CN102073875A - Sparse representation-based background clutter quantification method - Google Patents

Sparse representation-based background clutter quantification method Download PDF

Info

Publication number
CN102073875A
CN102073875A CN 201110001480 CN201110001480A CN102073875A CN 102073875 A CN102073875 A CN 102073875A CN 201110001480 CN201110001480 CN 201110001480 CN 201110001480 A CN201110001480 A CN 201110001480A CN 102073875 A CN102073875 A CN 102073875A
Authority
CN
China
Prior art keywords
background
matrix
vector
target
feature
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN 201110001480
Other languages
Chinese (zh)
Other versions
CN102073875B (en
Inventor
杨翠
李倩
吴洁
张建奇
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Xidian University
Original Assignee
Xidian University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Xidian University filed Critical Xidian University
Priority to CN 201110001480 priority Critical patent/CN102073875B/en
Publication of CN102073875A publication Critical patent/CN102073875A/en
Application granted granted Critical
Publication of CN102073875B publication Critical patent/CN102073875B/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Complex Calculations (AREA)

Abstract

本发明公开了一种基于稀疏表示的背景杂波量化方法,主要解决现有杂波尺度不能很好地符合背景杂波相对性的物理实质及不能充分地体现人眼视觉特性的问题。其实现步骤是:将待量化的灰度背景图像分割成若干个大小相等的小单元,组合成背景矩阵;提取目标向量和背景矩阵的主要特征,得到目标特征向量和背景特征矩阵;对目标特征向量和背景特征矩阵进行归一化处理;计算归一化目标特征向量在归一化背景特征矩阵中的最稀疏表示;将最稀疏表示的绝对值的总和作为整幅图像的背景杂波尺度。本发明充分利用了人眼搜索时的两大特征,提高了预测目标探测概率与主观实际目标探测概率的一致性,可用于光电成像系统目标获取性能的预测和评估。

The invention discloses a background clutter quantification method based on sparse representation, which mainly solves the problem that the existing clutter scale cannot well conform to the physical essence of the relativity of the background clutter and cannot fully reflect the visual characteristics of human eyes. The implementation steps are: divide the gray scale background image to be quantified into several small units of equal size, and combine them into a background matrix; extract the main features of the target vector and the background matrix, and obtain the target feature vector and the background feature matrix; The vector and the background feature matrix are normalized; the sparsest representation of the normalized target feature vector in the normalized background feature matrix is calculated; the sum of the absolute values of the sparsest representations is used as the background clutter scale of the entire image. The invention makes full use of the two major features of human eyes when searching, improves the consistency between the predicted target detection probability and the subjective actual target detection probability, and can be used for the prediction and evaluation of the target acquisition performance of the photoelectric imaging system.

Description

基于稀疏表示的背景杂波量化方法 Background Clutter Quantization Method Based on Sparse Representation

技术领域technical field

本发明属于图像处理技术领域,特别是借助稀疏表示的背景杂波量化方法,可用于光电成像系统目标获取性能的预测和评估。The invention belongs to the technical field of image processing, in particular to a background clutter quantification method based on sparse representation, which can be used for the prediction and evaluation of the target acquisition performance of a photoelectric imaging system.

背景技术Background technique

光电成像系统目标获取性能是光电对抗、侦察、预警和伪装等军事任务中的一个重要概念。近年来,随着新材料的引入和制造工艺的进步,光电探测器已达到或接近背景限,背景因素已成为限制光电成像系统目标获取性能的一个关键因素。光电成像系统目标获取性能表征模型中使用合理准确的背景杂波量化尺度,能够使其预测结果更准确地体现成像系统的外场性能。The target acquisition performance of electro-optical imaging system is an important concept in military tasks such as electro-optical countermeasures, reconnaissance, early warning and camouflage. In recent years, with the introduction of new materials and the advancement of manufacturing processes, photodetectors have reached or approached the background limit, and the background factor has become a key factor limiting the target acquisition performance of photoelectric imaging systems. The use of a reasonable and accurate background clutter quantization scale in the target acquisition performance characterization model of the optoelectronic imaging system can make its prediction results more accurately reflect the external field performance of the imaging system.

背景杂波是一种视觉感知效应,指的是干扰目标探测的类目标物,它具有两个典型特性:基于背景和目标特征的;相对感兴趣目标而言的。自上世纪八十年代以来,国外研究者在背景杂波的量化表征方面进行了大量的研究,提出了多种背景杂波量化描述尺度,其中应用最广泛的是统计方差尺度SV,如D.E.Schmieder and M.R.Weathersby,“Detection performance in clutter with variable resolution,”IEEE Trans.Aerosp.Electron.Syst.AES-19(4),622-630(1983),和边缘概率尺度POE,如G.Tidhar,G.Reiter,Z.Avital,Y.Hadar,S.R.Rotmam,V.George,and M.L.Kowalczyk,“Modeling human search and target acquisition performance:IV.Detection probability in the cluttered environment,”Opt.Eng.33,801-808(1994)。然而,统计方差尺度SV建立在对光电图像统计处理的基础上,没有考虑人眼视觉感知特性;边缘概率尺度POE仅以背景信息为参考,违背了背景杂波是相对目标而言的物理实质。这使得由二者建立的杂波尺度不能合理地反映背景对目标获取过程的影响,难以准确地用于光电成像系统外场性能的预测和评估。Background clutter is a visual perception effect, which refers to the target-like objects that interfere with target detection. It has two typical characteristics: based on background and target characteristics; relative to the target of interest. Since the 1980s, foreign researchers have done a lot of research on the quantitative representation of background clutter, and proposed a variety of background clutter quantitative description scales, among which the statistical variance scale SV is the most widely used, such as D.E.Schmieder and M.R.Weathersby, "Detection performance in clutter with variable resolution," IEEE Trans.Aerosp.Electron.Syst.AES-19(4), 622-630(1983), and marginal probability scale POE, as in G.Tidhar, G. Reiter, Z. Avital, Y. Hadar, S.R. Rotmam, V. George, and M.L. Kowalczyk, "Modeling human search and target acquisition performance: IV. Detection probability in the cluttered environment," Opt. Eng. 33, 801-808( 1994). However, the statistical variance scale SV is based on the statistical processing of photoelectric images, without considering the visual perception characteristics of the human eye; the edge probability scale POE only uses background information as a reference, which violates the physical essence of background clutter relative to the target. This makes the clutter scale established by the two cannot reasonably reflect the influence of the background on the target acquisition process, and it is difficult to accurately predict and evaluate the field performance of the optoelectronic imaging system.

发明内容Contents of the invention

本发明的目的在于克服以往背景杂波量化方法的不足,提出一种基于稀疏表示的背景杂波尺度,以提高对成像系统外场性能预测和评估的准确度。The purpose of the present invention is to overcome the shortcomings of previous background clutter quantification methods, and propose a background clutter scale based on sparse representation, so as to improve the accuracy of prediction and evaluation of the imaging system's external field performance.

为了实现这样的目的,本发明通过降维技术将目标和背景信息由空间域变换到特征域,并在特征空间利用稀疏表示理论对背景杂波进行量化。具体步骤如下:In order to achieve such a goal, the present invention transforms the target and background information from the space domain to the feature domain through the dimensionality reduction technique, and quantifies the background clutter by using the sparse representation theory in the feature space. Specific steps are as follows:

(1)将二维的目标图像列向量化,得到目标向量x;(1) Column vectorize the two-dimensional target image to obtain the target vector x;

(2)将背景图像分成N个大小相等的小单元,每个小单元水平和垂直方向的大小均为目标相应尺寸的二倍;(2) Divide the background image into N small units of equal size, and the size of each small unit in the horizontal and vertical directions is twice the corresponding size of the target;

(3)将每个二维的背景小单元列向量化,并组合成背景矩阵Ψ;(3) Vectorize the columns of each two-dimensional background small unit and combine them into a background matrix Ψ;

(4)借助主成分分析PCA对目标向量x和背景矩阵Ψ降维,分别得到目标特征向量

Figure BDA0000042845260000021
和背景特征矩阵Φ;(4) Using principal component analysis PCA to reduce the dimensionality of the target vector x and the background matrix Ψ, and obtain the target eigenvectors respectively
Figure BDA0000042845260000021
and the background feature matrix Φ;

(5)对目标特征向量

Figure BDA0000042845260000022
进行归一化处理,得到归一化目标特征向量
Figure BDA0000042845260000023
(5) For the target feature vector
Figure BDA0000042845260000022
Perform normalization processing to obtain the normalized target feature vector
Figure BDA0000042845260000023

xx ^^ == xx ~~ // || || xx ~~ || || 22

其中||·||2表示向量的l2范数;Where ||·|| 2 represents the l 2 norm of the vector;

(6)将背景特征矩阵Φ中每个向量进行归一化处理得到的结果Θi,按下标序号从小到大的顺序,构成归一化背景特征矩阵Θ,(6) The result Θ i obtained by normalizing each vector in the background feature matrix Φ, and subscripted serial numbers in ascending order to form a normalized background feature matrix Θ,

Θi=Φi/||Φi||2,i=1,2,...,NΘ i = Φ i /||Φ i || 2 , i=1, 2,..., N

其中,Φi和Θi分别为背景特征矩阵Φ和归一化背景特征矩阵Θ的第i个列向量,N为背景特征矩阵Φ中列向量的个数;Wherein, Φ i and Θ i are respectively the ith column vector of the background feature matrix Φ and the normalized background feature matrix Θ, and N is the number of column vectors in the background feature matrix Φ;

(7)计算归一化目标特征向量

Figure BDA0000042845260000025
在归一化背景特征矩阵Θ中的最稀疏表示,获得相似向量s:即求解满足
Figure BDA0000042845260000031
的s的最小l0范数解:(7) Calculate the normalized target feature vector
Figure BDA0000042845260000025
In the sparsest representation in the normalized background feature matrix Θ, a similar vector s is obtained: that is, the solution satisfies
Figure BDA0000042845260000031
The minimum l 0 norm solution of s:

min||s||0满足

Figure BDA0000042845260000032
min||s|| 0 satisfies
Figure BDA0000042845260000032

(8)取相似向量s中非零元素绝对值

Figure BDA0000042845260000033
i=1,2,...,K,的总和,作为背景杂波量化尺度:
Figure BDA0000042845260000034
其中K为相似向量s中非零元素的个数。(8) Take the absolute value of the non-zero elements in the similar vector s
Figure BDA0000042845260000033
The sum of i=1, 2, ..., K, as the background clutter quantization scale:
Figure BDA0000042845260000034
Where K is the number of non-zero elements in the similarity vector s.

本发明具有如下优点:The present invention has the following advantages:

1)本发明由于采用PCA方法对目标和背景信息的降维处理来模拟搜索过程中人眼视觉的第一个阶段--特征选择阶段,且通过获得目标特征向量在背景特征矩阵中的最稀疏表示来模拟搜索过程中人眼视觉的第二个阶段--联合搜索阶段,符合目标获取过程中人眼视觉的感知特性;1) The present invention uses the PCA method to simulate the first stage of human vision in the search process—the feature selection stage by using the PCA method to reduce the dimensionality of the target and background information, and by obtaining the sparsest feature vector of the target feature vector in the background feature matrix It is expressed to simulate the second stage of human vision in the search process - the joint search stage, which is in line with the perceptual characteristics of human vision in the process of target acquisition;

2)本发明由于在背景杂波量化中不仅考虑了背景特征,还将目标特征的相对性影响纳入其中,符合背景杂波的物理本质。2) The present invention not only considers the background feature but also incorporates the relative influence of the target feature in the quantification of the background clutter, which conforms to the physical nature of the background clutter.

基于以上两点,本发明的背景杂波量化方法与外场试验中背景信息影响目标获取过程的物理机制更相符。实验结果表明:与以往常用的杂波量化方法相比,本发明的背景杂波量化方法对目标探测概率的预测与观察者实际试验得到的目标探测概率更加一致,对目标获取性能的预测更加精确。Based on the above two points, the background clutter quantification method of the present invention is more consistent with the physical mechanism in which the background information affects the target acquisition process in the field test. The experimental results show that: compared with the clutter quantification method commonly used in the past, the prediction of the target detection probability by the background clutter quantification method of the present invention is more consistent with the target detection probability obtained by the observer's actual test, and the prediction of the target acquisition performance is more accurate .

附图说明:Description of drawings:

图1为本发明实现过程的示意图;Fig. 1 is the schematic diagram of the realization process of the present invention;

图2为本发明使用的低背景杂波图像、目标图像及相似向量分布图;Fig. 2 is the low background clutter image that the present invention uses, target image and similar vector distribution figure;

图3为本发明使用的中背景杂波图像、目标图像及相似向量分布图;Fig. 3 is the background clutter image, target image and similar vector distribution diagram used in the present invention;

图4为本发明使用的高背景杂波图像、目标图像及相似向量分布图;Fig. 4 is the high background clutter image that the present invention uses, target image and similar vector distribution figure;

图5为以Search_2图像数据库为实验数据,各背景杂波量化尺度与观察者实际目标探测概率之间的拟合曲线。Fig. 5 is the fitting curve between the quantization scale of each background clutter and the observer's actual target detection probability, taking the Search_2 image database as the experimental data.

具体实施方式Detailed ways

参照图1,本发明基于稀疏表示的背景杂波量化方法实现步骤如下:With reference to Fig. 1, the implementation steps of the background clutter quantization method based on sparse representation in the present invention are as follows:

步骤1,将目标图像的像素值以列为单位,按最初所在列序号从小到大的顺序,组成目标向量

Figure BDA0000042845260000041
Step 1, take the pixel values of the target image as the unit, and form the target vector in the order of the initial column number from small to large
Figure BDA0000042845260000041

x={t1,1,t2,1,t3,1,...,tC,1,t1,2,...,tC,D}T x={t 1,1 ,t 2,1 ,t 3,1 ,...,t C,1 ,t 1,2 ,...,t C,D } T

其中ti,j表示位置在(i,j)处的目标像素值,C和D分别表示目标图像的行数和列数,T表示对向量进行转置操作。Among them, t i, j represents the target pixel value at position (i, j), C and D represent the number of rows and columns of the target image respectively, and T represents the transpose operation on the vector.

步骤2,将待量化的背景图像分成N个大小相等的小单元,每个小单元的水平方向和垂直方向的大小均为目标相应尺寸的两倍。In step 2, the background image to be quantized is divided into N small units of equal size, and the size of each small unit in the horizontal and vertical directions is twice the corresponding size of the target.

N的大小由待量化的背景图像的大小A×B和每个小单元的大小M=C×D确定,即其中,A和B分别表示背景图像的行数和列数,

Figure BDA0000042845260000043
表示取小于或等于x的最大整数。The size of N is determined by the size A×B of the background image to be quantized and the size M=C×D of each small unit, namely Among them, A and B represent the number of rows and columns of the background image, respectively,
Figure BDA0000042845260000043
Indicates to take the largest integer less than or equal to x.

步骤3,将各个背景小单元依次列向量化得到的列向量

Figure BDA0000042845260000044
i=1,2,...,N,组合背景矩阵 Step 3, the column vector obtained by column vectorizing each background small unit in turn
Figure BDA0000042845260000044
i=1, 2, ..., N, combined background matrix

Ψ={A1,A2,...,AN}Ψ={A 1 , A 2 ,..., A N }

步骤4,用主成分分析法PCA对目标向量x和背景矩阵Ψ进行降维处理,具体步骤如下:Step 4, use principal component analysis (PCA) to reduce the dimensionality of the target vector x and the background matrix Ψ, the specific steps are as follows:

(4a)将用背景矩阵Ψ中的每个元素减去所在行元素均值得到的结果Xij,以下标(i,j)为序,构成背景差别矩阵X,(4a) Use each element in the background matrix Ψ to subtract the result X ij obtained by subtracting the mean value of the element in the row, and order the subscript (i, j) to form the background difference matrix X,

Xx ijij == ΨΨ ijij -- ΣΣ jj == 11 NN ΨΨ ijij // NN ,, ii == 1,21,2 ,, .. .. .. ,, Mm ,, jj == 1,21,2 ,, .. .. .. ,, NN

其中,Ψij和Xij分别为背景矩阵Ψ和背景差别矩阵X位于(i,j)处的值,M和N分别为背景矩阵Ψ的行数和列数;Wherein, Ψ ij and X ij are the values of the background matrix Ψ and the background difference matrix X at (i, j) respectively, and M and N are the number of rows and columns of the background matrix Ψ respectively;

(4b)用背景差别矩阵X右乘其转置矩阵XT,得到协方差矩阵A:(4b) Multiply the transposed matrix X T by the background difference matrix X to the right to obtain the covariance matrix A:

A=XTX;A=X T X;

(4c)对协方差矩阵A进行特征值分解,得到其非零特征值λk及相应的特征向量vk,k=1,2,...,t,其中t为协方差矩阵A非零特征值的总个数,λ1≥λ2≥Λ≥λt>0,特征向量互相正交;(4c) Carry out eigenvalue decomposition on the covariance matrix A to obtain its non-zero eigenvalue λ k and corresponding eigenvector v k , k=1, 2, ..., t, where t is the non-zero covariance matrix A The total number of eigenvalues, λ 1 ≥ λ 2 ≥ Λ ≥ λ t > 0, the eigenvectors are mutually orthogonal;

(4d)以协方差矩阵A非零特征值总和的90%作为阈值,取前W个非零特征值平方根的倒数构成对角阵D:(4d) Take 90% of the sum of the non-zero eigenvalues of the covariance matrix A as the threshold, and take the reciprocal of the square root of the first W non-zero eigenvalues to form a diagonal matrix D:

D = 1 / λ 1 O 1 / λ W , 满足 Σ k = 1 W λ k / Σ k = 1 t λ k ≈ 0.9 D. = 1 / λ 1 o 1 / λ W , satisfy Σ k = 1 W λ k / Σ k = 1 t λ k ≈ 0.9

同时,取此W个非零特征值对应的特征向量vk,k=1,2,...,W,组成特征矩阵:v={v1,v2,...,vW};At the same time, take the eigenvectors v k corresponding to the W non-zero eigenvalues, k=1, 2, ..., W, to form a feature matrix: v={v 1 , v 2 , ..., v W };

(4e)用背景差别矩阵X左乘特征矩阵v,再左乘对角阵D,得到白化矩阵RM×W(4e) Multiply the feature matrix v by the background difference matrix X, and then multiply the diagonal matrix D by the left to obtain the whitening matrix R M×W :

R=X*v*DR=X*v*D

其中,白化矩阵R的行数M远远大于其列数W;Among them, the number of rows M of the whitening matrix R is far greater than the number of columns W;

(4f)用白化矩阵R的转置矩阵左乘背景差别矩阵X,得到背景特征矩阵:(4f) Multiply the background difference matrix X by the transposition matrix of the whitening matrix R to the left to obtain the background feature matrix:

Φ=RTX;Φ=R T X;

(4g)将用目标向量x的每个元素减去背景矩阵Ψ中对应行元素均值的结果di,按照下标序号从小到大的顺序,构成目标差别向量d={d1,d2,...,dM}T(4g) Use each element of the target vector x to subtract the result d i of the mean value of the corresponding row element in the background matrix Ψ, and form the target difference vector d={d 1 , d 2 , ..., d M } T ,

dd ii == xx ii -- ΣΣ jj == 11 NN ΨΨ ijij // NN ,, ii == 1,21,2 ,, .. .. .. ,, Mm ,, jj == 1,21,2 ,, .. .. .. ,, NN ;;

其中xi为目标向量x的第i个元素,Ψij为背景矩阵Ψ位于(i,j)处的值,M和N分别为背景矩阵Ψ的行数和列数;Where x i is the i-th element of the target vector x, Ψ ij is the value of the background matrix Ψ at (i, j), M and N are the number of rows and columns of the background matrix Ψ, respectively;

(4h)用白化矩阵R的转置矩阵左乘目标差别向量d得到目标特征向量:(4h) Multiply the target difference vector d by the transposition matrix of the whitening matrix R to the left to obtain the target feature vector:

xx ~~ == RR TT dd ..

本步骤对目标向量和背景矩阵降维的方法除了采用所述的主成分分析PCA外,还可用以下方法进行降维:In this step, the dimensionality reduction method of the target vector and the background matrix can be reduced by the following methods in addition to the PCA described above:

1)多维尺度法MDS(I.Borg,and P.Groenen,“Modern Multidimensional Scaling:theory and applications,”2nd ed.,Springer-Verlag New York,2005);1) Multidimensional scaling method MDS (I.Borg, and P.Groenen, "Modern Multidimensional Scaling: theory and applications," 2nd ed., Springer-Verlag New York, 2005);

2)独立成分分析法ICA(A.and E.Oja,“A Fast Fixed-Point Algorithm for Independent Component Analysis,”Neural Computation,vol.9,No.7,pp:1,483-1,492,Oct.1997.);2) Independent component analysis (ICA) (A. and E.Oja, "A Fast Fixed-Point Algorithm for Independent Component Analysis," Neural Computation, vol.9, No.7, pp:1, 483-1, 492, Oct.1997.);

3)非负矩阵因子法NMF(D.D.Lee and H.S.Seung.“Algorithms for non-negative matrix factorization,”In Advances in Neural Information Processing systems,2001.);3) Non-negative matrix factor method NMF (D.D.Lee and H.S.Seung. "Algorithms for non-negative matrix factorization," In Advances in Neural Information Processing systems, 2001.);

4)局部线性嵌入法LLE(T.R.Sam and K.S.Lawrence,“Nonlinear Dimensionality Reduction by Locally Linear Embedding,”SCIENCE,Vol.290No.22,Dec.2000.);4) LLE (T.R.Sam and K.S.Lawrence, "Nonlinear Dimensionality Reduction by Locally Linear Embedding," SCIENCE, Vol.290No.22, Dec.2000.);

5)拉普拉斯特征映射法LE(M.Belkin and P.Niyogi,“Laplacian Eigenmaps for Dimensionality Reduction and Data Representation,”Neural Computation 15,pp:1373-1396,2003.)。5) Laplacian Eigenmaps LE (M. Belkin and P. Niyogi, "Laplacian Eigenmaps for Dimensionality Reduction and Data Representation," Neural Computation 15, pp: 1373-1396, 2003.).

步骤5,对目标特征向量

Figure BDA0000042845260000062
进行归一化处理得到归一化目标特征向量
Figure BDA0000042845260000063
Step 5, for the target feature vector
Figure BDA0000042845260000062
Perform normalization processing to obtain the normalized target feature vector
Figure BDA0000042845260000063

xx ^^ == xx ~~ // || || xx ~~ || || 22

其中||·||2表示向量的l2范数。where |||| 2 denotes the l2 norm of the vector.

步骤6,将背景特征矩阵Φ中每个向量进行归一化处理得到的结果Θi,按下标序号从小到大的顺序,组成归一化背景特征矩阵Θ,Step 6, normalize the result Θ i of each vector in the background feature matrix Φ, and form the normalized background feature matrix Θ in the order of subscripted serial numbers from small to large,

Θi=Φi/||Φi||2,i=1,2,...,NΘ i = Φ i /||Φ i || 2 , i=1, 2,..., N

其中,Φi和Θi分别为背景特征矩阵Φ和归一化背景特征矩阵Θ的第i个列向量,N为背景特征矩阵Φ中列向量的个数。Among them, Φi and Θi are the i-th column vectors of the background feature matrix Φ and the normalized background feature matrix Θ, respectively, and N is the number of column vectors in the background feature matrix Φ.

步骤7,求归一化目标特征向量在归一化背景特征矩阵Θ中的最稀疏表示,得到相似向量s:即求解满足

Figure BDA0000042845260000072
的s的最小l0范数解:Step 7, find the normalized target feature vector In the sparsest representation in the normalized background feature matrix Θ, a similar vector s is obtained: that is, the solution satisfies
Figure BDA0000042845260000072
The minimum l 0 norm solution of s:

min||s||0满足

Figure BDA0000042845260000073
min||s|| 0 satisfies
Figure BDA0000042845260000073

求解步骤如下:The solution steps are as follows:

(7a)求满足

Figure BDA0000042845260000074
的s的最小l1范数解:(7a) to satisfy
Figure BDA0000042845260000074
The minimum l 1 norm solution of s:

min||s||1满足

Figure BDA0000042845260000075
min||s|| 1 satisfies
Figure BDA0000042845260000075

(7b)将式<1>松弛为:(7b) Relax the formula <1> as:

min||s||1满足

Figure BDA0000042845260000076
min||s|| 1 satisfies
Figure BDA0000042845260000076

其中,ε为不小于0的任意常数,当ε=0时,式<2>将退化为式<1>;Among them, ε is any constant not less than 0, when ε=0, formula <2> will degenerate into formula <1>;

(7c)利用LASSO算法,将式<2>转化为:(7c) Using the LASSO algorithm, the formula <2> is transformed into:

Figure BDA0000042845260000077
满足||s||1≤σ                         <3>
Figure BDA0000042845260000077
Satisfy ||s|| 1 ≤ σ <3>

其中,σ为不小于0的任意常数;Among them, σ is any constant not less than 0;

(7d)利用拉格朗日算法,将式<3>转化为无约束最优化式:(7d) Using the Lagrangian algorithm, transform the formula <3> into an unconstrained optimization formula:

sthe s ** == argarg minmin sthe s 11 22 || || xx ^^ -- &Theta;s&Theta;s || || 22 ++ &alpha;&alpha; || || sthe s || || 11 -- -- -- << 44 >>

其中,α为拉格朗日乘子,

Figure BDA0000042845260000079
表示目标函数最小时变量s的值;Among them, α is the Lagrangian multiplier,
Figure BDA0000042845260000079
Indicates the value of the variable s when the objective function is minimized;

(7e)利用截断牛顿内点算法,将式<4>化为不等式约束的二次规划式:(7e) Using the truncated Newton interior point algorithm, formula <4> is transformed into a quadratic programming formula with inequality constraints:

minmin 11 22 || || xx ^^ -- &Theta;s&Theta;s || || 22 ++ &alpha;&alpha; &Sigma;&Sigma; ii == 11 NN &mu;&mu; ii -- -- -- << 55 >>

i≤si≤μi,i=1,2,...,N.- μ i ≤ s i ≤ μ i , i=1, 2, . . . , N.

其中,si为相似向量s的第i个元素,μi为约束si的因子,-μi≤si≤μi为约束条件;Among them, s i is the i-th element of the similarity vector s, μ i is the factor that constrains si , and -μ is iμ i is the constraint condition;

(7f)为约束条件-μi≤si≤μi建立对数障碍函数:(7f) Establish a logarithmic barrier function for the constraint condition - μ i ≤ s i ≤ μ i :

Figure BDA0000042845260000081
Figure BDA0000042845260000081

利用对数障碍函数,将式<5>转化为求由权重因子β定义的中心轨迹函数Fβ(s,μ,α)=0的最优解:Using the logarithmic barrier function, transform Equation <5> into an optimal solution for the central trajectory function F β (s, μ, α) = 0 defined by the weight factor β:

Figure BDA0000042845260000082
Figure BDA0000042845260000082

(7g)利用牛顿迭代法求解方程<6>,可得迭代公式:(7g) Using Newton's iterative method to solve equation <6>, the iterative formula can be obtained:

sthe s (( kk ++ 11 )) &mu;&mu; (( kk ++ 11 )) &alpha;&alpha; (( kk ++ 11 )) == sthe s (( kk )) &mu;&mu; (( kk )) &alpha;&alpha; (( kk )) -- &dtri;&dtri; 22 Ff &beta;&beta; -- 11 (( sthe s (( kk )) ,, &mu;&mu; (( kk )) ,, &alpha;&alpha; (( kk )) )) &CenterDot;&Center Dot; &dtri;&dtri; Ff &beta;&beta; (( sthe s (( kk )) ,, &mu;&mu; (( kk )) ,, &alpha;&alpha; (( kk )) ))

其中,s(k),μ(k)和α(k)分别表示s,μ和α经第k次迭代后的结果,s(k+1),μ(k+1)和α(k+1)分别表示s,μ和α经第k+1次迭代后的结果,k为不大于50的非负整数,

Figure BDA0000042845260000084
表示求函数的二阶导数,
Figure BDA0000042845260000085
表示求函数的一阶导数;Among them, s (k) , μ (k) and α (k) represent the results of s, μ and α after the kth iteration respectively, s (k+1) , μ (k+1) and α (k+ 1) respectively represent the results of s, μ and α after the k+1th iteration, k is a non-negative integer not greater than 50,
Figure BDA0000042845260000084
Represents the second order derivative of the function,
Figure BDA0000042845260000085
Indicates the first derivative of the function;

(7h)取权重因子β=0.5及解向量的初始值:(7h) Get weight factor β=0.5 and the initial value of solution vector:

sthe s (( 00 )) &mu;&mu; (( 00 )) &alpha;&alpha; (( 00 )) == &Theta;&Theta; TT xx ^^ 0.950.95 &CenterDot;&CenterDot; sgnsgn (( &Theta;&Theta; TT xx ^^ )) &CenterDot;&Center Dot; &Theta;&Theta; TT xx ^^ ++ 0.10.1 maxmax (( sgnsgn (( &Theta;&Theta; TT xx ^^ )) &CenterDot;&Center Dot; &Theta;&Theta; TT xx ^^ )) 11

其中,max表示取向量元素的最大值,sgn表示向量元素的正负属性:Among them, max means to take the maximum value of the vector element, and sgn means the positive and negative attributes of the vector element:

Figure BDA0000042845260000087
Figure BDA0000042845260000087

(7i)将初始值及权重因子带入步骤(7g)进行迭代运算,直到将相邻两次迭代的结果带入式<5>相减的差值不大于10-3,此时得到的s的值即为式<1>中s的最小l1范数解,跳转到步骤(7k);如果,达到最大迭代次数50,仍未得到最优解,执行步骤(7j);(7i) Bring the initial value and weight factor into step (7g) for iterative calculation, until the result of two adjacent iterations is brought into formula <5> and the subtraction difference is not greater than 10 -3 , the obtained s at this time The value of is the minimum l 1 norm solution of s in formula <1>, jump to step (7k); if the maximum number of iterations is 50, the optimal solution is still not obtained, go to step (7j);

(7j)将最终迭代结果作为初始值,将权重因子更新为原来的2倍,迭代次数归零,返回到步骤(7i);(7j) Use the final iterative result as the initial value, update the weight factor to 2 times the original value, reset the number of iterations to zero, and return to step (7i);

(7k)验证所有试验图像最小l1范数解s的稀疏性,根据文献D.Donoho,“For most large underdetermined systems of linear eauations the minimal l1-norm near solution approximates the sparest solution,”preprint,2004.中提出的结论:当最小l1范数解s具有稀疏特性时,其与最小l0范数解等价,可知,本发明所求得的最小l1范数解s即为归一化目标特征向量

Figure BDA0000042845260000091
在归一化背景特征矩阵Θ中的最稀疏表示。(7k) Verify the sparsity of the smallest l 1 norm solution s for all test images, according to D.Donoho, "For most large underdetermined systems of linear eauations the minimal l 1 -norm near solution approximates the sparse solution," preprint, 2004 The conclusion proposed in .: when the minimum l 1 norm solution s has sparse characteristics, it is equivalent to the minimum l 0 norm solution. It can be seen that the minimum l 1 norm solution s obtained by the present invention is the normalization target feature vector
Figure BDA0000042845260000091
The sparsest representation in the normalized background feature matrix Θ.

求解最小l1范数问题,除了本发明中给的算法外,还可以用以下方法进行:To solve the minimum l1 norm problem, except the algorithm given in the present invention, the following methods can also be used:

1)梯度映射法(M.Figueiredo,R.Nowak,and S.Wright,“Gradient projection for sparse reconstruction:Application to compressed sensing and other inverse problems,”IEEE Journal of Selected Topics in Signal Processing,Vol.1,No.4,pp:586-597,2007.);1) Gradient mapping method (M.Figueiredo, R.Nowak, and S.Wright, "Gradient projection for sparse reconstruction: Application to compressed sensing and other inverse problems," IEEE Journal of Selected Topics in Signal Processing, Vol.1, No. .4, pp: 586-597, 2007.);

2)homotopy法(D.Malioutov,M.Cetin,and A.Willsky,“Homotopy continuation for sparse signal representation,”In Proceedings of the IEEE International Conference on Acoustics,Speech,and Signal Processing,2005.);2) homotopy method (D.Malioutov, M.Cetin, and A.Willsky, "Homotopy continuation for sparse signal representation," In Proceedings of the IEEE International Conference on Acoustics, Speech, and Signal Processing, 2005.);

3)迭代收缩阈值法(I.Daubechies,M.Defrise,and C.Mol,“Aniterative thresholding algorithm for linear inverse problems with asparsity constraint,”Communications on Pure and Applied Math,Vol.57,pp:1413-1457,2004.);3) Iterative shrinkage threshold method (I.Daubechies, M.Defrise, and C.Mol, "Aniterative thresholding algorithm for linear inverse problems with asparsity constraint," Communications on Pure and Applied Math, Vol.57, pp: 1413-1457, 2004.);

4)Nesterov’s法(A.Beck and M.Teboulle,“A fast iterative shrinkage-thresholding algorithm for linear inverse problems,”SIAMJournal on Imaging Sciences,Vol.2,No.1,pp:183-202,2009.);4) Nesterov's method (A.Beck and M.Teboulle, "A fast iterative shrinkage-thresholding algorithm for linear inverse problems," SIAM Journal on Imaging Sciences, Vol.2, No.1, pp: 183-202, 2009.);

5)交叉引导法(J.Yang and Y.Zhang,“Alternating direction algorithms for l1-problems in compressive sensing,”(preprint)arXiv:0912.1185,2009.)。5) Cross-direction method (J. Yang and Y. Zhang, "Alternating direction algorithms for l 1 -problems in compressive sensing," (preprint) arXiv: 0912.1185, 2009.).

步骤8,取相似向量s中非零元素的绝对值i=1,2,...,K,的总和,作为整幅图像的背景杂波量化尺度:

Figure BDA0000042845260000102
其中,K为相似向量s中非零元素的个数。Step 8, take the absolute value of the non-zero elements in the similarity vector s The sum of i=1, 2, ..., K, as the background clutter quantization scale of the whole image:
Figure BDA0000042845260000102
Among them, K is the number of non-zero elements in the similarity vector s.

本发明的合理性和优越性可以通过以下实验和对比分析进一步描述:Rationality and superiority of the present invention can be further described by following experiments and comparative analysis:

实验验证:Experimental verification:

1.实验条件1. Experimental conditions

以荷兰TNO Human Factors研究所提供的Search_2图像数据库为例对本发明的图像背景杂波尺度的合理性及其在目标获取性能预测方面的优越性进行验证。Search_2图像数据库包括44幅不同背景复杂度的高分辨率数字自然场景图像以及每幅场景的具体参数和观察者实际观察实验的测试结果,有关该数据库的详细描述可参见文献A.Toet,P.Bijl,and J.M.Valeton,“Image data set for testing search and detection models,”Opt.Eng.40(9),1760-1767(2001);A.Toet,P.Bijl,F.L.Kooi,and J.M.Valeton,“Ahigh-resolution image data set for testing search and detection models,”Report TM-98-A020,TNO Human Factors Research Institute,(1998)和A.Toet,“Errata in Report TNO-TM 1998A020:A high-resolution image data set for testing search and detection models,”(2001)。Taking the Search_2 image database provided by TNO Human Factors Research Institute in the Netherlands as an example, the rationality of the image background clutter scale of the present invention and its superiority in target acquisition performance prediction are verified. The Search_2 image database includes 44 high-resolution digital natural scene images with different background complexities, as well as the specific parameters of each scene and the test results of the observer's actual observation experiment. For a detailed description of the database, please refer to the literature A.Toet, P. Bijl, and J.M. Valeton, "Image data set for testing search and detection models," Opt. Eng. 40(9), 1760-1767 (2001); A.Toet, P.Bijl, F.L.Kooi, and J.M.Valeton, " A high-resolution image data set for testing search and detection models,” Report TM-98-A020, TNO Human Factors Research Institute, (1998) and A.Toet, “Errata in Report TNO-TM 1998A020: A high-resolution image data set for testing search and detection models,” (2001).

2.示例说明2. Examples

图2、图3和图4分别给出了本发明使用的低、中和高三种不同杂波等级的背景图像、目标图像和相似向量分布图:图2为低背景杂波图像与目标区域图像,其中图2(a)为低背景杂波图像,图2(b)为目标区域图像,即图2(a)中白色矩形框所标出的部分,图2(c)为计算得到的相应相似向量分布图;图3为中背景杂波图像与目标区域图像,其中图3(a)为中背景杂波图像,图3(b)为目标区域图像,即图3(a)中白色矩形框所标出的部分,图3(c)为计算得到的相应相似向量分布图;图4为高背景杂波图像与目标区域图像,其中图4(a)为高背景杂波图像,图4(b)为目标区域图像,即图4(a)中白色矩形框所标出的部分,图4(c)为计算得到的相应相似向量分布图。Fig. 2, Fig. 3 and Fig. 4 have respectively provided the background image, target image and similar vector distribution figure of three kinds of different clutter levels of low, middle and high used in the present invention: Fig. 2 is low background clutter image and target area image , where Figure 2(a) is the low background clutter image, Figure 2(b) is the target area image, that is, the part marked by the white rectangle in Figure 2(a), and Figure 2(c) is the calculated corresponding Similarity vector distribution diagram; Figure 3 is the middle background clutter image and the target area image, where Figure 3(a) is the middle background clutter image, Figure 3(b) is the target area image, that is, the white rectangle in Figure 3(a) The part marked by the box, Fig. 3(c) is the calculated corresponding similarity vector distribution diagram; Fig. 4 is the high background clutter image and target area image, in which Fig. 4(a) is the high background clutter image, Fig. 4 (b) is the image of the target area, that is, the part marked by the white rectangle in Fig. 4(a), and Fig. 4(c) is the corresponding similarity vector distribution map obtained by calculation.

从图2(c)、图3(c)和图4(c)可见,对于三种不同杂波等级的图像,其目标图像与背景图像的相似向量都具有稀疏特性,从而证明了本发明中采用的计算归一化目标特征向量在归一化背景特征向量中最稀疏表示的算法的合理性。It can be seen from Fig. 2(c), Fig. 3(c) and Fig. 4(c), for the images of three different clutter levels, the similarity vectors of the target image and the background image all have sparse characteristics, thus proving that in the present invention Rationality of the algorithm employed to compute the sparsest representation of the normalized target feature vector among the normalized background feature vectors.

从图2(a)和图2(b)可见,背景与目标的相似度低,整幅图像的背景杂波很低,探测目标很容易;从图3(a)和图3(b)可见,背景与目标的相似度较高,整幅图像的背景杂波较高,探测目标较困难;从图4(a)和图4(b)可见,与前面两幅图像相比,其背景与目标的相似度最高,整幅图像的背景杂波最高,探测目标最困难。用本发明的图像背景杂波量化尺度分别对图2(a)、图3(a)和图4(a)进行量化得到它们的背景杂波尺度分别为2.0195、1.3060和1.0120,这与以上所述的人眼视觉的主观感知相一致,可见本发明的量化尺度能够反映背景杂波的真实情况。It can be seen from Figure 2(a) and Figure 2(b) that the similarity between the background and the target is low, the background clutter of the entire image is very low, and it is easy to detect the target; it can be seen from Figure 3(a) and Figure 3(b) , the similarity between the background and the target is high, the background clutter of the entire image is high, and it is difficult to detect the target; it can be seen from Figure 4(a) and Figure 4(b), compared with the previous two images, the background and The similarity of the target is the highest, the background clutter of the whole image is the highest, and it is the most difficult to detect the target. Figure 2 (a), Figure 3 (a) and Figure 4 (a) are quantified respectively with the image background clutter quantization scale of the present invention to obtain their background clutter scales to be 2.0195, 1.3060 and 1.0120 respectively, which is different from the above Consistent with the subjective perception of human vision described above, it can be seen that the quantization scale of the present invention can reflect the real situation of background clutter.

3.实验结果3. Experimental results

在对本发明进行实验验证时去掉了Search_2数据库中的第7、15、23、26、和4幅图像,这是由于本发明研究的是单目标探测,前四幅图像中存在双目标,超出了本发明的范围,而最后一幅图像中目标过小,属于弱小目标检测问题,不属于本发明的研究领域。因而在验证本发明的背景杂波量化尺度在目标获取性能预测方面的优越性实验中,最终的有效数据为其余的39幅图像。The 7th, 15th, 23rd, 26th, and 4 images in the Search_2 database were removed when the present invention was verified experimentally. This is because the present invention studies single target detection, and there are double targets in the first four images, which is beyond the scope of the present invention. The scope of the invention, and the target in the last image is too small, which belongs to the weak and small target detection problem, and does not belong to the research field of the present invention. Therefore, in the experiment to verify the superiority of the background clutter quantization scale of the present invention in predicting target acquisition performance, the final valid data are the remaining 39 images.

图5为利用POE、SV和本发明的背景杂波尺度对这39幅图像进行量化得到的结果与观察者实际目标探测概率之间的拟合曲线,其中,图5(a)、5(b)和5(c)分别为POE、SV和本发明的背景杂波量化尺度与观察者实际目标探测概率之间的拟合曲线。拟合公式为:Fig. 5 is the fitting curve between the results obtained by quantifying these 39 images and the observer's actual target detection probability using POE, SV and the background clutter scale of the present invention, wherein Fig. 5(a), 5(b ) and 5(c) are respectively the fitting curves between POE, SV and the background clutter quantization scale of the present invention and the observer's actual target detection probability. The fitting formula is:

PDPD == (( Xx // Xx 5050 )) EE. 11 ++ (( Xx // Xx 5050 )) EE.

其中,X表示背景杂波尺度;X50和E均为常数,可通过与观察者实际目标探测概率拟合得到;PD为主观实验得到的观察者实际目标探测概率,可由公式:Among them, X represents the background clutter scale; X50 and E are constants, which can be obtained by fitting with the observer's actual target detection probability; PD is the observer's actual target detection probability obtained from subjective experiments, which can be obtained by the formula:

PD=Nc/(Nc+Nf+Nm)PD=N c /(N c +N f +N m )

得到,其中Nc,Nf和Nm分别为Search_2数据库中每幅图像对应的正确探测到目标的人数、误判目标的人数和未检测到目标的人数。Obtained, where N c , N f and N m are the number of people who correctly detected the target, the number of people who misjudged the target and the number of people who did not detect the target corresponding to each image in the Search_2 database.

表1以数据的形式给出了各背景杂波尺度与实际主观实验得到的目标探测概率之间拟合的结果,其中包括各背景杂波尺度对应的X50和E的值,以及性能测度RMSE、CC和SCC对各背景杂波尺度的预测目标探测概率与观察者实际目标探测概率一致性的评价结果。其中,X50和E为曲线拟合参数;RMSE为均方根误差;CC为Pearson相关系数;SCC为Spearman秩相关系数。Table 1 presents the fitting results between each background clutter scale and the target detection probability obtained from the actual subjective experiment in the form of data, including the values of X50 and E corresponding to each background clutter scale, and the performance measure RMSE , CC and SCC evaluate the consistency between the predicted target detection probability of each background clutter scale and the observer's actual target detection probability. Among them, X 50 and E are curve fitting parameters; RMSE is root mean square error; CC is Pearson correlation coefficient; SCC is Spearman rank correlation coefficient.

表1:本发明的背景杂波尺度、POE和SV的性能比较Table 1: Performance comparison of the background clutter scale, POE and SV of the present invention

Figure BDA0000042845260000122
Figure BDA0000042845260000122

由表1可见,本发明的背景杂波量化尺度与观察者实际目标探测概率的Pearson相关系数和Spearman秩相关系数都大于其它背景杂波尺度,且均方根误差小于其它背景杂波尺度,从而证明了本发明的背景杂波量化尺度在目标获取性能预测方面的优越性。As can be seen from Table 1, the Pearson correlation coefficient and the Spearman rank correlation coefficient of the background clutter quantization scale of the present invention and the observer's actual target detection probability are greater than other background clutter scales, and the root mean square error is smaller than other background clutter scales, thus The superiority of the background clutter quantization scale of the present invention in predicting target acquisition performance is proved.

Claims (3)

1.一种基于稀疏表示的背景杂波量化方法,包括如下过程:1. A background clutter quantification method based on sparse representation, comprising the following process: (1)将二维的目标图像列向量化,得到目标向量x;(1) Column vectorize the two-dimensional target image to obtain the target vector x; (2)将背景图像分成N个大小相等的小单元,每个小单元水平和垂直方向的大小均为目标相应尺寸的二倍;(2) Divide the background image into N small units of equal size, and the size of each small unit in the horizontal and vertical directions is twice the corresponding size of the target; (3)将每个二维的背景小单元列向量化,并组合成背景矩阵Ψ;(3) Vectorize the columns of each two-dimensional background small unit and combine them into a background matrix Ψ; (4)借助主成分分析PCA对目标向量x和背景矩阵Ψ降维,分别得到目标特征向量
Figure FDA0000042845250000011
和背景特征矩阵Φ;
(4) Using principal component analysis PCA to reduce the dimensionality of the target vector x and the background matrix Ψ, and obtain the target eigenvectors respectively
Figure FDA0000042845250000011
and the background feature matrix Φ;
(5)对目标特征向量
Figure FDA0000042845250000012
进行归一化处理,得到归一化目标特征向量
(5) For the target feature vector
Figure FDA0000042845250000012
Perform normalization processing to obtain the normalized target feature vector
xx ^^ == xx ~~ // || || xx ~~ || || 22 其中,||·||2表示向量的l2范数;Among them, ||·|| 2 represents the l 2 norm of the vector; (6)将背景特征矩阵Φ中每个向量进行归一化处理得到的结果Θi,按下标序号从小到大的顺序,构成归一化背景特征矩阵Θ,(6) The result Θ i obtained by normalizing each vector in the background feature matrix Φ, and subscripted serial numbers in ascending order to form a normalized background feature matrix Θ, Θi=Φi/||Φi||2,i=1,2,...,NΘ i = Φ i /||Φ i || 2 , i=1, 2,..., N 其中,Φi和Θi分别为背景特征矩阵Φ和归一化背景特征矩阵Θ的第i个列向量,N为背景特征矩阵Φ中列向量的个数;Wherein, Φ i and Θ i are respectively the ith column vector of the background feature matrix Φ and the normalized background feature matrix Θ, and N is the number of column vectors in the background feature matrix Φ; (7)计算归一化目标特征向量
Figure FDA0000042845250000015
在归一化背景特征矩阵Θ中的最稀疏表示,获得相似向量s:即求解满足
Figure FDA0000042845250000016
的s的最小l0范数解:
(7) Calculate the normalized target feature vector
Figure FDA0000042845250000015
In the sparsest representation in the normalized background feature matrix Θ, a similar vector s is obtained: that is, the solution satisfies
Figure FDA0000042845250000016
The minimum l 0 norm solution of s:
min||s||0满足
Figure FDA0000042845250000017
min||s||0 satisfies
Figure FDA0000042845250000017
(8)取相似向量s中非零元素绝对值
Figure FDA0000042845250000018
i=1,2,...,K,的总和,作为背景杂波量化尺度:
Figure FDA0000042845250000019
其中K为相似向量s中非零元素的个数。
(8) Take the absolute value of the non-zero elements in the similar vector s
Figure FDA0000042845250000018
The sum of i=1, 2, ..., K, as the background clutter quantization scale:
Figure FDA0000042845250000019
Where K is the number of non-zero elements in the similarity vector s.
2.根据权利要求1所述的背景杂波量化方法,其中步骤(4)所述的借助主成分分析PCA对目标向量x和背景矩阵Ψ降维,按如下步骤进行:2. background clutter quantification method according to claim 1, wherein step (4) described by means of principal component analysis PCA to target vector x and background matrix Ψ dimensionality reduction, carry out as follows: (4a)将用背景矩阵Ψ中的每个元素减去所在行元素均值得到的结果Xij,以下标(i,j)为序,构成背景差别矩阵X,(4a) Use each element in the background matrix Ψ to subtract the result X ij obtained by subtracting the mean value of the element in the row, and order the subscript (i, j) to form the background difference matrix X, Xx ijij == &Psi;&Psi; ijij -- &Sigma;&Sigma; jj == 11 NN &Psi;&Psi; ijij // NN ,, ii == 1,21,2 ,, .. .. .. ,, Mm ,, jj == 1,21,2 ,, .. .. .. ,, NN 其中,Ψij和Xij分别为背景矩阵Ψ和背景差别矩阵X位于(i,j)处的值,M和N分别为背景矩阵Ψ的行数和列数;Wherein, Ψ ij and X ij are the values of the background matrix Ψ and the background difference matrix X at (i, j) respectively, and M and N are the number of rows and columns of the background matrix Ψ respectively; (4b)用背景差别矩阵X右乘其转置矩阵XT,得到协方差矩阵A:(4b) Multiply the transposed matrix X T by the background difference matrix X to the right to obtain the covariance matrix A: A=XTXA=X T X (4c)对协方差矩阵A进行特征值分解,得到其非零特征值λk及相应的特征向量vk,k=1,2,...,t,其中t为协方差矩阵A非零特征值的总个数,λ1≥λ2≥Λ≥λt>0,特征向量互相正交;(4c) Carry out eigenvalue decomposition on the covariance matrix A to obtain its non-zero eigenvalue λ k and corresponding eigenvector v k , k=1, 2, ..., t, where t is the non-zero covariance matrix A The total number of eigenvalues, λ 1 ≥ λ 2 ≥ Λ ≥ λ t > 0, the eigenvectors are mutually orthogonal; (4d)以协方差矩阵A非零特征值总和的90%作为阈值,取前W个非零特征值平方根的倒数构成对角阵D:(4d) Take 90% of the sum of the non-zero eigenvalues of the covariance matrix A as the threshold, and take the reciprocal of the square root of the first W non-zero eigenvalues to form a diagonal matrix D: D = 1 / &lambda; 1 O 1 / &lambda; W , 满足 &Sigma; k = 1 W &lambda; k / &Sigma; k = 1 t &lambda; k &ap; 0.9 D. = 1 / &lambda; 1 o 1 / &lambda; W , satisfy &Sigma; k = 1 W &lambda; k / &Sigma; k = 1 t &lambda; k &ap; 0.9 同时,取此W个非零特征值对应的特征向量vk,k=1,2,...,W,组成特征矩阵:v={v1,v2,...,vW};At the same time, take the eigenvectors v k corresponding to the W non-zero eigenvalues, k=1, 2, ..., W, to form a feature matrix: v={v 1 , v 2 , ..., v W }; (4e)用背景差别矩阵X左乘特征矩阵v,再左乘对角阵D,得到白化矩阵RM×W(4e) Multiply the feature matrix v by the background difference matrix X, and then multiply the diagonal matrix D by the left to obtain the whitening matrix R M×W : R=X*v*DR=X*v*D 其中,白化矩阵R的行数M远远大于其列数W;Among them, the number of rows M of the whitening matrix R is far greater than the number of columns W; (4f)用白化矩阵R的转置矩阵左乘背景差别矩阵X,得到背景特征矩阵:(4f) Multiply the background difference matrix X by the transposition matrix of the whitening matrix R to the left to obtain the background feature matrix: Φ=RTX;Φ=R T X; (4g)将用目标向量x的每个元素减去背景矩阵Ψ中对应行元素均值的结果di,按照下标序号从小到大的顺序,构成目标差别向量d={d1,d2,...,dM}T(4g) Use each element of the target vector x to subtract the result d i of the mean value of the corresponding row element in the background matrix Ψ, and form the target difference vector d={d 1 , d 2 , ..., d M } T , dd ii == xx ii -- &Sigma;&Sigma; jj == 11 NN &Psi;&Psi; ijij // NN ,, ii == 1,21,2 ,, .. .. .. ,, Mm ,, jj == 1,21,2 ,, .. .. .. ,, NN ;; 其中,xi为目标向量x的第i个元素,Ψij为背景矩阵Ψ位于(i,j)处的值,M和N分别为背景矩阵Ψ的行数和列数;Among them, xi is the i-th element of the target vector x, Ψ ij is the value of the background matrix Ψ at (i, j), and M and N are the number of rows and columns of the background matrix Ψ, respectively; (4h)用白化矩阵R的转置矩阵左乘目标差别向量d得到目标特征向量:(4h) Multiply the target difference vector d by the transposition matrix of the whitening matrix R to the left to obtain the target feature vector: xx ~~ == RR TT dd .. 3.根据权利要求1所述的背景杂波量化方法,其中步骤(7)所述的计算归一化目标特征向量
Figure FDA0000042845250000033
在归一化背景特征矩阵Θ中的最稀疏表示,按如下步骤计算:
3. background clutter quantification method according to claim 1, wherein the calculation normalization target feature vector described in step (7)
Figure FDA0000042845250000033
The sparsest representation in the normalized background feature matrix Θ is calculated as follows:
(7a)求满足
Figure FDA0000042845250000034
的s的最小l1范数解:
(7a) to satisfy
Figure FDA0000042845250000034
The minimum l 1 norm solution of s:
min||s||1满足 min||s|| 1 satisfies (7b)将式<1>松弛为:(7b) Relax the formula <1> as: min||s||1满足
Figure FDA0000042845250000036
min||s|| 1 satisfies
Figure FDA0000042845250000036
其中,ε为不小于0的任意常数,当ε=0时,式<2>将退化为式<1>;Among them, ε is any constant not less than 0, when ε=0, formula <2> will degenerate into formula <1>; (7c)利用LASSO算法,将式<2>转化为:(7c) Using the LASSO algorithm, the formula <2> is transformed into:
Figure FDA0000042845250000037
满足||s||1≤σ                        <3>
Figure FDA0000042845250000037
Satisfy ||s|| 1 ≤ σ <3>
其中,σ为不小于0的任意常数;Among them, σ is any constant not less than 0; (7d)利用拉格朗日算法,将式<3>转化为无约束最优化式:(7d) Using the Lagrangian algorithm, transform the formula <3> into an unconstrained optimization formula: sthe s ** == argarg minmin sthe s 11 22 || || xx ^^ -- &Theta;s&Theta;s || || 22 ++ &alpha;&alpha; || || sthe s || || 11 -- -- -- << 44 >> 其中,α为拉格朗日乘子,
Figure FDA0000042845250000039
表示目标函数最小时变量s的值;
Among them, α is the Lagrangian multiplier,
Figure FDA0000042845250000039
Indicates the value of the variable s when the objective function is minimized;
(7e)利用截断牛顿内点算法,将式<4>化为不等式约束的二次规划式:(7e) Using the truncated Newton interior point algorithm, formula <4> is transformed into a quadratic programming formula with inequality constraints: minmin 11 22 || || xx ^^ -- &Theta;s&Theta;s || || 22 ++ &alpha;&alpha; &Sigma;&Sigma; ii == 11 NN &mu;&mu; ii -- -- -- << 55 >> i≤si≤μi,i=1,2,...,N.- μ i ≤ s i ≤ μ i , i=1, 2, . . . , N. 其中,si为相似向量s的第i个元素,μi为约束si的因子,-μi≤si≤μi为约束条件;Among them, s i is the i-th element of the similarity vector s, μ i is the factor that constrains si , and -μ is iμ i is the constraint condition; (7f)为约束条件-μi≤si≤μi建立对数障碍函数:(7f) Establish a logarithmic barrier function for the constraint condition - μ i ≤ s i ≤ μ i :
Figure FDA0000042845250000042
Figure FDA0000042845250000042
利用对数障碍函数,将式<5>转化为求由权重因子β定义的中心轨迹函数Fβ(s,μ,α)=0的最优解:Using the logarithmic barrier function, transform Equation <5> into an optimal solution for the central trajectory function F β (s, μ, α) = 0 defined by the weight factor β:
Figure FDA0000042845250000043
Figure FDA0000042845250000043
(7g)利用牛顿迭代法求解方程<6>,可得迭代公式:(7g) Using Newton's iterative method to solve equation <6>, the iterative formula can be obtained: sthe s (( kk ++ 11 )) &mu;&mu; (( kk ++ 11 )) &alpha;&alpha; (( kk ++ 11 )) == sthe s (( kk )) &mu;&mu; (( kk )) &alpha;&alpha; (( kk )) -- &dtri;&dtri; 22 Ff &beta;&beta; -- 11 (( sthe s (( kk )) ,, &mu;&mu; (( kk )) ,, &alpha;&alpha; (( kk )) )) &CenterDot;&Center Dot; &dtri;&dtri; Ff &beta;&beta; (( sthe s (( kk )) ,, &mu;&mu; (( kk )) ,, &alpha;&alpha; (( kk )) )) 其中,s(k),μ(k)和α(k)分别表示s,μ和α经第k次迭代后的结果,s(k+1),μ(k+1)和α(k+1)分别表示s,μ和α经第k+1次迭代后的结果,k为不大于50的非负整数,
Figure FDA0000042845250000045
表示求函数的二阶导数,表示求函数的一阶导数;
Among them, s (k) , μ (k) and α (k) represent the results of s, μ and α after the kth iteration respectively, s (k+1) , μ (k+1) and α (k+ 1) respectively represent the results of s, μ and α after the k+1th iteration, k is a non-negative integer not greater than 50,
Figure FDA0000042845250000045
Represents the second order derivative of the function, Indicates the first derivative of the function;
(7h)取权重因子β=0.5及解向量的初始值:(7h) Get the initial value of weight factor β=0.5 and solution vector: sthe s (( 00 )) &mu;&mu; (( 00 )) &alpha;&alpha; (( 00 )) == &Theta;&Theta; TT xx ^^ 0.950.95 &CenterDot;&Center Dot; sgnsgn (( &Theta;&Theta; TT xx ^^ )) &CenterDot;&Center Dot; &Theta;&Theta; TT xx ^^ ++ 0.10.1 maxmax (( sgnsgn (( &Theta;&Theta; TT xx ^^ )) &CenterDot;&CenterDot; &Theta;&Theta; TT xx ^^ )) 11 其中,max表示取向量元素的最大值,sgn表示向量元素的正负属性:Among them, max means to take the maximum value of the vector element, and sgn means the positive and negative attributes of the vector element:
Figure FDA0000042845250000051
Figure FDA0000042845250000051
(7i)将初始值及权重因子带入步骤(7g)进行迭代运算,直到将相邻两次迭代的结果带入式<5>相减的差值不大于10-3,此时得到的s的值即为式<1>中s的最小l1范数解,跳转到步骤(7k);如果,达到最大迭代次数50,仍未得到最优解,执行步骤(7j);(7i) Bring the initial value and weight factor into step (7g) for iterative operation, until the result of two adjacent iterations is brought into formula <5> and the subtraction difference is not greater than 10 -3 , the obtained s at this time The value of is the minimum l1 norm solution of s in formula <1>, jump to step (7k); if the maximum number of iterations is 50, the optimal solution is still not obtained, go to step (7j); (7j)将最终迭代结果作为初始值,将权重因子更新为原来的2倍,迭代次数归零,返回到步骤(7i);(7j) Use the final iterative result as the initial value, update the weight factor to 2 times the original value, reset the number of iterations to zero, and return to step (7i); (7k)验证所有试验图像最小l1范数解s的稀疏性,并将s作为归一化目标特征向量
Figure FDA0000042845250000052
在归一化背景特征矩阵Θ中的最稀疏表示。
(7k) Verify the sparsity of the minimum l 1 norm solution s for all test images, and use s as the normalized target feature vector
Figure FDA0000042845250000052
The sparsest representation in the normalized background feature matrix Θ.
CN 201110001480 2011-01-06 2011-01-06 Sparse representation-based background clutter quantification method Expired - Fee Related CN102073875B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN 201110001480 CN102073875B (en) 2011-01-06 2011-01-06 Sparse representation-based background clutter quantification method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN 201110001480 CN102073875B (en) 2011-01-06 2011-01-06 Sparse representation-based background clutter quantification method

Publications (2)

Publication Number Publication Date
CN102073875A true CN102073875A (en) 2011-05-25
CN102073875B CN102073875B (en) 2012-12-05

Family

ID=44032409

Family Applications (1)

Application Number Title Priority Date Filing Date
CN 201110001480 Expired - Fee Related CN102073875B (en) 2011-01-06 2011-01-06 Sparse representation-based background clutter quantification method

Country Status (1)

Country Link
CN (1) CN102073875B (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102542261A (en) * 2011-12-31 2012-07-04 华中科技大学 Two-dimensional computable target detection, recognition and identification performance predicting method
CN102636575A (en) * 2012-03-27 2012-08-15 深圳职业技术学院 Optimized sawtooth coverage scanning device and method used for ultrasonic imaging detecting instrument
CN102737253A (en) * 2012-06-19 2012-10-17 电子科技大学 SAR (Synthetic Aperture Radar) image target identification method
CN103901403A (en) * 2012-12-26 2014-07-02 现代摩比斯株式会社 Target tracking method reflecting restriction condition
CN107367715A (en) * 2017-07-28 2017-11-21 西安电子科技大学 Clutter suppression method based on rarefaction representation

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101183460A (en) * 2007-11-27 2008-05-21 西安电子科技大学 Quantification method of color image background clutter
CN101901352A (en) * 2010-08-06 2010-12-01 北京航空航天大学 A Quantification Method of Infrared Background Clutter

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101183460A (en) * 2007-11-27 2008-05-21 西安电子科技大学 Quantification method of color image background clutter
CN101901352A (en) * 2010-08-06 2010-12-01 北京航空航天大学 A Quantification Method of Infrared Background Clutter

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
《西安电子科技大学学报》 20090228 何国经等 一种基于结构相似度的杂波尺度 166-170 1-3 第36卷, 第01期 *

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102542261A (en) * 2011-12-31 2012-07-04 华中科技大学 Two-dimensional computable target detection, recognition and identification performance predicting method
CN102542261B (en) * 2011-12-31 2014-03-26 华中科技大学 Two-dimensional computable target detection, recognition and identification performance predicting method
CN102636575A (en) * 2012-03-27 2012-08-15 深圳职业技术学院 Optimized sawtooth coverage scanning device and method used for ultrasonic imaging detecting instrument
CN102636575B (en) * 2012-03-27 2015-11-11 深圳职业技术学院 A kind of optimization sawtooth for ultrasonic imaging detecting instrument covers scanning equipment and method
CN102737253A (en) * 2012-06-19 2012-10-17 电子科技大学 SAR (Synthetic Aperture Radar) image target identification method
CN102737253B (en) * 2012-06-19 2014-03-05 电子科技大学 A SAR Image Target Recognition Method
CN103901403A (en) * 2012-12-26 2014-07-02 现代摩比斯株式会社 Target tracking method reflecting restriction condition
CN107367715A (en) * 2017-07-28 2017-11-21 西安电子科技大学 Clutter suppression method based on rarefaction representation
CN107367715B (en) * 2017-07-28 2020-04-14 西安电子科技大学 Clutter suppression method based on sparse representation

Also Published As

Publication number Publication date
CN102073875B (en) 2012-12-05

Similar Documents

Publication Publication Date Title
Sun et al. Deep probabilistic imaging: Uncertainty quantification and multi-modal solution characterization for computational imaging
CN102393911A (en) Background clutter quantization method based on compressive sensing
CN104463247B (en) The abstracting method of spectral vector cross-correlation feature in a kind of classification hyperspectral imagery
CN107992891B (en) Multispectral remote sensing image change detection method based on spectral vector analysis
CN108427934B (en) Hyperspectral image mixed pixel decomposition method
CN107563442B (en) Hyperspectral Image Classification Method Based on Sparse Low Rank Regular Graph Quantized Embedding
CN110569860B (en) A binary classification prediction method of image interestingness combining discriminant analysis and multi-kernel learning
CN102629374B (en) Image Super-resolution Reconstruction Method Based on Subspace Projection and Neighborhood Embedding
CN103984966A (en) SAR image target recognition method based on sparse representation
CN104268556A (en) Hyperspectral image classification method based on nuclear low-rank representing graph and spatial constraint
CN108681725A (en) A kind of weighting sparse representation face identification method
CN105930812A (en) Vehicle brand type identification method based on fusion feature sparse coding model
CN106919952A (en) EO-1 hyperion Anomaly target detection method based on structure rarefaction representation and internal cluster filter
CN109359525B (en) Polarized SAR image classification method based on sparse low-rank discrimination spectral clustering
CN106951822B (en) A multi-scale sparsity-preserving projected one-dimensional range image fusion recognition method
CN113139512A (en) Depth network hyperspectral image classification method based on residual error and attention
Khan et al. A customized Gabor filter for unsupervised color image segmentation
CN113344045B (en) Method for improving SAR ship classification precision by combining HOG characteristics
CN113033602B (en) Image clustering method based on tensor low-rank sparse representation
An et al. Image fusion algorithm based on unsupervised deep learning-optimized sparse representation
CN102073875A (en) Sparse representation-based background clutter quantification method
CN106023221A (en) Remote sensing image segmentation method based on nonnegative low-rank sparse correlated drawing
CN104715266B (en) The image characteristic extracting method being combined based on SRC DP with LDA
CN113670440B (en) A compressed spectral imaging method based on adaptive dictionary
Xu et al. Robust PCANet on target recognition via the UUV optical vision system

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C14 Grant of patent or utility model
GR01 Patent grant
CF01 Termination of patent right due to non-payment of annual fee
CF01 Termination of patent right due to non-payment of annual fee

Granted publication date: 20121205

Termination date: 20180106