CN102068256B - 一种基于squid的手持式超低场mri系统 - Google Patents

一种基于squid的手持式超低场mri系统 Download PDF

Info

Publication number
CN102068256B
CN102068256B CN 201110034037 CN201110034037A CN102068256B CN 102068256 B CN102068256 B CN 102068256B CN 201110034037 CN201110034037 CN 201110034037 CN 201110034037 A CN201110034037 A CN 201110034037A CN 102068256 B CN102068256 B CN 102068256B
Authority
CN
China
Prior art keywords
module
squid
capsule
cooling
magnetic
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN 201110034037
Other languages
English (en)
Other versions
CN102068256A (zh
Inventor
李德来
林国臻
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shantou Ultrasonic Testing Technology Co., Ltd.
Original Assignee
Shantou Institute of Ultrasonic Instruments Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shantou Institute of Ultrasonic Instruments Co Ltd filed Critical Shantou Institute of Ultrasonic Instruments Co Ltd
Priority to CN 201110034037 priority Critical patent/CN102068256B/zh
Publication of CN102068256A publication Critical patent/CN102068256A/zh
Application granted granted Critical
Publication of CN102068256B publication Critical patent/CN102068256B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Magnetic Resonance Imaging Apparatus (AREA)

Abstract

本发明涉及一种基于SQUID的手持式超低场MRI系统,包括硬件部分和软件部分,硬件部分将极化线圈模块、梯度线圈模块、接收线圈模块、冷却模块和SQUID均封装在探测头外壳里面,软件部分设置磁场参数变换模块。通过将极化线圈模块、梯度线圈模块、接收线圈模块、冷却模块和SQUID均封装在探测头外壳里面,冷却模块为SQUID提供超低温工作环境,无需采用液氦冷却,磁场参数变换模块将SQUID探测到的不规则磁场参数变换为适合使用现有磁共振成像算法的磁场参数,使得能够利用现有的磁共振成像算法重建图像,实现MRI系统的手持化,工作、维护成本低,可替代0.1~1T永磁MRI设备,适合中小型医院使用。

Description

一种基于SQUID的手持式超低场MRI系统
技术领域
本发明涉及磁共振成像装置,尤其涉及一种基于SQUID的手持式超低场MRI系统。
背景技术
现有的MRI(Magnetic Resonance Imaging,磁共振成像),其硬件设备主要包括计算机、磁体(或极化线圈)、梯度线圈、激励线圈、磁通量探测器、接收线圈、数据获取模块、主控制模块、电力控制模块和接口模块。其中,激励线圈放置在接近被测物体的位置,用于产生对被测试物体不同部位的激励信号;磁体(或极化线圈)和梯度线圈均匀布置在被测物体的周围,用于产生规则的磁场;电力控制模块与数据获取模块、主控制模块和磁通量探测器都电连接;接收线圈用于接收被测物体的磁共振信号,接收线圈的输出端与磁通量探测器的输入端连接,磁通量探测器的输出端与数据获取模块的输入端连接,数据获取模块的输出端与主控制模块的输入端连接,主控制模块的输出端与接口模块连接,接口模块与计算机连接。通过极化线圈和梯度线圈产生规则的磁场,使被测物体中的原子极化,按规则排列,再通过激励线圈对被测物体发出激励信号,使被测物体中规则排列的原子产生自旋而发出磁共振信号,磁共振信号由接收线圈接收后,经磁通量探测器转化为电信号,并通过上述电路模块处理后传送给计算机,在计算机上采用磁共振成像算法,重建被测物体的图像。MRI在临床实用中主要有永磁型和超导型:
永磁型MRI价格较低,可达到临床检查的效果,但体积重量庞大,其中的磁体需大量采用价格昂贵的稀土材料。
超导型MRI,目前是性能最好磁共振成像技术,但由于其磁通量探测头采用了需要在超低温下才能工作的超导磁体材料,需工作在超低温环境下,日常工作、维护需大量使用昂贵的液氦制冷剂,体积也非常庞大,不适合采购及日常预算不多的中小医院。
由此可见,现有的永磁型MRI和超导型MRI结构都比较庞大,不适合做手持式设备,而且需要在电磁屏蔽室内操作。
SQUID(Superconducting Quantum Interference Device,超导量子干涉器)作为目前世界上灵敏度最高的磁通量探测器,体积非常小,适合用于制成手持式超低场MRI系统,但目前由于仍需要采用液氦作为制冷剂制冷对SQUID进行冷却,其冷却结构比较庞大,无法和SQUID封装在一起,是导致目前无法采用SQUID制成手持式超低场MRI系统的一个重要原因;另一个原因是,如果将MRI整机缩小到可以手持的范围,势必造成极化线圈和梯度线圈处于被检测物体的同一侧,其产生的磁场与标准的磁场有很大区别,各线圈产生的磁场出现重叠,很不规则,使得无法利用现有的超低场MRI磁共振成像算法进行重建图像,这也是一个难以突破的地方。基于上述原因,目前还未出现利用SQUID作为核心部件制成手持式超低场MRI。
发明内容
本发明所要解决的技术问题是提供一种基于SQUID的手持式超低场MRI系统,这种基于SQUID的手持式超低场MRI系统能够实现MRI成像系统的手持化,无需采用液氦冷却,工作、维护成本低,适合中小型医院使用。采用的技术方案如下:
一种基于SQUID的手持式超低场MRI系统,包括硬件部分和软件部分,硬件部分包括智能手持设备、激励线圈模块、极化线圈模块、梯度线圈模块、接收线圈模块、SQUID、冷却模块、数据获取模块、主控制模块、电力控制模块和接口模块,接口模块通过局域网与智能手持设备连接,软件部分设于智能手持设备上,其特征是:还包括探头外壳和磁屏蔽罩,磁屏蔽罩设于探头外壳中,磁屏蔽罩的底部设有开口,开口与探头外壳的底部连接;所述接收线圈模块、SQUID和冷却模块均设于磁屏蔽罩中,接收线圈模块安装在磁屏蔽罩的开口处,冷却模块与SQUID接触;所述极化线圈模块和梯度线圈模块均设于探头外壳内部,并分布于磁屏蔽罩的外侧;所述软件部分包括磁场参数变换模块和图像重建模块。
上述智能手持设备指笔记本电脑、智能手机和平板电脑等,具有强大图像显示、处理能力。
上述激励线圈模块、极化线圈模块、梯度线圈模块、接收线圈模块、冷却模块、数据获取模块、主控制模块、电力控制模块和接口模块都是常用的模块,模块的构成及连接都相对固定,都属于现有的技术。其中,极化线圈模块和梯度线圈模块均与电力控制模块电连接,电力控制模块与数据获取模块、主控制模块和SQUID都电连接,接收线圈模块与SQUID的输入端电连接,SQUID的输出端与数据获取模块的输入端电连接,数据获取模块的输出端与主控制模块的输入端电连接,主控制模块的输出端与接口模块电连接。
激励线圈模块由一个或多个激励线圈构成,用于对被测物体产生激励信号;极化线圈模块由多个极化线圈构成,用于产生极化场,使被测物体内部的原子按规则排列;梯度线圈模块由至少三个梯度线圈构成,用于产生梯度场;主控制模块发出各种信号,协调各模块的工作,电力控制模块根据主控制模块的信号用于为各模块提供电源;接收线圈模块用于接收被测物体的磁共振信号;SQUID用于获得来自接收线圈模块的磁共振信号,并将磁共振信号转化为电信号;数据获取模块包括依次电连接的预放大器、锁相放大器、后放大器和A/D转换器,在锁相放大器处还连接有振荡器,数据获取模块将电信号转换为数字信号;接口模块通过局域网将数字信号传送给智能手持设备。
数据获取模块、主控制模块、电力控制模块和接口模块可以设置在探头外壳的外部,并封装在一起。优选将数据获取模块、主控制模块、电力控制模块和接口模块均设置在探头外壳的内部。
接口模块可以是有线网络接口,也可以是无线网络接口,在设置为无线网络接口的情况下,在探头外壳内部还应设置一个为无线网络接口供电的电池模块。优选接口模块包括有线网络接口和无线网络接口,既可以通过有线方式与智能手持设备连接,也可以通过无线方式与智能手持设备连接。
本发明的基于SQUID的手持式超低场MRI系统,在激励原理、磁共振信号获取及成像原理上均与现有技术相同,所不同的是:将极化线圈模块、梯度线圈模块、接收线圈模块、冷却模块和SQUID均封装在探头外壳里面,再用磁屏蔽罩将接收线圈模块、冷却模块和SQUID罩起来,构成探测头,采用冷却模块为SQUID提供超低温的工作环境,实现超低场MRI系统在硬件上的手持化。为了解决将极化线圈模块、梯度线圈模块、接收线圈模块和SQUID封装在一起,造成极化场和梯度场不规则,导致无法使用现有的磁共振成像算法重建图像这一问题,本发明的解决方法是:基于封装后极化线圈模块、梯度线圈模块和接收线圈模块的位置固定,所产生的极化场、梯度场便确定这一原理,在软件部分设置磁场参数变换模块,通过磁场参数变换模块将SQUID探测到的不规则磁场参数变换为适合使用现有磁共振成像算法(规则磁场情况下的磁共振成像算法)的磁场参数,图像重建模块采用变换后的磁场参数及现有磁共振成像算法重建图像。通过将极化线圈模块、梯度线圈模块、接收线圈模块、冷却模块和SQUID均封装在探头外壳里面,冷却模块为SQUID提供超低温工作环境,无需采用液氦冷却,而磁场参数变换模块将SQUID探测到的不规则磁场参数变换为适合使用现有磁共振成像算法的磁场参数,使得能够利用现有的磁共振成像算法重建图像,实现MRI系统的手持化,工作、维护成本低,可替代0.1~1T永磁MRI设备,适合中小型医院使用。
为了达到结构简单的目的,作为本发明的优选方案,其特征是:所述冷却模块包括冷却头、冷却导管和供冷装置,冷却头与SQUID接触,冷却头通过冷却导管与供冷装置连接。通过供冷装置获得适于SQUID工作的超低温,并通过冷却导管和冷却头传导给SQUID,为SQUID提供超低温工作环境,无需采用液氦冷却,节约工作、维护成本,结构简单、实用。在供冷装置的体积比较大的情况下,可将供冷装置设于探测头的外部,需要封装在探头外壳里面的只是冷却头和部分冷却导管。
为了达到结构简单的目的,作为本发明进一步的优选方案,其特征是:所述供冷装置包括外部制冷装置,外部制冷装置与冷却导管连接,并设于探头外壳的外面。通过现有的外部制冷装置进行制冷,结构简单。上述外部制冷装置可采用美国Cryomech公司的PT405或欧洲的Thales Cryogenics公司的UP系列等,这两款超低温制冷器很适合为SQUID提供超低温的工作环境。
为了达到使用方便的目的,作为本发明进一步的优选方案,其特征是:所述供冷装置包括冷却胶囊安装腔和冷却胶囊;冷却胶囊包括胶囊接口模块、冷却剂注入口阀门、胶囊腔体和冷却剂输出口阀门,胶囊腔体设有绝热层,冷却剂注入口阀门和冷却剂出口阀门分设于胶囊腔体两端;冷却剂注入口阀门和冷却剂出口阀门通过胶囊接口模块与主控制模块连接;冷却胶囊处于冷却胶囊安装腔中,冷却剂输出口阀门与冷却导管连接。胶囊接口模块与MRI的主控制模块连接,接受主控制模块的指令,使冷却剂注入口阀门和冷却剂出口阀门关闭或开启。可以通过冷却剂注入口阀门向胶囊腔体中注入液氦、液氮等冷却剂,通过冷却剂输出口阀门释放冷却剂经冷却头为SQUID冷却。将冷却胶囊与冷却胶囊安装腔做成插拔式,将充满冷却剂的冷却胶囊插入冷却胶囊安装腔中,由冷却胶囊释放冷却剂为SQUID冷却,注入冷却胶囊中的冷却剂维持在能够满一次成像的剂量为准,因此冷却胶囊可以做得非常小,使用方便,更适合MRI系统的手持化要求;冷却胶囊在失去冷却作用的情况下,通过外部制冷装置,使冷却胶囊中的冷却剂重新液化,从而使冷却胶囊可以循环使用。
为了达到方便使用及循环使用的目的,作为本发明进一步的优选方案,其特征是:所述供冷装置包括外部制冷装置、冷却胶囊安装腔和冷却胶囊;外部制冷装置与冷却导管连接,并设于探头外壳的外面;冷却胶囊包括胶囊接口模块、冷却剂注入口阀门、胶囊腔体和冷却剂输出口阀门,胶囊腔体设有绝热层,冷却剂注入口阀门和冷却剂出口阀门分设于胶囊腔体两端;冷却剂注入口阀门和冷却剂出口阀门通过胶囊接口模块与主控制模块连接;冷却胶囊处于冷却胶囊安装腔中,冷却剂输出口阀门与冷却导管连接。在没有开启外部制冷装置的情况下,可以将充满冷却剂的冷却胶囊插入冷却胶囊安装腔中,由冷却胶囊释放冷却剂为SQUID冷却,注入冷却胶囊中的冷却剂维持在能够满一次成像的剂量为准,因此冷却胶囊可以做得非常小,更适合MRI系统的手持化要求;而在不使用冷却胶囊冷却的情况下,可以通过外部制冷装置、冷却导管和冷却头来冷却;在外部制冷装置开启的情况下,可以将使用过的冷却胶囊(已失去冷却作用)插入到冷却胶囊安装腔中,通过外部制冷装置,使冷却胶囊中的冷却剂重新液化,从而使冷却胶囊可以循环使用。
为了达到更加一体化的目的,作为本发明更进一步的优选方案,其特征是:所述激励线圈模块设于探头外壳中。因为封装了极化线圈模块、梯度线圈模块、接收线圈模块、冷却模块和SQUID的探测头,其大小跟B超探头差不多,可以近距离接近被测物体,所以激励线圈模块设于探头外壳中,并不会影响激励作用,使得手持化MRI系统更加一体化。
为了达到在无磁屏蔽间的情况下仍能够使用的目的,作为本发明更进一步的优选方案,其特征是:还包括磁补偿线圈,磁补偿线圈设于探头外壳中。通过设置磁补偿线圈,补偿线圈将检测区域内外磁场隔离,使检测区域内的测量磁场与外部的环境磁场之间的互相干扰程度降到最低,使得只有接近探测头的被检测部位才有强磁场,外界磁场干扰非常弱,可以不予考虑,因此在设置磁屏蔽间的情况下仍能正常精确成像。
为了达到变换简单的目的,作为本发明更进一步的优选方案,其特征是:在所述磁场参数变换模块中,将梯度场中的被测物体划分为n个正方体体素,用点Pn代表,坐标(x,y,z)n;接收由SQUID所获得的n个正方体体素经激励后时刻t磁通总量B(t);根据拉莫公式ω0=γ.β0求出各点的进动频率ωn;根据傅立叶变换,将B(t)和ωn代入公式
Figure BDA0000046423920000071
中,得到各个点的磁通瞬时值Bn。因为极化线圈模块和梯度线圈模块的位置确定,其产生的磁场空间位置就唯一确定,所以,在傅立叶的变换范围内,将SQUID探测到的不规则磁场参数变换为适合使用现有磁共振成像算法的磁场参数。具体变换方法如下:将梯度场中的被测物体划分为n个正方体体素,用点Pn代表,坐标(x,y,z)n;通过梯度线圈空间排布,使各点外部场强β各不相同;经激励后时刻t沿测量方向磁通瞬时值为Bn,进动频率为ωn,根据拉莫(Larmor)公式ω0=γ.β0(其中ω0:进动频率;γ:旋磁比;β0:外磁场强度;γ由物质的特性决定,为固定值;β0可以通过磁通计测出),求出各点的进动频率ωn;由SQUID所获得的n个正方体体素经激励后时刻t磁通总量B(t),根据傅立叶变换可得,
Figure BDA0000046423920000072
将已计算出n个点的ωn代和已测出的B(t)入上式,可得到各个点的Bn,其唯一对应于Pn的坐标(x,y,z)n。只要知道各点进动频率ωn,且ωn和空间坐标(x,y,z)n唯一对应,Bn反映该点上物质的磁共振特性(如质子密度、T1、T2等)。不规则磁场和规则磁场获得各点Bn的公式相同,区别只在于规则磁场每点的外部场强β可根据坐标(x,y,z)n直接通过简单几何比例关系获得,而不规则磁场每点的外部场强β通过直接计算比较繁琐,简化的方法可以通过磁通计,在机器安装好后把测量区域内各点的不同的β,标定一次保存起来,用于以后多次测量的计算。
为了达到动态三维成像的目的,作为本发明更进一步的优选方案,其特征是:对至少三个梯度线圈进行几何编码,使待测物体每个体素单元都处于不同的频率、相位、激励层中,在软件部分的磁场参数变换模块中对一个空间体积内所获取的磁共振信号均进行磁场参数变换,并连续重复该操作。通过每次同时获取一个空间体积内所有的磁共振反馈信号,通过磁场参数变换,连续重复该操作,就可以实时重建出物体的动态三维灰度图像,优选磁场参数变换的方式采用傅立叶变换。
为了达到便于用户使用的目的,作为本发明更进一步的优选方案,其特征是:所述软件部分的操作界面兼容传统MRI的操作界面。由于传统磁共振MRI的用户,可能不熟悉超低场MRI成像的图像意义,软件中提供了兼容适配模式,将超低场MRI的操作界面,包括参数在内,全部让用户以其熟悉的传统磁共振MRI的参数形式输入,系统内部将其无缝转化为超低场MRI所需参数,并在最后显示的时候,将图像处理成传统磁共振MRI类似的形式,如果用户需要,也可以还原为具备超低场MRI独特信息的图像。
本发明的基于SQUID的手持式超低场MRI系统,通过将极化线圈模块、梯度线圈模块、接收线圈模块、冷却模块和SQUID均封装在探头外壳里面,冷却模块为SQUID提供超低温工作环境,无需采用液氦冷却,而磁场参数变换模块将SQUID探测到的不规则磁场参数变换为适合使用现有磁共振成像算法的磁场参数,使得能够利用现有的磁共振成像算法重建图像,实现MRI系统的手持化,工作、维护成本低,可替代0.1~1T永磁MRI设备,适合中小型医院使用。
附图说明
图1本发明优选实施方式一的结构示意图
图2是数据获取模块的结构示意图
图3是冷却模块的结构示意图
图4是冷却胶囊的结构示意图
图5本发明优选实施方式一软件部分的流程图
图6本发明优选实施方式一在实际应用中的示意图
具体实施方式
下面结合附图和本发明的优选实施方式做进一步的说明。
实施方式一
如图1和图6所示,这种基于SQUID的手持式超低场MRI系统,包括硬件部分和软件部分,硬件部分包括智能手持设备1、激励线圈模块2、极化线圈模块3、梯度线圈模块4、接收线圈模块5、SQUID6、冷却模块7、数据获取模块8、主控制模块9、电力控制模块10、接口模块11、探头外壳12和磁屏蔽罩13;磁屏蔽罩13设于探头外壳12中,磁屏蔽罩13的底部设有开口,开口与探头外壳12的底部连接;接收线圈模块5、SQUID6和冷却模块7均设于磁屏蔽罩13中,接收线圈模块5安装在磁屏蔽罩13的开口处,冷却模块7与SQUID6接触;极化线圈模块3和梯度线圈模块4均设于探头外壳12内部,并分布于磁屏蔽罩13的外侧;接口模块11通过局域网与智能手持设备1连接;激励线圈模块2设于探头外壳12中;软件部分设于智能手持设备1上,软件部分包括磁场参数变换模块和图像重建模块。
激励线圈模块2、极化线圈模块3和梯度线圈模块4均与电力控制模块10电连接;电力控制模块10与数据获取模块8、主控制模块9和SQUID6都电连接,接收线圈模块5与SQUID6的输入端连接,SQUID6的输出端与数据获取模块8的输入端连接,数据获取模块8的输出端与主控制模块9的输入端连接,主控制模块9的输出端与接口模块11连接。
激励线圈模块2由多个激励线圈构成,用于对被测物体14产生激励信号;极化线圈模块3由多个极化线圈构成,用于产生极化场,使被测物体14内部的原子按规则排列;梯度线圈模块4由三个梯度线圈构成,用于产生梯度场;主控制模块9发出各种信号,协调各模块的工作,电力控制模块10根据主控制模块9的信号用于为各模块提供电源;接收线圈模块5用于接收被测物体14的磁共振信号;SQUID6用于获得来自接收线圈模块5的磁共振信号,并将磁共振信号转化为电信号;如图2所示,数据获取模块包括依次电连接的预放大器15、锁相放大器16、后放大器17和A/D转换器18,在锁相放大器16处还连接有振荡器19,数据获取模块8将电信号转换为数字信号;接口模块11通过局域网将数字信号传送给智能手持设备1。
数据获取模块8、主控制模块9、电力控制模块10和接口模块11均设置在探头外壳12的内部。
接口模块11包括有线网络接口20、无线网络接口21和电池模块22,电池模块22为无线网络接口21供电。
如图3和图4所示,冷却模块7包括冷却头23、冷却导管24和供冷装置,冷却头23与SQUID6接触,冷却头23通过冷却导管24与供冷装置连接。供冷装置包括外部制冷装置25、冷却胶囊安装腔26和冷却胶囊27;外部制冷装置25与冷却导管24连接,并设于探头外壳12的外面;冷却胶囊27包括胶囊接口模块28、冷却剂注入口阀门29、胶囊腔体30和冷却剂输出口阀门31,胶囊腔体30设有绝热层,冷却剂注入口阀门29和冷却剂出口阀门31分设于胶囊腔体30两端;冷却剂注入口阀门29和冷却剂出口阀门31通过胶囊接口模块28与主控制模块9连接;冷却胶囊27处于冷却胶囊安装腔26中,冷却剂输出口阀门31与冷却导管24连接。
如图5所示,在软件部分,磁场参数变换模块采用傅立叶公式进行变换,将SQUID探测到的不规则磁场参数变换为适合使用现有磁共振成像算法的磁场参数。具体变换方法如下:将梯度场中的被测物体划分为n个正方体体素,用点Pn代表,坐标(x,y,z)n;通过梯度线圈空间排布,使各点外部场强β各不相同;经激励后时刻t沿测量方向磁通瞬时值为Bn,进动频率为ωn,根据拉莫(Larmor)公式ω0=γ.β0(其中ω0:进动频率;γ:旋磁比;β0:外磁场强度;γ由物质的特性决定,为固定值;β0可以通过磁通计测出),求出各点的进动频率ωn;由SQUID所获得的n个正方体体素经激励后时刻t磁通总量B(t),根据傅立叶变换可得,将已计算出n个点的ωn代和已测出的B(t)入上式,可得到各个点的Bn,其唯一对应于Pn的坐标(x,y,z)n
图像重建模块根据各个点的Bn及现有磁共振成像算法,重建被测物体的图像。
软件部分的操作界面兼容传统MRI的操作界面。
如图6所示,这种基于SQUID的手持式超低场MRI系统在实际应用中的示意图,在磁屏蔽间32内,将封装后的探头33移近被检测物体14进行探测,使用非常方便。
优选上述外部制冷装置25为美国Cryomech公司的PT405或欧洲的Thales Cryogenics公司的UP超低温冷却器。
实施方式二
在其它情况与实施方式一相同的情况下,其区别在于:对至少三个梯度线圈进行几何编码,使待测物体每个体素单元都处于不同的频率、相位、激励层中,在软件部分的磁场参数变换模块中对一个空间体积内所获取的磁共振信号均进行磁场参数变换,并连续重复该操作。
实施方式三
在其它情况与实施方式一或实施方式二相同的情况下,其区别在于:激励线圈模块没有设置在探头外壳中,而是分布在被测物体的周边。
实施方式四
在其它情况与实施方式一或实施方式二或实施方式三相同的情况下,其区别在于:还包括磁补偿线圈,磁补偿线圈设于探头外壳中。

Claims (7)

1.一种基于SQUID的手持式超低场MRI系统,包括硬件部分和软件部分,硬件部分包括智能手持设备、激励线圈模块、极化线圈模块、梯度线圈模块、接收线圈模块、SQUID、冷却模块、数据获取模块、主控制模块、电力控制模块和接口模块,接口模块通过局域网与智能手持设备连接,软件部分设于智能手持设备上,其特征是:还包括探头外壳和磁屏蔽罩,磁屏蔽罩设于探头外壳中,磁屏蔽罩的底部设有开口,开口与探头外壳的底部连接;所述接收线圈模块、SQUID和冷却模块均设于磁屏蔽罩中,接收线圈模块安装在磁屏蔽罩的开口处,冷却模块与SQUID接触;所述极化线圈模块和梯度线圈模块均设于探头外壳内部,并分布于磁屏蔽罩的外侧;所述冷却模块包括冷却头、冷却导管和供冷装置,冷却头与SQUID接触,冷却头通过冷却导管与供冷装置连接;供冷装置包括冷却胶囊安装腔和冷却胶囊;冷却胶囊包括胶囊接口模块、冷却剂注入口阀门、胶囊腔体和冷却剂输出口阀门,胶囊腔体设有绝热层,冷却剂注入口阀门和冷却剂出口阀门分设于胶囊腔体两端;冷却剂注入口阀门和冷却剂出口阀门通过胶囊接口模块与主控制模块连接;冷却胶囊处于冷却胶囊安装腔中,冷却剂输出口阀门与冷却导管连接;所述软件部分包括磁场参数变换模块和图像重建模块。
2.一种基于SQUID的手持式超低场MRI系统,包括硬件部分和软件部分,硬件部分包括智能手持设备、激励线圈模块、极化线圈模块、梯度线圈模块、接收线圈模块、SQUID、冷却模块、数据获取模块、主控制模块、电力控制模块和接口模块,接口模块通过局域网与智能手持设备连接,软件部分设于智能手持设备上,其特征是:还包括探头外壳和磁屏蔽罩,磁屏蔽罩设于探头外壳中,磁屏蔽罩的底部设有开口,开口与探头外壳的底部连接;所述接收线圈模块、SQUID和冷却模块均设于磁屏蔽罩中,接收线圈模块安装在磁屏蔽罩的开口处,冷却模块与SQUID接触;所述极化线圈模块和梯度线圈模块均设于探头外壳内部,并分布于磁屏蔽罩的外侧;所述冷却模块包括冷却头、冷却导管和供冷装置,冷却头与SQUID接触,冷却头通过冷却导管与供冷装置连接;供冷装置包括外部制冷装置、冷却胶囊安装腔和冷却胶囊;外部制冷装置与冷却导管连接,并设于探头外壳的外面;冷却胶囊包括胶囊接口模块、冷却剂注入口阀门、胶囊腔体和冷却剂输出口阀门,胶囊腔体设有绝热层,冷却剂注入口阀门和冷却剂出口阀门分设于胶囊腔体两端;冷却剂注入口阀门和冷却剂出口阀门通过胶囊接口模块与主控制模块连接;冷却胶囊处于冷却胶囊安装腔中,冷却剂输出口阀门与冷却导管连接;所述软件部分包括磁场参数变换模块和图像重建模块。
3.如权利要求1或2所述的手持式超低场MRI系统,其特征是:所述激励线圈模块设于探头外壳中。
4.如权利要求1或2所述的手持式超低场MRI系统,其特征是:还包括磁补偿线圈,磁补偿线圈设于探头外壳中。
5.如权利要求1或2所述的手持式超低场MRI系统,其特征是:在所述磁场参数变换模块中,将梯度场中的被测物体划分为n个正方体体素,用点Pn代表,坐标(x,y,z)n;接收由SQUID所获得的n个正方体体素经激励后时刻t磁通总量B(t);根据拉莫公式ω0=γ.β0,β0为外磁场强度,求出各点的进动频率ωn,其中ω0为进动频率,γ为旋磁比;根据傅立叶变换,将B(t)和ωn代入公式B(t) =                                               
Figure 958767DEST_PATH_IMAGE002
中,得到各个点的磁通瞬时值Bn
6.如权利要求1或2所述的手持式超低场MRI系统,其特征是:对至少三个梯度线圈进行几何编码,使待测物体每个体素单元都处于不同的频率、相位、激励层中,在软件部分的磁场参数变换模块中对一个空间体积内所获取的磁共振信号均进行磁场参数变换,并连续重复该操作。
7.如权利要求1或2所述的手持式超低场MRI系统,其特征是:所述软件部分的操作界面兼容传统MRI的操作界面。
CN 201110034037 2011-01-31 2011-01-31 一种基于squid的手持式超低场mri系统 Active CN102068256B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN 201110034037 CN102068256B (zh) 2011-01-31 2011-01-31 一种基于squid的手持式超低场mri系统

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN 201110034037 CN102068256B (zh) 2011-01-31 2011-01-31 一种基于squid的手持式超低场mri系统

Publications (2)

Publication Number Publication Date
CN102068256A CN102068256A (zh) 2011-05-25
CN102068256B true CN102068256B (zh) 2012-10-24

Family

ID=44027145

Family Applications (1)

Application Number Title Priority Date Filing Date
CN 201110034037 Active CN102068256B (zh) 2011-01-31 2011-01-31 一种基于squid的手持式超低场mri系统

Country Status (1)

Country Link
CN (1) CN102068256B (zh)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102346071B1 (ko) * 2014-03-14 2021-12-31 더 제너럴 하스피탈 코포레이션 로우-필드, 다중-채널 이미징을 위한 시스템 및 방법
CN105137374B (zh) 2014-06-03 2018-09-25 中国科学院上海微系统与信息技术研究所 一种超高分辨率的磁共振成像方法及装置

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1643403A (zh) * 2002-02-06 2005-07-20 加利福尼亚大学董事会 超低场下squid检测的nmr和mri

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004327874A (ja) * 2003-04-28 2004-11-18 Hitachi High-Technologies Corp 冷媒消費量監視機能を備えた冷却システム,生体磁気計測装置
US7671587B2 (en) * 2007-05-04 2010-03-02 California Institute Of Technology Low field SQUID MRI devices, components and methods

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1643403A (zh) * 2002-02-06 2005-07-20 加利福尼亚大学董事会 超低场下squid检测的nmr和mri

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
JP特开2004-327874A 2004.11.18

Also Published As

Publication number Publication date
CN102068256A (zh) 2011-05-25

Similar Documents

Publication Publication Date Title
Sarracanie et al. Low-field MRI: how low can we go? A fresh view on an old debate
Darrasse et al. Perspectives with cryogenic RF probes in biomedical MRI
JP2010525892A (ja) 低磁場squid−mri装置、コンポーネント、及び方法
Kathiravan et al. A review on potential issues and challenges in MR imaging
CN104597317A (zh) 一种超导线圈交流损耗的测量装置
Hilschenz et al. Remote detected low-field MRI using an optically pumped atomic magnetometer combined with a liquid cooled pre-polarization coil
CN102068256B (zh) 一种基于squid的手持式超低场mri系统
CN102073024B (zh) 一种手持式超低场mri的成像装置
Bai et al. Research on an improved resonant cavity for overhauser geomagnetic sensor
Kopanoglu et al. Analytic expressions for the ultimate intrinsic signal‐to‐noise ratio and ultimate intrinsic specific absorption rate in MRI
Wang et al. A cryogenic 14‐channel 13C receiver array for 3T human head imaging
CN102253417B (zh) 一种基于手持式超低场mri系统的安检方法
CN108351393A (zh) 具有流体冷却布置的磁共振检查系统
Chigusa et al. Dark matter detection using nuclear magnetization in magnet with hyperfine interaction
Lee et al. Performance of large-size superconducting coil in 0.21 T MRI system
Lee et al. Toward a magnetic resonance electrical impedance tomography in ultra-low field: A direct magnetic resonance imaging method by an external alternating current
Wang et al. Static weak magnetic field measurements based on low-field nuclear magnetic resonance
CN102175982B (zh) 一种手持式超低场mri的squid冷却装置
Chen et al. A compact SQUID-detected magnetic resonance imaging system under microtesla field in a magnetically unshielded environment
Sinibaldi et al. NMR Detection at 8.9 mT with a GMR based sensor coupled to a superconducting Nb Flux Transformer
CN113125890A (zh) 无线电能传输电、磁、热及温升测试系统、方法、设备
CN114706027A (zh) 磁共振线圈组件、多核素成像方法及扫描设备
US11064900B2 (en) Ultra-low field nuclear magnetic resonance device
JP3976479B2 (ja) 磁気共鳴イメージング装置における磁場変動を低減させる方法及び装置
Chizhik et al. NMR in magnetic field of the earth: Pre-polarization of nuclei with alternating magnetic field

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C14 Grant of patent or utility model
GR01 Patent grant
ASS Succession or assignment of patent right

Owner name: SHANTOU DONGFANG ULTRASONIC TECHNOLOGY CO., LTD.

Free format text: FORMER OWNER: SHANTOU INSTITUTE OF ULTRASONIC INSTRUMENTS CO., LTD.

Effective date: 20140702

C41 Transfer of patent application or patent right or utility model
TR01 Transfer of patent right

Effective date of registration: 20140702

Address after: 515041 Guangdong, Shantou Jinsha Road, No. 1, building 77

Patentee after: Shantou Dongfang Ultrasonic Technology Co.,Ltd.

Address before: 515041 No. 77 Jinsha Road, Jinping District, Guangdong, Shantou

Patentee before: Shantou Institute of Ultrasonic Instruments Co., Ltd.

CP03 Change of name, title or address
CP03 Change of name, title or address

Address after: 515041 Guangdong City, Longhu Province Wan Industrial Zone, Longjiang Road, Mount Everest road and the junction of the northwest side of the area, building 2, on the east side of the East

Patentee after: Shantou Ultrasonic Testing Technology Co., Ltd.

Address before: 515041 Guangdong, Shantou Jinsha Road, No. 1, building 77

Patentee before: Shantou Dongfang Ultrasonic Technology Co.,Ltd.