CN102078821A - Cracking catalyst containing mesoporous silica-alumina materials - Google Patents

Cracking catalyst containing mesoporous silica-alumina materials Download PDF

Info

Publication number
CN102078821A
CN102078821A CN2009102498326A CN200910249832A CN102078821A CN 102078821 A CN102078821 A CN 102078821A CN 2009102498326 A CN2009102498326 A CN 2009102498326A CN 200910249832 A CN200910249832 A CN 200910249832A CN 102078821 A CN102078821 A CN 102078821A
Authority
CN
China
Prior art keywords
catalyst
zeolite
cracking
heavy
mesoporous
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN2009102498326A
Other languages
Chinese (zh)
Other versions
CN102078821B (en
Inventor
郑金玉
李明罡
罗一斌
宗保宁
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sinopec Research Institute of Petroleum Processing
China Petroleum and Chemical Corp
Original Assignee
Sinopec Research Institute of Petroleum Processing
China Petroleum and Chemical Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sinopec Research Institute of Petroleum Processing, China Petroleum and Chemical Corp filed Critical Sinopec Research Institute of Petroleum Processing
Priority to CN 200910249832 priority Critical patent/CN102078821B/en
Publication of CN102078821A publication Critical patent/CN102078821A/en
Application granted granted Critical
Publication of CN102078821B publication Critical patent/CN102078821B/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Catalysts (AREA)
  • Production Of Liquid Hydrocarbon Mixture For Refining Petroleum (AREA)

Abstract

The invention discloses a cracking catalyst containing mesoporous silica-alumina material, wherein the cracking catalyst is composed of cracking active components: clay, adhesive and mesoporous silica-alumina material. The mesoporous silica-alumina material is of a pseudo-boehmite crystal phase structure. In case of the weight of oxide, the anhydrous chemical expression formula is: (0-0.3) Na2O (40-90) Al2O3 (10-60) SiO2, the specific surface area is 200-400m<2>/g, pore volume is 0.5-2.0ml/g, the average pore size is 8-20nm, and the most probable pore size is 5-15nm. The adhesive is selected from one or two mixtures of silica sol or aluminum sol. Compared with the conventional catalyst with pseudo-boehmite, the cracking catalyst has the advantages of low production cost and better crude oil conversion capacity.

Description

A kind of Cracking catalyst that contains the mesoporous Si-Al material
Technical field
The present invention relates to a kind of catalyst for cracking heavy oil, specifically about the fluidized catalytic cracking catalyst of a kind of low cost, high heavy oil conversion performance.
Background technology
Catalytic cracking is a kind of oil refining process, be widely used in the PETROLEUM PROCESSING industry, as most important process in the crude oil secondary operations, this technology is the main means of production of liquefied petroleum gas, gasoline, kerosene and diesel oil, occupies critical role in oil plant.In catalytic cracking and hydrocracking process, the residual oil of heavy end such as vacuum distillate or more heavy ends reacts in the presence of catalyst, be converted into gasoline, distillate and other liquid cracked product and the lighter following gaseous state cracked product of four carbon, in these courses of reaction, need to use catalysis material usually with high cracking activity.
The micro-pore zeolite catalysis material is widely used in petroleum refining and the processing industry because it has good shape selective catalysis performance and very high cracking reaction activity.Along with exhausting day by day and the requirement of aspect such as environmental protection of petroleum resources; particularly crude oil becomes heavy growth trend (>500 ℃ high boiling component increases) and the market wilderness demand to light-end products day by day; in PETROLEUM PROCESSING industry, more and more pay attention to deep processing to heavy oil and residual oil; the part refinery begins to mix refining decompression residuum, even directly with the reduced crude is cracked stock.Traditional micro porous molecular sieve catalysis material is because its duct is less, bigger raw molecule is demonstrated tangible restriction diffusion, cause apparent reactivity to reduce, limit macromolecular catalytic reaction to a great extent, therefore be not suitable for being applied to the catalytic cracking reaction of heavy ends such as heavy oil and residual oil.
For improving the heavy oil selectivity of catalytic cracking, the big molecule of heavy oil fraction is transformed, also will reduce the further conversion of intermediate oil and naphtha simultaneously, this just needs to use the aperture bigger, reactant molecule is not had diffusion-restricted, and have the material of higher cracking activity.And traditional micro porous molecular sieve only is beneficial to micromolecular cracking, and therefore mesoporous the and research and development macropore catalysis material more and more are subject to people's attention.
The appearance of mesopore molecular sieve is in 1992, at first succeeds in developing (BeckJ S, Vartuli J Z by U.S. Mobil company, Roth W J et al., J.Am.Chem.Comm.Soc., 1992,114,10834-10843), called after M41S series mesopore molecular sieve, comprise MCM-41 (MobilCorporation Material-41) and MCM-48 etc., the aperture of molecular sieve can reach 1.6~10nm, and is evenly adjustable, and pore-size distribution is concentrated, specific area and pore volume are big, high adsorption capacity; But because the hole wall structure of this molecular sieve analog is a undefined structure, thus hydrothermal stability difference and acidity a little less than, can't satisfy the operating condition of catalytic cracking, commercial Application is very restricted.
For solving the problem of mesopore molecular sieve hydrothermal stability difference, part Study work concentrates on and improves the molecular sieve pore wall thickness, as adopts neutral template agent can obtain the thicker molecular sieve of hole wall, but acid more weak shortcoming still exists.A kind of novel mesopore molecular sieve is disclosed in CN 1349929A, in the molecular sieve hole wall, introduce the primary and secondary construction unit of zeolite, make its basic structure with traditional zeolite molecular sieve, this mesopore molecular sieve has the hydrothermal stability of highly acid and superelevation.But the deficiency of this molecular sieve is need to use expensive template agent, and the aperture only has about 2.7nm, still has bigger space steric effect for big molecule cracking reaction, and structure is easily subsided under the high-temperature water heat condition, and cracking activity is relatively poor.
In the catalytic cracking field, silica-alumina material has stronger acid centre owing to it and good cracking performance is used widely.The proposition of mesoporous notion, the preparation for new catalyst provides possibility again, and present result of study focuses mostly on and is using expensive organic template and organosilicon source, and majority will pass through high temperature hydro-thermal last handling process.Disclose a kind of monodisperse mesoporous aluminium silicon composite material among the US5051385, earlier acid inorganic aluminate and Ludox have been mixed back adding alkali, the aluminium content that obtains silica-alumina material is at 5~40 heavy %, and the aperture is between 20~50nm, and specific area reaches 50~100m 2/ g.Disclosed method is load silicon oxide particle or a hydrated silica on the porous boehmite among the US4708945, again with the gained compound in hydrothermal treatment consists more than 600 ℃, make silica supportedly at the lip-deep catalyst of class boehmite, the surface area of this material is 100~200m 2/ g, average pore size 7~7.5nm.Disclose serial sour Cracking catalyst in US4440872, the carrier of some of them catalyst is by at γ-Al 2O 3Last dipping silane makes after 500 ℃ of roastings or steam treatment then.US2394796 discloses dipping silicon tetrachloride or silicon tetraethyl on the porous hydrated alumina, obtains aluminium silicon composite material through hydrolysis then.Adopting inorganic aluminate and waterglass among the CN 1353008 is raw material, forms stable silicon-aluminum sol clearly through processes such as precipitation, dispergation, and back drying obtains white gels, and roasting obtained Si-Al catalysis material after 1~20 hour under 350 ℃~650 ℃ conditions.US6858555 discloses a kind of catalyst for cracking heavy oil that contains mixed-metal oxides such as sieve and silica-sesquioxide, and wherein sieve and silica-sesquioxide is a undefined structure.
Disclose a kind of mesoporous Si-Al material in CN1565733A, this silica-alumina material has the boehmite crystal phase structure, and pore-size distribution is concentrated, the about 200~400m of specific area 2/ g, pore volume 0.5~2.0ml/g, average pore size is between 8~20nm, and the most probable aperture is 5~15nm.The preparation of this mesoporous Si-Al material need not used organic formwork agent, and synthetic cost is low, and the silica-alumina material that obtains has high cracking activity and hydrothermal stability, shows good big molecule cracking performance in catalytic cracking reaction.
Among the preparation technology of existing catalytic cracking catalyst, the colloid solid content of catalyst often is controlled at about 25~28%, and high solids content generally can reach about 33~35%, is difficult to further improve the colloid solid content under existing process conditions again.
Summary of the invention
The catalytic cracking catalyst that the purpose of this invention is to provide a kind of high solids content, low cost, high heavy oil conversion performance.
Cracking catalyst provided by the invention mainly is made up of cracking activity constituent element, clay, binding agent and a kind of mesoporous Si-Al material.Specifically, Cracking catalyst provided by the invention mainly by the cracking activity constituent element of 5~70 heavy %, form by the mesoporous Si-Al material of the binding agent of the clay of 5~80 heavy %, 5~30 heavy % and 3~40 heavy %.
The content of said cracking activity constituent element in catalyst is 5~70 heavy %, and preferred 15~60 heavy % comprise Y zeolite, can also contain MFI structure Si-Al molecular sieve and/or beta zeolite etc.
Said Y zeolite is selected from one or more the mixture among HY, USY, REUSY, REY, REHY, the REDASY, or the Y zeolite that obtains through various metal oxide treated.Content of rare earth in the said Y zeolite (REUSY, REY, REHY, REDASY) that contains rare earth is with RE 2O 3Count 0.5~20 heavy %.
Said MFI structure molecular screen can be selected from the ZSM-5 zeolite or belong to the Si-Al molecular sieve of MFI structure with it together, can be for rare earth modified or through the ZSM-5 zeolite of rare earth and phosphorus modification (brief note is ZRP, as putting down in writing among the CN1093101A).When containing MFI structure molecular screen and/or bet a zeolite in the said cracking activity constituent element, having the Si-Al molecular sieve of MFI structure and the weight ratio of Y zeolite is 0.025~1, preferred 0.1~0.5; The weight ratio of beta zeolite and Y zeolite is 0.025~0.8.
Said clay is selected from the various clays that can be used as catalytic component, and as kaolin, imvite, bentonite etc., its content in catalyst is 5~80 heavy %, preferred 15~60 heavy %.
Said binding agent can be selected from one or both the mixture in Ludox and the aluminium colloidal sol, preferred aluminium colloidal sol.The content of said binding agent in catalyst is with SiO 2And/or Al 2O 3Meter is 5~30 heavy %, preferred 8~25 heavy %.
Said mesoporous Si-Al material has the boehmite crystal phase structure, in the anhydrous chemical expression of oxide weight is: (0-0.3) Na 2O (40-90) Al 2O 3(10-60) SiO 2, specific area is 200~400m 2/ g, pore volume is 0.5~2.0ml/g, preferred 1.0~2.0ml/g, and average pore size is 8~20nm, preferred 10~20nm, and the most probable aperture is 5~15nm, preferred 10~15nm, this mesoporous Si-Al material has detailed explanation in CN1565733A, this no longer numerous stating.The content of said mesoporous Si-Al material in catalyst is 3~40 heavy %, preferred 5~30 heavy %.
Catalyst provided by the invention is after Y zeolite or Y zeolite and MFI structure molecular screen and/or beta zeolite and clay, binding agent and mesoporous Si-Al material are mixed, to make through spraying, roasting, washing, drying.Control catalyst colloid solid content 30~50%, preferred 35~45% in the catalyst preparation process.
Catalyst provided by the invention has following advantage:
At first, catalyst does not contain boehmite in forming, and colloid solid content height effectively improves Catalyst Production efficient in the preparation process, has reduced production cost.
Secondly, the production cost and the boehmite of said mesoporous Si-Al material are suitable, but the cracking activity of mesoporous Si-Al material is apparently higher than boehmite, compare with the conventional catalyst that uses boehmite, the mesoporous Si-Al material that adds low amount in the Cracking catalyst provided by the invention can reach the cracking activity of the conventional catalyst that uses boehmite, has therefore further reduced production cost again.
The 3rd, the catalyst heavy oil conversion performance is strong.From the little anti-data of heavy oil as can be seen, catalyst provided by the invention effectively improves the crude oil conversion capability simultaneously because the adding of mesoporous Si-Al material can significantly reduce the heavy oil yield.
The specific embodiment
The following examples will the invention will be further described, but content not thereby limiting the invention.
In each embodiment, the Na of used mesoporous material 2O, Al 2O 3, SiO 2Content and the content of rare earth in the catalyst measure (referring to " petrochemical industry analytical method (RIPP experimental technique) ", volumes such as Yang Cuiding, Science Press, nineteen ninety publishes) with x-ray fluorescence method.
The catalyst that is used for the heavy oil micro anti-evaluation needs in advance on the fixed bed aging equipment in 800 ℃, and burin-in process is 17 hours under 100% steam.
The little anti-appreciation condition of heavy oil is: oil ratio 2.94, and catalyst inventory 5g, 500 ℃ of reaction temperatures, 600 ℃ of regeneration temperatures, feedstock oil is vacuum gas oil (VGO).
Embodiment 1
The preparation of catalyst CAT-1: with kaolin slurry (content is 40 heavy %, and China Kaolin Co., Ltd produces), aluminium colloidal sol (Al 2O 3The heavy % of content 21.5, the Shandong catalyst plant is produced), mesoporous Si-Al material SA-1 and REHY molecular sieve (RE 2O 312.3 heavy %, Na 2The heavy % of O 5.1, silica alumina ratio 4.7, the Shandong catalyst plant is produced) and a certain amount of deionized water mix making beating, the colloid solid content is about about 35%, stirs 30 minutes, spray-drying is made microspherical catalyst then.With this microspherical catalyst 500 ℃ of following roastings 1 hour, again in 60 ℃ with (NH 4) 2SO 4Washing ((NH 4) 2SO 4: catalyst: H 2O=0.5: 1: 10) to Na 2The heavy % in O<0.25 uses a large amount of deionized water drip washing at last, filters the back in 110 ℃ of oven dry, obtains catalyst CAT-1.
Wherein the mesoporous Si-Al material adopts the mesoporous Si-Al material SA-1 of embodiment 1 among the CN1565733A, and the chemical composition of SA-1 is 0.12Na 2O73.7 Al 2O 326.2 SiO 2, its specific area is 362m 2/ g, pore volume are 1.19ml/g, and average pore size is 12.8nm, and the most probable aperture is 10nm.
Catalyst CAT-1 consists of: REHY molecular sieve 35.0%, kaolin 52.0%, aluminium colloidal sol 8.0%, mesoporous Si-Al material SA-1 5.0%.
The heavy oil evaluation result sees Table 1.
Embodiment 2~5
Embodiment 2~5th, illustrate with the influence of the different component in the mesoporous Si-Al material replacement catalyst to the catalyst cracking performance.
The detailed process of spray catalyst is with embodiment 1, but the mixture that in preparation process, replaces one or both or three in active component molecular sieve, kaolin and the binding agent respectively with the mesoporous Si-Al material, and regulate catalyst colloid solid content between 35~45%, make catalyst CAT-2~CAT-5.
Catalyst CAT-2 consists of: REHY molecular sieve 35.0%, kaolin 40.0%, aluminium colloidal sol 10.0%, mesoporous Si-Al material SA-1 15.0%.
Catalyst CAT-3 consists of: REHY molecular sieve 35.0%, kaolin 26.0%, aluminium colloidal sol 14.0%, mesoporous Si-Al material SA-1 25.0%.
Catalyst CAT-4 consists of: REHY molecular sieve 30.0%, kaolin 52.0%, aluminium colloidal sol 8.0%, mesoporous Si-Al material SA-1 10.0%.
Catalyst CAT-5 consists of: REHY molecular sieve 30.0%, kaolin 38.0%, aluminium colloidal sol 12.0%, mesoporous Si-Al material SA-1 20.0%.
The heavy oil evaluation result sees Table 1.
Comparative Examples 1
The preparation of comparative catalyst DB-1: with boehmite (solid content 65.8 heavy %, Shandong Aluminum Plant produces) add in the quantitative deionized water, after stirring, add concentration and be 36% hydrochloric acid (chemical pure, the Beijing Chemical Plant produces) and carry out acidification, sour aluminum ratio is controlled at 0.15~0.2, this moment, slurry pH value was about 1.0~1.2, stir after 40 minutes, be warming up to 65 ℃ of static acidifyings 1 hour, this moment, slurry pH value was about 3.0.After stopping heating, add kaolin slurry (content is 40 heavy %, and China Kaolin Co., Ltd produces) and aluminium colloidal sol (Al more respectively 2O 3Content 21.5 heavy %, the Shandong catalyst plant is produced), stir after 20 minutes, in mixed serum, add the REHY molecular sieve again, continue to stir 20 minutes, spray-drying is made microspherical catalyst then.With this microspherical catalyst 500 ℃ of following roastings 1 hour, again in 60 ℃ with (NH 4) 2SO 4Washing ((NH 4) 2SO 4: catalyst: H 2O=0.5: 1: 10) to Na 2The heavy % in O<0.25 uses a large amount of deionized water drip washing at last, filters the back in 110 ℃ of oven dry, obtains comparative catalyst DB-1.
Comparative catalyst DB-1 consists of: REHY molecular sieve 35.0%, kaolin 40.0%, aluminium colloidal sol 10.0%, boehmite 15.0%.
The heavy oil evaluation result sees Table 1.
Comparative Examples 2
The preparation process of comparative catalyst DB-2 is with Comparative Examples 1.
Comparative catalyst DB-2 consists of: REHY molecular sieve 35.0%, kaolin 26.0%, aluminium colloidal sol 14.0%, boehmite 25.0%.
The heavy oil evaluation result sees Table 1.
Table 1
Catalyst CAT-1 CAT-2 CAT-3 CAT-4 CAT-5 DB-1 DB-2
Material balance, m%
Dry gas 1.74 2.01 2.15 1.90 2.08 1.81 1.89
Liquefied gas 9.19 10.97 13.33 10.52 11.86 9.74 10.92
Gasoline 44.66 48.91 52.71 47.01 50.79 45.50 47.78
Diesel oil 22.27 21.68 20.34 22.04 21.09 22.13 21.95
Heavy oil 17.49 11.65 6.31 13.83 9.17 16.12 12.23
Coke 4.66 4.78 5.16 4.70 5.01 4.70 5.23
Conversion ratio/m% 60.24 66.67 73.35 64.13 69.74 61.75 65.82
Yield of light oil/m% 66.93 70.59 73.05 69.05 71.88 67.63 69.73
Light receipts+liquefied gas/m% 76.12 81.56 86.38 79.57 83.74 77.37 80.65
By the heavy oil evaluation result as can be seen, behind the adding mesoporous Si-Al material, the conversion capability of catalyst significantly improves in the catalyst, and the heavy oil yield obviously reduces.The cracking activity that contains the catalyst CAT-1 of 5% mesoporous Si-Al material just can reach the cracking activity of the comparative catalyst DB-1 that contains 15% boehmite substantially; And the cracking activity that contains the catalyst CAT-2 of 15% mesoporous Si-Al material has surpassed the cracking activity of the comparative catalyst DB-2 that contains 25% boehmite, and heavy oil conversion performance also significantly improves.
Embodiment 6~8
Preparation of catalysts process among the embodiment 6~8 is with embodiment 1, but in preparation process cracking activity constituent element molecular screening with Y zeolite, ZSM-5 molecular sieve (Na 2O 2.8%, silica alumina ratio 60, the Shandong catalyst plant is produced) and beta zeolite (silica alumina ratio 30, the production of Shandong catalyst plant) in one or both or three's mixture, and regulate catalyst colloid solid content between 35~45%, make catalyst CAT-6, CAT-7, CAT-8.
Catalyst CAT-6 consists of: REHY molecular sieve 32.0%, ZSM-5 molecular sieve 3.0%, kaolin 40.0%, aluminium colloidal sol 10.0%, mesoporous Si-Al material SA-1 15.0%.
Catalyst CAT-7 consists of: REY molecular sieve (RE 2O 314.0%, Na 2O 3.2%, and silica alumina ratio 5.4, the Chang Ling catalyst plant is produced) 30.0%, beta molecular sieve 5.0%, kaolin 33.0%, aluminium colloidal sol 12.0%, mesoporous Si-Al material SA-1 20.0%.
Catalyst CAT-8 consists of: REUSY molecular sieve (RE 2O 31.6%, Na 2O 1.2%, and silica alumina ratio 6.8, the Shandong catalyst plant is produced) 30.0%, ZSM-5 molecular sieve 3.0%, beta molecular sieve 2.0%, kaolin 40.0%, aluminium colloidal sol 10.0%, mesoporous Si-Al material SA-1 15.0%.
The heavy oil evaluation result sees Table 2.
Table 2
Catalyst CAT-6 CAT-7 CAT-8
Material balance, m%
Dry gas 1.97 2.02 1.84
Liquefied gas 11.96 12.57 12.01
Gasoline 48.65 50.38 47.62
Diesel oil 21.92 21.01 22.23
Heavy oil 11.98 8.95 11.85
Coke 4.52 5.07 4.45
Conversion ratio/m% 66.10 70.04 65.92
Yield of light oil/m% 70.57 71.39 69.85
Light receipts+liquefied gas/m% 82.53 83.96 81.86
Embodiment 9~10
The mesoporous Si-Al material adopts the mesoporous Si-Al material SA-2 of embodiment 2 among the CN1565733A.The chemical composition of SA-2 is 0.09 Na 2O59.1 Al 2O 340.8 SiO 2, its specific area is 315m 2/ g, pore volume are 1.26ml/g, and average pore size is 14.5nm, and the most probable aperture is 12nm.
Preparation process is with embodiment 1, and adjusting catalyst colloid solid content obtains catalyst CAT-9~10 between 35~45%.
Catalyst CAT-9 consists of: REHY 35.0%, kaolin 47.0%, aluminium colloidal sol 8.0%, mesoporous Si-Al material SA-2 10.0%.
Catalyst CAT-10 consists of: REUSY 30.0%, kaolin 33.0%, aluminium colloidal sol 12.0%, mesoporous Si-Al material SA-2 25.0%.
The heavy oil evaluation result sees Table 3.
Table 3
Catalyst CAT-9 CAT-10
Material balance, m%
Dry gas 1.89 2.10
Liquefied gas 11.01 12.87
Gasoline 47.58 51.44
Diesel oil 21.30 20.69
Heavy oil 13.50 7.86
Coke 4.72 5.04
Conversion ratio/m% 65.20 71.45
Yield of light oil/m% 68.88 72.13
Light receipts+liquefied gas/m% 79.89 85.00

Claims (8)

1. Cracking catalyst that contains the mesoporous Si-Al material, it is characterized in that this catalyst is made up of cracking activity constituent element, clay, binding agent and mesoporous Si-Al material, wherein said mesoporous Si-Al material, have the boehmite crystal phase structure, in the anhydrous chemical expression of oxide weight be: (0-0.3) Na 2O (40-90) Al 2O 3(10-60) SiO 2, specific area is 200~400m 2/ g, pore volume are that 0.5~2.0ml/g, average pore size are that 8~20nm, most probable aperture are 5~15nm, and said binding agent is selected from one or both the mixture in Ludox and the aluminium colloidal sol.
2. according to the Cracking catalyst of claim 1, it is characterized in that the cracking activity constituent element of this catalyst by 5~70 heavy %, the mesoporous Si-Al material of the binding agent of the clay of 5~80 heavy %, 5~30 heavy % and 3~40 heavy % is formed, and said binding agent is with SiO 2And/or Al 2O 3Meter.
3. according to the Cracking catalyst of claim 1, wherein, the cracking activity constituent element is a Y zeolite, perhaps is the mixture of Y zeolite and MFI structure Si-Al molecular sieve and/or beta zeolite.
4. according to the Cracking catalyst of claim 3, said Y zeolite is selected from one or more the mixture among HY, USY, REUSY, REY, REHY, the REDASY, or the Y zeolite that obtains through various metal oxide treated.
5. according to the Cracking catalyst of claim 4, wherein, among said REUSY, REY, REHY, the REDASY, content of rare earth is with RE 2O 3Count 0.5~20 heavy %.
6. according to the Cracking catalyst of claim 3, wherein, said MFI structure molecular screen is selected from the ZSM-5 zeolite or belongs to the Si-Al molecular sieve of MFI structure with it together.
7. according to the Cracking catalyst of claim 6, said ZSM-5 zeolite is through rare earth modified or through rare earth and phosphorus modification.
8. according to the Cracking catalyst of claim 3, wherein, when containing MFI structure molecular screen and/or beta zeolite in the said cracking activity constituent element, the Si-Al molecular sieve of MFI structure and the weight ratio of Y zeolite are 0.025~1, and the weight ratio of beta zeolite and Y zeolite is 0.025~0.8.
CN 200910249832 2009-11-27 2009-11-27 Cracking catalyst containing mesoporous silica-alumina materials Active CN102078821B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN 200910249832 CN102078821B (en) 2009-11-27 2009-11-27 Cracking catalyst containing mesoporous silica-alumina materials

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN 200910249832 CN102078821B (en) 2009-11-27 2009-11-27 Cracking catalyst containing mesoporous silica-alumina materials

Publications (2)

Publication Number Publication Date
CN102078821A true CN102078821A (en) 2011-06-01
CN102078821B CN102078821B (en) 2013-06-26

Family

ID=44085132

Family Applications (1)

Application Number Title Priority Date Filing Date
CN 200910249832 Active CN102078821B (en) 2009-11-27 2009-11-27 Cracking catalyst containing mesoporous silica-alumina materials

Country Status (1)

Country Link
CN (1) CN102078821B (en)

Cited By (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102974376A (en) * 2011-09-06 2013-03-20 中国石油化工股份有限公司 Catalytic cracking auxiliary agent and preparation method thereof
CN103566962A (en) * 2012-07-26 2014-02-12 中国石油化工股份有限公司 Multifunctional catalysis composition
CN104248985A (en) * 2013-06-28 2014-12-31 中国石油化工股份有限公司 Spherical montmorillonite mesoporous composite carrier, supported catalyst and preparation method and application thereof, and ethyl acetate preparation method
CN104248984A (en) * 2013-06-28 2014-12-31 中国石油化工股份有限公司 Spherical diatomite mesoporous composite and supported catalyst, preparation method thereof and application thereof, and ethyl acetate preparation method
CN105268468A (en) * 2014-05-29 2016-01-27 中国石油化工股份有限公司 Catalytic cracking catalyst, preparation method and applications thereof
CN106179475A (en) * 2015-04-29 2016-12-07 中国石油化工股份有限公司 A kind of catalytic cracking catalyst and its preparation method and application
CN106179476A (en) * 2015-04-29 2016-12-07 中国石油化工股份有限公司 A kind of catalytic cracking catalyst and its preparation method and application
CN106179454A (en) * 2015-04-29 2016-12-07 中国石油化工股份有限公司 A kind of catalytic cracking catalyst and its preparation method and application
CN106179458A (en) * 2015-04-29 2016-12-07 中国石油化工股份有限公司 A kind of catalytic cracking catalyst and its preparation method and application
CN106179457A (en) * 2015-04-29 2016-12-07 中国石油化工股份有限公司 A kind of catalytic cracking catalyst and its preparation method and application
CN106345513A (en) * 2016-07-28 2017-01-25 青岛经济技术开发区润乾高新材料研究所 Silicon-aluminum mesoporous material, and preparation method and application thereof
CN106590741A (en) * 2015-10-15 2017-04-26 中国石油化工股份有限公司 Catalytic conversion method for increasing yields of low-carbon olefins and light aromatic hydrocarbons
CN108355705A (en) * 2018-03-19 2018-08-03 湖北赛因化工有限公司 A kind of catalyst for heavy oil catalytic cracking and preparation method thereof
CN115041219A (en) * 2022-07-18 2022-09-13 青岛惠城环保科技集团股份有限公司 Preparation method of catalyst for converting waste into oil product

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN100497531C (en) * 2005-04-29 2009-06-10 中国石油化工股份有限公司 Cracking catalyst

Cited By (25)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102974376A (en) * 2011-09-06 2013-03-20 中国石油化工股份有限公司 Catalytic cracking auxiliary agent and preparation method thereof
CN102974376B (en) * 2011-09-06 2014-07-30 中国石油化工股份有限公司 Catalytic cracking auxiliary agent and preparation method thereof
CN103566962A (en) * 2012-07-26 2014-02-12 中国石油化工股份有限公司 Multifunctional catalysis composition
CN103566962B (en) * 2012-07-26 2016-05-25 中国石油化工股份有限公司 A kind of multi-functional catalyst composition
CN104248985A (en) * 2013-06-28 2014-12-31 中国石油化工股份有限公司 Spherical montmorillonite mesoporous composite carrier, supported catalyst and preparation method and application thereof, and ethyl acetate preparation method
CN104248984A (en) * 2013-06-28 2014-12-31 中国石油化工股份有限公司 Spherical diatomite mesoporous composite and supported catalyst, preparation method thereof and application thereof, and ethyl acetate preparation method
CN104248985B (en) * 2013-06-28 2016-06-29 中国石油化工股份有限公司 The preparation method of the composite mesoporous carrier of spherical montmorillonite and loaded catalyst and its preparation method and application and ethyl acetate
CN105268468A (en) * 2014-05-29 2016-01-27 中国石油化工股份有限公司 Catalytic cracking catalyst, preparation method and applications thereof
CN105268468B (en) * 2014-05-29 2018-03-20 中国石油化工股份有限公司 A kind of catalytic cracking catalyst and its preparation method and application
CN106179457A (en) * 2015-04-29 2016-12-07 中国石油化工股份有限公司 A kind of catalytic cracking catalyst and its preparation method and application
CN106179457B (en) * 2015-04-29 2018-07-31 中国石油化工股份有限公司 A kind of catalytic cracking catalyst and its preparation method and application
CN106179458A (en) * 2015-04-29 2016-12-07 中国石油化工股份有限公司 A kind of catalytic cracking catalyst and its preparation method and application
CN106179476A (en) * 2015-04-29 2016-12-07 中国石油化工股份有限公司 A kind of catalytic cracking catalyst and its preparation method and application
CN106179476B (en) * 2015-04-29 2018-08-28 中国石油化工股份有限公司 A kind of catalytic cracking catalyst and its preparation method and application
CN106179454B (en) * 2015-04-29 2018-07-31 中国石油化工股份有限公司 A kind of catalytic cracking catalyst and its preparation method and application
CN106179475A (en) * 2015-04-29 2016-12-07 中国石油化工股份有限公司 A kind of catalytic cracking catalyst and its preparation method and application
CN106179454A (en) * 2015-04-29 2016-12-07 中国石油化工股份有限公司 A kind of catalytic cracking catalyst and its preparation method and application
CN106179475B (en) * 2015-04-29 2018-07-31 中国石油化工股份有限公司 A kind of catalytic cracking catalyst and its preparation method and application
CN106179458B (en) * 2015-04-29 2018-07-31 中国石油化工股份有限公司 A kind of catalytic cracking catalyst and its preparation method and application
CN106590741B (en) * 2015-10-15 2018-04-13 中国石油化工股份有限公司 A kind of catalysis conversion method of low-carbon olefines high-output and light aromatic hydrocarbons
CN106590741A (en) * 2015-10-15 2017-04-26 中国石油化工股份有限公司 Catalytic conversion method for increasing yields of low-carbon olefins and light aromatic hydrocarbons
CN106345513A (en) * 2016-07-28 2017-01-25 青岛经济技术开发区润乾高新材料研究所 Silicon-aluminum mesoporous material, and preparation method and application thereof
CN106345513B (en) * 2016-07-28 2018-10-26 青岛经济技术开发区润乾高新材料研究所 A kind of mesoporous Si-Al material and its preparation method and application
CN108355705A (en) * 2018-03-19 2018-08-03 湖北赛因化工有限公司 A kind of catalyst for heavy oil catalytic cracking and preparation method thereof
CN115041219A (en) * 2022-07-18 2022-09-13 青岛惠城环保科技集团股份有限公司 Preparation method of catalyst for converting waste into oil product

Also Published As

Publication number Publication date
CN102078821B (en) 2013-06-26

Similar Documents

Publication Publication Date Title
CN102078821B (en) Cracking catalyst containing mesoporous silica-alumina materials
CN102079986B (en) Cracking method of heavy hydrocarbon oil
CN100497531C (en) Cracking catalyst
JP5161065B2 (en) Cracking catalyst and method for producing the same
CN101745418B (en) Catalytic cracking catalyst, preparation and application thereof
CN105688977B (en) A kind of catalytic cracking catalyst preparation method containing boehmite
CN104549383B (en) A kind of mesoporous active materials and its application with structure of similar to thin diaspore
CN103157507A (en) Heavy oil catalytic cracking catalyst and preparation method thereof
CN105813740A (en) Phosphorus-containing fcc catalyst
CN104014361B (en) A kind of catalytic cracking catalyst and preparation method thereof
CN109304212A (en) A kind of catalytic cracking catalyst and preparation method thereof
CN102974383A (en) Catalytic cracking catalyst and preparation method thereof
CN104588071A (en) Mesoporous catalytic material containing phosphorus, magnesium and rare earth
CN104549381A (en) Active silicon-phosphorus-aluminum material and application thereof
CN109746039B (en) Hierarchical pore silicon-aluminum catalytic material and preparation method and application thereof
CN111686785A (en) Heavy oil catalytic cracking catalyst and preparation method thereof
CN108745409A (en) A kind of catalytic cracking catalyst and preparation method thereof improving gasoline yield
CN102974384A (en) Catalytic cracking catalyst and preparation method thereof
AU2019322292A1 (en) Modified Y molecular sieve, catalytic cracking catalyst containing same, and preparation therefor and application thereof
CN110833850A (en) Catalytic cracking catalyst, preparation method and application thereof
CN102614905B (en) A kind of containing sodium mesoporous material processing method
CN104588054B (en) A kind of mesoporous catalysis material of phosphorous and rare earth
CN104588070A (en) Phosphorus and metal modified meso-porous silicon aluminum material
CN102974388A (en) Catalytic cracking catalyst and preparation method thereof
TW202017864A (en) Modified y-type molecular sieve, catalytic cracking catalyst comprising same, and preparation therefor and application thereof

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C14 Grant of patent or utility model
GR01 Patent grant