resource mapping to four corresponding IFFT modules by four resource mapping modules; 所述进行资源映射后该方法还包括:由四个IFFT模块将四个IFFT处理后的数据流分别输出到两个对应的发送模块。After the resource mapping, the method further includes: the four IFFT modules respectively output the four IFFT-processed data streams to two corresponding sending modules. 16.如权利要求14或15所述的发送方法,其特征在于,所述由数据分流模块对所述时域数据流进行分流包括:16. The sending method according to claim 14 or 15, wherein the splitting of the time-domain data stream by the data splitting module comprises: 由数据分流模块对所述时域数据流进行奇偶分流,得到奇子数据流和偶子数据流两个数据量相同的时域子数据流。The data splitting module performs odd-even splitting on the time-domain data stream to obtain two time-domain sub-data streams with the same data volume, an odd sub-data stream and an even sub-data stream. 17.如权利要求15所述的发送方法,其特征在于,所述由所述STBC器对输入的两个时域子数据流进行第一预定算法的处理包括:17. The sending method according to claim 15, wherein the processing of the first predetermined algorithm carried out by the STBC device to the input two time-domain sub-data streams comprises: dd kk 11 == PP [[ [[ dd kk 11 ]] Hh ]] TT ,, dd kk 22 == -- PP [[ [[ dd kk 22 ]] Hh ]] TT ,, 其中,所述
Figure F2009102426243C00093
所述T为转置,所述H为共轭转置,所述M为时域数据流中数据的个数的1/2,所述k为发送单元的序号。
Among them, the
Figure F2009102426243C00093
The T is a transpose, the H is a conjugate transpose, the M is 1/2 of the number of data in the time-domain data stream, and the k is the serial number of the sending unit.
18.如权利要求15所述的发送方法,其特征在于,所述由所述STBC器对输入的两个时域子数据流进行第二预定算法的处理包括:18. The sending method according to claim 15, wherein the processing of the second predetermined algorithm carried out by the STBC device to the input two time-domain sub-data streams comprises: D k 1 ( s ) = - [ D k 2 ( s ) ] * , D k 2 ( s ) = [ D k 1 ( s ) ] * , 其中,所述s=0,1,...,M-1,所述*为共轭,所述Dk1(s)为频域子数据流Dk1的第s个元素,所述Dk2(s)为频域子数据流Dk2的第s个元素,所述Dk 1(s)为频域编码序列Dk 1的第s个元素,所述k为发送单元的序号。 D. k 1 ( the s ) = - [ D. k 2 ( the s ) ] * , D. k 2 ( the s ) = [ D. k 1 ( the s ) ] * , Wherein, the s=0, 1, ..., M-1, the * is a conjugate, the D k1 (s) is the sth element of the frequency domain sub-data stream D k1 , and the D k2 (s) is the s-th element of the frequency domain sub-data stream D k2 , the D k 1 (s) is the s-th element of the frequency-domain coding sequence D k 1 , and the k is the serial number of the sending unit. 19.一种单载波频分多址SC-FDMA系统中的空时块码编码STBC方法,其特征在于,该方法包括:19. A space-time block code encoding STBC method in a single carrier frequency division multiple access SC-FDMA system, it is characterized in that, the method comprises: 将两个数据流分别处理为原数据流的共轭,得到处理后的两个数据流;Process the two data streams as conjugates of the original data streams to obtain the two processed data streams; 将处理后的两个数据流分别与编码矩阵P进行相乘,并将相乘后得到一个数据流作为一个编码序列;Multiply the processed two data streams with the encoding matrix P respectively, and obtain a data stream as an encoding sequence after the multiplication; 将相乘后得到的另一个数据流进行取反运算后,得到另一个编码序列,其中,所述
Figure F2009102426243C00103
所述T为输入的每个数据流的长度。
After performing an inverse operation on another data stream obtained after multiplication, another coded sequence is obtained, wherein the
Figure F2009102426243C00103
The T is the length of each input data stream.
20.一种单载波频分多址SC-FDMA系统中的链路接收方法,其特征在于,应用于如权利要求8所述的接收单元,该方法包括:20. A link receiving method in a single carrier frequency division multiple access SC-FDMA system, characterized in that it is applied to the receiving unit as claimed in claim 8, the method comprising: 由第一个分层处理模块接收第一数据重组模块输出的对所有资源逆映射后的频域数据进行重新排列组合的数据,进行频域均衡与SIC消除处理后生成2m0个信息比特流输出,并将这2m0个信息比特流发送给下一个分层处理模块,下一个分层处理模块处理后再输出2m0个信息比特流,并将这2m0个信息比特流发送给再下一个分层处理模块进行处理,直到第K/m0个分层处理模块处理后输出最后2m0个信息比特流;The first layered processing module receives the data output by the first data reorganization module and rearranges and combines the frequency domain data after all resource inverse mapping, performs frequency domain equalization and SIC elimination processing, and generates 2m 0 information bit stream output , and send the 2m 0 information bit streams to the next layered processing module, the next layered processing module outputs 2m 0 information bit streams after processing, and sends the 2m 0 information bit streams to the next The layered processing module processes until the K/m 0th layered processing module processes and outputs the last 2m 0 information bit streams; 其中,第K/m0个分层处理模块包括:多输入输出频域均衡MIMO FDE模块、第二数据重组模块、2m0个IDFT模块、第三数据重组模块、m0个星座解调模块、m0个信道编码模块,第1~第K/m0-1个分层处理模块还包括:再编码模块、信道增益模块和连续干扰SIC模块;Among them, the K/m 0th hierarchical processing module includes: multiple input and output frequency domain equalization MIMO FDE module, the second data reorganization module, 2m 0 IDFT modules, the third data reorganization module, m 0 constellation demodulation modules, m 0 channel coding modules, the 1st to K/m 0 -1 layered processing modules also include: a re-encoding module, a channel gain module and a continuous interference SIC module; 由所述MIMO FDE模块接收从其所在分层处理模块外输入的频域数据,并将经FDE处理后的频域数据发送给第二数据重组模块;The MIMO FDE module receives the frequency domain data input from outside the layered processing module where it is located, and sends the frequency domain data after FDE processing to the second data reorganization module; 由第二数据重组模块对频域数据进行重新排列组合后,生成2m0个频域子数据流分别输入到对应的逆傅里叶变换IDFT模块;由IDFT模块将经过IDFT处理后的2m0个频域子数据流输出给第三数据重组模块;由第三数据重组模块对频域子数据进行重新排列组合后,生成m0个频域数据流分别输入到对应的星座解调模块;由星座解调模块将星座解调后的数据流输出到信道解码模块;由信道解码模块将经过信道解码的2m0个信息比特流输出;由所述第1~第K/m0-1个分层处理模块中的信道解码模块还将这2m0个信息比特流发送给再编码模块;After the frequency domain data is rearranged and combined by the second data reorganization module, 2m 0 frequency domain sub-data streams are generated and input to the corresponding inverse Fourier transform IDFT module respectively; the 2m 0 sub-data streams after IDFT processing are processed by the IDFT module The frequency domain sub-data stream is output to the third data reorganization module; after rearranging and combining the frequency domain sub-data by the third data reorganization module, m0 frequency domain data streams are generated and input to the corresponding constellation demodulation module respectively; The demodulation module outputs the data stream after constellation demodulation to the channel decoding module; the channel decoding module outputs 2m 0 information bit streams after channel decoding; the first to K/m 0 -1 layers The channel decoding module in the processing module also sends the 2m 0 information bit streams to the re-encoding module; 所述再编码模块包括信道编码模块、星座调制模块、数据分流模块、傅里叶变换DFT模块、空时块码编码STBC器和第四数据重组模块,其中,由所述星座调制模块接收m0个数据进行星座调制后形成时域数据流发送给数据分流模块;由数据分流模块接收星座调制模块输入的时域数据流进行分流,并将分流后得到的两个数据量相同的时域子数据流输出到所述STBC器;由所述STBC器对输入的两个时域子数据流进行第一预定算法的处理,得到的两个数据量相同且呈发射分集顺序排列的时域编码序列输出到所述DFT模块;由DFT模块对输入的两个时域编码序列进行DFT处理后,将得到的两个数据量相同的频域编码序列,输出到所述第四数据重组模块进行重新排列组合;The re-encoding module includes a channel coding module, a constellation modulation module, a data splitting module, a Fourier transform DFT module, a space-time block code coding STBC device and a fourth data reorganization module, wherein the constellation modulation module receives m 0 After constellation modulation, the data is formed into a time-domain data stream and sent to the data splitting module; the data splitting module receives the time-domain data stream input by the constellation modulation module for splitting, and divides the two time-domain sub-data with the same amount of data obtained after splitting The stream is output to the STBC device; the STBC device performs the first predetermined algorithm processing on the two input time-domain sub-data streams, and the obtained two time-domain coded sequences with the same amount of data and arranged in a transmit diversity order are output to the DFT module; after the DFT module performs DFT processing on the two input time-domain coded sequences, the obtained two frequency-domain coded sequences with the same amount of data are output to the fourth data reorganization module for rearrangement and combination ; 或,由所述数据分流模块接收所述星座调制模块输入的时域数据流进行分流,并将分流后得到的两个数据量相同的时域子数据流输出到所述DFT模块;由DFT模块对输入的两个时域子数据流进行DFT处理后,将得到的两个数据量相同的频域子数据流分别输出到所述STBC器;由所述STBC器对输入的两个数据量相同的频域子数据流进行第二预定算法的处理,得到的两个数据量相同且呈发射分集顺序排列的频域编码序列,输出到所述第四数据重组模块进行重新排列组合;Or, the time-domain data stream input by the constellation modulation module is received by the data splitting module for splitting, and two time-domain sub-data streams with the same amount of data obtained after splitting are output to the DFT module; by the DFT module After performing DFT processing on the two input time-domain sub-data streams, the obtained two frequency-domain sub-data streams with the same amount of data are respectively output to the STBC device; the two input data volumes are the same by the STBC device The frequency-domain sub-data stream is processed by the second predetermined algorithm, and the obtained two frequency-domain coded sequences with the same amount of data and arranged in transmit diversity order are output to the fourth data reorganization module for rearrangement and combination; 由所述第四数据重组模块将重新排列组合的频域编码序列输出到信道增益模块;由所述信道增益模块对接收的经过重新排列组合的频域编码序列进行信道估计后,将所述信道估计后的频域编码序列输出到SIC模块;The fourth data recombination module outputs the rearranged and combined frequency-domain code sequence to the channel gain module; after the channel gain module performs channel estimation on the received rearranged and combined frequency-domain code sequence, the channel The estimated frequency domain coding sequence is output to the SIC module; 由SIC模块接收从其所在分层处理模块外输入的频域数据,并将该频域数据和从信道增益模块接收的频域编码序列进行SIC处理,将处理后的频域数据,发送给下一个分层处理模块中的MIMO FDE模块,如下一个分层处理模块非第K/m0个分层处理模块,则该频域数据还发送给下一个分层处理模块中的SIC模块;The SIC module receives the frequency domain data input from outside the layered processing module where it is located, and performs SIC processing on the frequency domain data and the frequency domain coding sequence received from the channel gain module, and sends the processed frequency domain data to the next A MIMO FDE module in a layered processing module, if the next layered processing module is not the K/m 0th layered processing module, the frequency domain data is also sent to the SIC module in the next layered processing module; 所述K为输出的信息比特流的总个数,m0为能被K整除的整数。The K is the total number of output information bit streams, and m 0 is an integer divisible by K. 21.如权利要求20所述的接收方法,其特征在于,所述由数据分流模块对所述时域数据流进行分流包括:21. The receiving method according to claim 20, wherein said splitting the time-domain data stream by the data splitting module comprises: 由数据分流模块对所述时域数据流进行奇偶分流,得到奇子数据流和偶子数据流两个数据量相同的时域子数据流。The data splitting module performs odd-even splitting on the time-domain data stream to obtain two time-domain sub-data streams with the same data volume, an odd sub-data stream and an even sub-data stream. 22.如权利要求20所述的接收方法,其特征在于,所述由所述STBC器对输入的两个时域子数据流进行第一预定算法的处理包括:22. The receiving method according to claim 20, wherein the processing of the first predetermined algorithm carried out by the STBC device to the input two time-domain sub-data streams comprises: dd kk 11 == PP [[ [[ dd kk 11 ]] Hh ]] TT ,, dd kk 22 == -- PP [[ [[ dd kk 22 ]] Hh ]] TT ,, 其中,所述
Figure F2009102426243C00123
所述T为转置,所述H为共轭转置,所述M为时域数据流中数据的个数的1/2,所述k为发送单元的序号。
Among them, the
Figure F2009102426243C00123
The T is a transpose, the H is a conjugate transpose, the M is 1/2 of the number of data in the time-domain data stream, and the k is the serial number of the sending unit.
23.如权利要求20所述的接收方法,其特征在于,所述由所述STBC器对输入的两个时域子数据流进行第二预定算法的处理包括:23. The receiving method according to claim 20, wherein the processing of the second predetermined algorithm carried out by the STBC device to the input two time-domain sub-data streams comprises: D k 1 ( s ) = - [ D k 2 ( s ) ] * , D k 2 ( s ) = [ D k 1 ( s ) ] * , 其中,所述s=0,1,..,M-1,所述*为共轭,所述Dk1(s)为频域子数据流Dk1的第s个元素,所述Dk2(s)为频域子数据流Dk2的第s个元素,所述Dk 1(s)为频域编码序列Dk 1的第s个元素,所述k为发送单元的序号。 D. k 1 ( the s ) = - [ D. k 2 ( the s ) ] * , D. k 2 ( the s ) = [ D. k 1 ( the s ) ] * , Wherein, the s=0, 1, .., M-1, the * is a conjugate, the D k1 (s) is the sth element of the frequency domain sub-data stream D k1 , and the D k2 ( s) is the s-th element of the frequency-domain sub-data stream D k2 , the D k 1 (s) is the s-th element of the frequency-domain coding sequence D k 1 , and the k is the serial number of the sending unit. 24.一种单载波频分多址SC-FDMA系统中的链路传输方法,其特征在于,该方法包括:如权利要求15所述的发送方法和如权利要求20所述的接收方法。24. A link transmission method in a single carrier frequency division multiple access SC-FDMA system, characterized in that the method comprises: the sending method as claimed in claim 15 and the receiving method as claimed in claim 20.
CN2009102426243A 2009-12-10 2009-12-10 Link transmission device and method in SC-FDMA (Single Carrier-Frequency Division Multiple Access) system and space time block code coder and method Pending CN102098141A (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
CN2009102426243A CN102098141A (en) 2009-12-10 2009-12-10 Link transmission device and method in SC-FDMA (Single Carrier-Frequency Division Multiple Access) system and space time block code coder and method
PCT/CN2010/079574 WO2011069453A1 (en) 2009-12-10 2010-12-08 Link transmission device and method, and space time block coding device and method in sc-fdma system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN2009102426243A CN102098141A (en) 2009-12-10 2009-12-10 Link transmission device and method in SC-FDMA (Single Carrier-Frequency Division Multiple Access) system and space time block code coder and method

Publications (1)

Publication Number Publication Date
CN102098141A true CN102098141A (en) 2011-06-15

Family

ID=44131023

Family Applications (1)

Application Number Title Priority Date Filing Date
CN2009102426243A Pending CN102098141A (en) 2009-12-10 2009-12-10 Link transmission device and method in SC-FDMA (Single Carrier-Frequency Division Multiple Access) system and space time block code coder and method

Country Status (2)

Country Link
CN (1) CN102098141A (en)
WO (1) WO2011069453A1 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104320222A (en) * 2014-11-04 2015-01-28 北京邮电大学 Millimeter wave spatial modulation method and joint encoding device
CN111869120A (en) * 2018-03-22 2020-10-30 三菱电机株式会社 Transmitter and method for specific STBC precoding
CN112866169A (en) * 2015-01-23 2021-05-28 德州仪器公司 Transmission scheme for SC-FDMA with two DFT precoding levels
CN114900416A (en) * 2022-07-08 2022-08-12 南京信息工程大学 A kind of data transmission and reception method for OFDM system
CN115396271A (en) * 2022-08-02 2022-11-25 北京睿信丰科技有限公司 Method and equipment for transmitting and receiving single-carrier dual-antenna signal under multipath channel

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101056132B (en) * 2006-04-13 2011-04-20 上海贝尔阿尔卡特股份有限公司 Method and device for processing the base band of the space-time/space frequency/space diversity transmitter
EP1928115A1 (en) * 2006-11-30 2008-06-04 Nokia Siemens Networks Gmbh & Co. Kg Adaptive modulation and coding in a SC-FDMA system
EP1936900A1 (en) * 2006-12-18 2008-06-25 Nokia Siemens Networks Gmbh & Co. Kg Method and OFDM device for SC-FDMA data transfer

Non-Patent Citations (4)

* Cited by examiner, † Cited by third party
Title
SHENGLI ZHOU ET AL.: "《Single-carrier space-time block-coded transmissions over frequency-selective fading channels》", 《IEEE TRANSACTIONS ON INFORMATION THEORY》 *
王海明等: "《一种适用于MU_MIMOSC_FDMA系统的块级空时分组码》", 《电子与信息学报》 *
王海明等: "《一种适用于MU-MIMO SC-FDMA系统的块级空时分组码》", 《电子与信息学报》 *
钱轶群: "《一种高速率单载波空时分组码系统的分层及迭代检测》", 《电路与系统学报》 *

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104320222A (en) * 2014-11-04 2015-01-28 北京邮电大学 Millimeter wave spatial modulation method and joint encoding device
CN104320222B (en) * 2014-11-04 2017-11-10 北京邮电大学 A kind of millimeter wave modulating method and combined coding device
CN112866169A (en) * 2015-01-23 2021-05-28 德州仪器公司 Transmission scheme for SC-FDMA with two DFT precoding levels
CN111869120A (en) * 2018-03-22 2020-10-30 三菱电机株式会社 Transmitter and method for specific STBC precoding
CN111869120B (en) * 2018-03-22 2022-03-22 三菱电机株式会社 Transmitter and method for transmitting symbols
CN114900416A (en) * 2022-07-08 2022-08-12 南京信息工程大学 A kind of data transmission and reception method for OFDM system
CN114900416B (en) * 2022-07-08 2022-09-23 南京信息工程大学 Data transmitting and receiving method for OFDM system
CN115396271A (en) * 2022-08-02 2022-11-25 北京睿信丰科技有限公司 Method and equipment for transmitting and receiving single-carrier dual-antenna signal under multipath channel
CN115396271B (en) * 2022-08-02 2023-12-08 北京睿信丰科技有限公司 Method and equipment for transmitting and receiving single-carrier double-antenna signal under multipath channel

Also Published As

Publication number Publication date
WO2011069453A1 (en) 2011-06-16

Similar Documents

Publication Publication Date Title
JP5318038B2 (en) Data transmission method in communication system, method executed by wireless communication device, and wireless communication device
KR101260835B1 (en) Apparatus and method for transceiving a signal in a multi antenna system
CN102857284B (en) Data emitting method, method of reseptance, Apparatus and system
CN107949997B (en) Space Time Coding for Communication Systems
CN103825862A (en) Filter bank multi-carrier method based on offset quadrature amplitude modulation
JP2012165368A (en) Non-coherent space-time trellis-coded modulations for network-coded wireless relay communications
CN105306175A (en) MIMO-SCMA (Multiple Input Multiple Output-Sparse Code Multiple Access) system uplink construction method based on V-BLAST (Vertical Bell Labs Layered Space-Time) coding way
CN101442389A (en) Method and apparatus for sending and receiving multi-aerial system data
CN102098141A (en) Link transmission device and method in SC-FDMA (Single Carrier-Frequency Division Multiple Access) system and space time block code coder and method
CN105322991A (en) Multi-input multi-output transmission system and method based on WFRFT pre-coding
CN1947370B (en) Method and device for transmitting signals in a multi-antenna system, method for estimating corresponding transmission channels
CN101374128B (en) Transmission method and apparatus for multi-input multi-output OFDM system
CN101467376B (en) A kind of method and apparatus of space-time-frequency encoding
KR100780364B1 (en) Performance and Space-Time Block Coding Apparatus and Method
KR100720872B1 (en) Transmitting and receiving apparatus and method employing apparatus and method of space time block code for increasing performance
CN101056162B (en) Signal receiving and transmission method and device for MIMO system
Khalid et al. Application of maximum rank distance codes in designing of STBC-OFDM system for next-generation wireless communications
CN101102295A (en) Method for space collection multiplexing and multi-input and output communication system
KR100767218B1 (en) Space-time block encoding apparatus and method for improving coding gain
CN102098128B (en) Link transmission device and method, and space-frequency block code coding device and method in SC-FDMA system
CN101378283A (en) Diversity method for MIMO-OFDM system base on null-frequency encode
CN101702643B (en) Method for determining linear diffuse space-time codes when the number of receiving antennas is less than that of transmitting antennas
JP4478150B2 (en) Method for transmitting data in a MIMO telecommunication system providing high diversity as seen from the receiving end
Wang et al. Full rate orthogonal space-time block coding in OFDM transmission using time reversal
CN102104454A (en) Method and device for mapping code word flow to layer in multi-input multi-output communication system

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
REG Reference to a national code

Ref country code: HK

Ref legal event code: DE

Ref document number: 1157094

Country of ref document: HK

C02 Deemed withdrawal of patent application after publication (patent law 2001)
WD01 Invention patent application deemed withdrawn after publication

Application publication date: 20110615

REG Reference to a national code

Ref country code: HK

Ref legal event code: WD

Ref document number: 1157094

Country of ref document: HK